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Context and objectives

(dScalable solutions to approximate inference in
distributed and modular sensor networks: signal
detection/object tracking problems

(AScalability issue of existing filters — main concern

U Two families of Bayesian inference

* Data-driven filters: Dynamic state space model (DSM) is unknown,
training data set is provided

Fig. An example of a distributed sensor network

— Propose the Gaussian process-message passing (GP-MP) based 80— —
algorithm 60 -TrainingdataforY-ax" >

* Model-driven filters: DSM is given explicitly 404

— Propose the adaptive kernel Kalman filter (AKKF) § 20 1

— Joint Spatio-Temporal Bias Estimation and Tracking
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Fig. An example of two-dimensional GPR
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Data-driven Bayesian inference
— GP-MP based multi-target tracking

dDesign the Gaussian process — message (sa)—s
passing (GP-MP) based algorithm for object Fig. Factor graphs for single-sensor MTT
tracking
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Fig. Factor graph of the proposed joint GP algorithm for state prediction

* M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "A Gaussian Process based Method for Multiple Model Tracking," 2020 Sensor Signal Processing for Defence Conference (SSPD2020),

published.

* M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "Maneuvering Multi-target Tracking Based on Gaussian Process Regression," IEEE Transactions on Aerospace and Electronic, submitted
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Model-driven Bayesian inference
— New filter design p— : mana
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JKernel mean embedding (KME)

dPropose the Adaptive kernel Kalman filter (AKKF)
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State space Feature space
DAdva nta geS Fig. KME of a conditional distribution

Avoid particle filter resampling step 2. Update
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Give a new insight on model-based and data-based filters gllf*'ll_px i — mU
* Potential for improving the loopy belief propagation

observation

3. Proposal
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Fig. Realisation of AKKF
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* M. W. Sun, M. E. Davies, I. Proudler, J.R. Hopgood, "Adaptive Kernel Kalman Filter," 2021 Sensor Signal Processing for Defence Conference (SSPD2021), published
* M. W. Sun, M. E. Davies, |. Proudler, J.R. Hopgood, "Adaptive Kernel Kalman Filter Multi-Sensor Fusion," 2021 24th International Conference on Information Fusion (FUSION), published.
e M. W. Sun. M. E. Davies, |. Proudler. J.R. Hopeood. "Adaptive Kernel Kalman Filter." |IEEE Transactions on Sienal processing. Submitted.
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Model-driven Bayesian inference — Applications of the AKKF

* Single target tracking * Multi-sensor fusion e Multi-target tracking
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(a) Fig. Flow di fth d AKKF based BP algorith
Centralized fusion
# I I I ~$-PF-BP
0 T T T —4- AKKF-BP
—3— AKKF-Quartic £ 1
____________ [e]
1F 1 ' my ! St 1
w ! : H—d
= 2r : : ? 10° 10’ 10? 10°
- 1 : ” Computation time
°l : : -240 ] —4-PF-BP
1 - gao L —4- AKKF-BP
-4 L L L %
107 1072 107 10° 10° geor I
Computation time i 1
(b) % 0 lD 1 2 3
Semi-Decentralized fusion = 10 (C———— 10 10
putation time
Fig. Comparisons of computation time and tracking ) ) ]
performance of the PF and the AKKF Fig. Different fusion schemes Fig. GOSAP and localization estimation error of the detected targets comparisons

* M. W. Sun, M. E. Davies, |. Proudler, J.R. Hopgood, "Adaptive Kernel Kalman Filter based Belief Propagation Algorithm for Maneuvering Multi-target Tracking," |IEEE Transactions on

Aerospace and Electronic Letter, in preparation.
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Model-driven Bayesian inference

— Joint Spatio-Temporal Bias Estimation and Tracking

U Problem: Sensor calibration for reliable object
tracking without a global frame of reference

U Proposed solutions: Grid-based search method
with likelihood function to test the bias state
space.

O Advantages

* Tracking performance improvement

* Registration errors are corrected

* Increase in accuracy over object tracking with
only a single sensor
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* S. Macdonald and J. R. Hopgood, "Joint Spatio-Temporal Bias Estimation and Tracking for GNSS-Denied Sensor Networks," 2021 Sensor Signal Processing for Defence Conference (SSPD), 2021



