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Disclaimers

The following slides contain material from several
sources.

They are to be used by participants of the summer
school and cannot be distributed without permission from
the lecturer.

Copyright of figures remains on the copyright holders
which may not be solely of the author. Attribution has
been given when possible but has not been exhaustive.

Material shared maybe more than what we will be
covered at delivery. Said material is made available for
self-learning.

Material subject to change.



Common questions

Q: Are the slides going to be shared?

A: Yes, a preview version is already in the dropbox link
https://www.dropbox.com/s/am2tspicOtOfy2x/Summer _Sch
ool Slides tsaftaris 2021.pptx?dI=0

Updated version is available at the link of the chat!

Q: Will the session be recorded?
A: Yes and will be shared afterwards.

Q: Are you going to show us practical examples?

A: Yes via web-based demos. More hands on follows later
In the day.


https://www.dropbox.com/s/am2tspic0t0fy2x/Summer_School_Slides_tsaftaris_2021.pptx?dl=0

Our expertise
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Computer vision
& Image Analysis:

— Extract information from images
— Applications: medicine, plants

Machine learning & pattern
recognition

— Shallow or deep
representation learning
(the process of making sense of data)

— Learning without lots of data
— Combining information sources
Distributed learning
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We do Al...

Weakly Transfer
Disentangled supervised Disentanglement
learning learning Object
counting
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Disentangling

Privacy Canon Medical Pathology

Data Al Team Lead

Xian Jiaotong-Liverpool University

Leakage canon Y=ezieais
CANON MEDICAL
——
@,
- » iCAIRD
PostDoc PhD Student

= Canon Medical =— Intern

Generative .
Conditioning detection compression

+ several
MSc
students

2?7

Disentangled
learning

C

Learning
to age

Causal
Machine
Learning




An example of ML in UDRC

 Given data can  Learn a distribution that

| Iearn thelr distribution? can generate that data?

P BT
s =

CED IEII

Real images (CIFAR-10) Generated images



Some common applications

Email spam filtering
Netflix/Amazon recommendations
Google suggested queries

The Google index itself
Predicting stock prices
Classifying threats in images

etc



Extreme (...) applications

MIT flight
http://www.youtube.com/watch?v=aiNX-vpDhMo
Robot in the dessert
http://www.youtube.com/watch?v=010tOmyySQo
Google car
http://www.youtube.com/watch?v=cdgQpalpUUE

On purpose | leave these “old” extremes to show how quickly ML has
advanced in less than 10 years.
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http://www.youtube.com/watch?v=aiNX-vpDhMo
http://www.youtube.com/watch?v=OIOtOmyySQo
http://www.youtube.com/watch?v=cdgQpa1pUUE

Autonomous Drones

https://www.youtube.com/watch?v=2DsJLigMrS0
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Use Al to design new chips...

@ zdnet.com

2 = Now Google s using Al desig

EDITION: UK w

CXO HARDWARE MICROSOFT STORAGE INNOVATION APPLE SECURITY  MORE

|D musT rea: Windows 11: Microsoft deletes these Windows 10 features and apps

Now Google is using Al to design chips, far
faster than human engineers can do the job

Google's Al has revealed a new model that can automate a complex process at the heart of chip design, saving
engineers months-worth of work.

Daphne Leprince-Ringuet | June 11

@«in@ fv [ Yoo

MORE FROM DAPHNE LEPRINCE-RINGUET

Quantum Computing
Quantum computing just
took on another big
challenge, one that could
be as tough as steel

Digital Transformation
Businesses are
desperate for developers
and other tech workers.
Here's what they are
looking for

Tech Industry
The global chip shortage
could soon start causing
problems for your bank
cards, too

In anly six hours, the model could generate a design that optimizes the placement of different companents on the chip,

Image: Kokouu / Getty Images

Ateam of researchers from Google has unveiled a new Al model that can come up with complex

chip designs in hours — a burdensome, intricate task that typically takes months for human
Digital Transformation
Remote, hybrid or office-
based? Employers are
making big decisions

https://www.nature.com/articles/s41586-021-03544-w

engineers to complete.



https://www.nature.com/articles/s41586-021-03544-w

Autonomous driving

Source: Andrej Karpathy Director of Al and Autopilot Vision at Tesla,
Multi-Task Learning in the Wilderness
ICML 2019



nature - oo Protein folding

Explore content v Journal information v  Publish withus v Subscribe Sign up for alerts £} RSS feed

nature > news > article

NEWS | 30 November 2020
You have full access to this article via

llt will change evel‘ything': The University of Edinburgh
DeepMind’s Al makes gigantic =
leap in solving protein felated Aréicles

Structu res Al protein-folding algorithms W
solve structures faster than e
Google’s deep-learning program for determining the 3D shapes of proteins exer

stands to transform biology, say scientists.

Therevolution will not be
Ewen Callaway crystallized: anew method
sweeps through structural
vy f biology

The computational protein
designers

Revolutionary microscopy
technique sees individual
atoms for first time

Subjects
Computational biology and bioinformatics

Structura Ibiology  Drug discovery

Sign up to Nature Briefing

https://www.nature.com/articles/s41586-019-1923-
7.epdf?author access token=Z KaZKDqgtKzbE7Wd5HtwWI9RgNOjA]Wel9inR3Z0
TvOMCcgAWHMORX9MVLINOdB2TIO0Qaa71420UCtGo8vY0O39qa8IFWR9MAZtvs

N 1PrccXflbcoe-tGSgazNL XdtOznl1lPHfy21qgdcexV7Pw-k3htw%3D%3D
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https://www.nature.com/articles/s41586-019-1923-7.epdf?author_access_token=Z_KaZKDqtKzbE7Wd5HtwI9RgN0jAjWel9jnR3ZoTv0MCcgAwHMgRx9mvLjNQdB2TlQQaa7l420UCtGo8vYQ39gg8lFWR9mAZtvsN_1PrccXfIbc6e-tGSgazNL_XdtQzn1PHfy21qdcxV7Pw-k3htw%3D%3D

What Is machine learning?

* Arthur Samuel [1959] (informal definition) Gives
computers abllity to learn without being explicitly
programmed.

=>»He built the very first checker’s program

« Tom Mitchell [98] (more formal): A well-posed learning
problem is defined as follows:

— A computer program is set to learn from an
experience E with respect to some task T
and some performance measure P
If its performance on T
as measured by P
Improves with experience E.

15



Machine learning the 10 year challenge




Text Books

[k—m Al £ 1-

o Useful texts ...

Pattern Recognition
Neural Networks for

P'Jt[CTl} Pattern Recognition
Classification

Christopher M. Bishop

« Most can be found online or libraries: e.g.

https://github.com/jermwatt/machine learning refined

https://www.deeplearningbook.org/

+—
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https://www.deeplearningbook.org/
https://github.com/jermwatt/machine_learning_refined

What *we* do with ML...

We build algorithms to analyze imaging data (2D, 3D,
2D+t, 3D+t)

From a variety of domains
Use machine learning throughout

Some examples...

18



* A similar problem is
=>»Retina fundus Input Ours

Restoring faults in images
° Recover gaps from Root lmag.iﬁ Segmentation Inpainted Result
Images of plant roots p
present in medical
Imaging as well
CEI;(&)EEA - -

Chen et al. “Adversarial Large-scale Root Gap Inpainting ”, CVPRW - CVPPP 2019 19



Learning to age

fpred(xi) =677

Xia, Chartsias, Wang, & Tsaftaris (2019) Learning to synthesise the ageing brain without longitudinal data. arXiv 1912.02620
Xia, Chartsias & Tsaftaris (2019) Consistent Brain Ageing Synthesis. MICCAI

21



Doing more with less

« Build systems that learn from few data, few annotations
— Understand the images with

clinical biomarkers

world
. . _—_ EHR report
— Build intuition e o
annotated images imagel |63% 6.1 85
abOUt the and masks image2 |70% 68 9

world D

Siln

features

segmentation masks
non-annotated
images

Chartsias, Joyce, Papanastasiou, Semple, Williams, Newby, Dharmakumar & Tsaftaris (2018 and
2019) Disentangled Representation Learning in Cardiac Image Analysis. Medical Image Analysis
2019 and MICCAI 2018 Code: https://aithub.com/aagis85/anatomy modality decomposition 22



Generate high quality synthetic data

S
Population B
domain
OO

Unexplored Create high quality synthetic
Images combining data

domain

A

|
®
Population C
domain
Subject A Subject B Subject A’
+ =
Normal (Healthy) Hypertrophic Cardiomyopathy Hypertrophic Cardiomyopathy

Thermos, Liu, O'Neil, & Tsaftaris (2021) Controllable cardiac synthesis via disentangled anatomy arithmetic. To appear
MICCAI 2021



est-time
adaptation

 Encoders, decoders,
discriminators capture
priors

« At test time we throw
them away.

« Can we reuse them
and adapt networks
during testing?

G. Valvano, A. Leo and S. A.
Tsaftaris, Stop Throwing Away
Discriminators! Re-using
Adversaries for Test-Time Training,
Work in progress

Prediction

Dataset Before TTT After TTT|  T°¢
o o C
ACDCy 5731

o o o
o] O o
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D 0 o]
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Anomaly detection

REFGAN Model Training

™ %,

DoNC: Sunglasses, Clothes

Learning the prior: Few-shot training:

- Given Few-Shot OoC
Given OoNC data |
Training - (FSOoC) data
set |
OoNC Pedesmans

0oC: Guns ) )
al. ?7 ! Low-shot testing: Anomaly Score:
" with FSOoC data Discriminator

= ut_..l

Blcycle

REFGAN Model Inference

Test set

Boundary of OoNC

v & & ©
Generated
boundary data

1. N. Dionelis, M. Yaghoobi, S. A. Tsaftaris, “Boundary of Distribution Support Generator (BDSG): Sample
Generation on the Boundary,” IEEE ICIP 2020.

2. N. Dionelis, M. Yaghoobi, S. A. Tsaftaris, “Tail of Distribution GAN: GAN-Based Boundary of Distribution
Formation,” SSPD 2020.

3. N. Dionelis, M. Yaghoobi, S. A. Tsaftaris, “Few-Shot Adaptive Detection of Objects of Concern Using
Generative Models with Negative Retraining (REFGAN model)”, Work in Progress, 2021.




e The major directions of learning are:

— Supervised: Patterns whose class is known a-priori
are used for training.

— Unsupervised: The number of classes/groups is (in
general) unknown and no training patterns are
available.

— Semisupervised: A mixed type of patterns is
available. For some of them, their corresponding class
is known and for the rest is not.

29



price (in $1000)

Supervised example

Living area (feet?

Price (1000$s

housing prices

1000

900

800

700

600

500

400

300

200

100

0|

500

1000 1500 2000 2500 3000
square feet

3500

4000

4500

5000

price (in $1000)

400
330
369
232
540

housing prices

1000

900

800

100}

1

500

1000

1500

2000

2500 3000 3500 4000 4500
square feet

5000

30



A classification example

Goal find a “line”
to separate the
two classes

31



Hmm this looks harder

o GOO

Looks like separating
° ) the data needs a more
. “complex” line

32



Hmm this looks harder
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Unsupervised clustering
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Unsupervised clustering
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Semi-supervised learning
4 I

36



Semi-supervised learning
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Topics that we will try to cover

Supervised methods
— Linear regression
— Logistic regression

— Perceptron Classifier

Unsupervised (and dimensionality reduction)
— PCA,

Learning theory (simple view)

Introduction; simple feed forward neural network
architecture; how to train a neural network;
backpropagation (briefly);

38



PART 1: INTRO TO ML

39



Supervised learning

Living area (feet?) | Price (1000$s

2104 400
1600 330
2400 369 300
1416 232 a00
3000 540 700

600
500
S 400
300,
200

100

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet



A typical formulation

 Input or features:
e Output or target:
« Training example:
« Training set==

List of m examples:

{2,y )i =1, ...

* Space:

s
y\)

(@

(5), /)

X — |, —»predicted y

(living area of
house.)

Tramning
set

|

Learning
algorithm

'

oy

A

h:Xw— )Y

(predicted price)
of house)

41



Living area (feet?) | #bedrooms | Price (1000$s)
2104 3 400
1600 3 330
2400 3 369
1416 2 232
3000 4 540

42



price (in $1000)

Linear fit

housing prices

1000 Objective function:
How do we find the
solution to this problem?

900

800

700 We are given some data.
We are given a desired
form of the line, but we
want to find the best line.

600

500

400

300 We need an objective
function = training cost
200 =measure of
100 performance
0 that we can optimize.
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

square feet

43



Optimization

Many ML techniques need optimization, e.g.
« Minimizing error in a neural network/adaptive system
« Maximizing probability in Bayesian inference

From simple “steepest descent” to more advanced
techniques (Newton, conjugate gradient,...)

' - =11 ' -

44



Solving the linear regression problem

The LMS algorithm
ho(x) = Oy + 0121 + O224 h(z) = Z O,x; = 0% x,
1=0

Define a cost: ) = %Z(hg(:c(i)) _ oy,

0

Optimise for the cost ¢, := 6, — aa—ej(e).
J
0 0 1 2
wmm/(0) = wamm(y(r)—y) - : i
00, 8@12 5 0, :=0; + (y(’) — hg(x(z))) xg.)
= 2 5(he(x)—y)~a—9j(he(w) —Y)
_ (hg(x)—y)-ﬁ Z&-&y) For a dataset of size 1



Batch vs stochastic

 Batch

Repeat until convergence {
0;:=0;+ad i (v — he(z)) 2\ (for every 7)

}

* Stochastic

Loop {
for i=1 to m, {
0;:=0; +a (y — he(x®)) 2P (for every j)

}

46



Higher model complexity

ek e
1
1! |

Model choice:

How do we tell what is the right choice?

Theoretlc_al background: the plas_varlance dilemma Coming later...
The practical solution: cross validation

47



Logistic Regression

e Suppose now that we don’t have a regression problem

but classification

— Decide whether a house will sell (1) or not (0)

Living area (feet?) | #bedrooms

Price (1000%s)

2104 3
1600 3

400
330

e y, our output variable, is now a binary number

e \We can encode this as:
— Qorl1l
- -1,1

— Or anything else according to convenience (which will be

obvious)

48



Price

Visualizing a classification problem

Living area

49



Logistic Regression

e (Can we solve a binary classification problem 0 or 1

as linear regression?
ho(x) = g(6" )

e The logistic function

(sigmoid function) = g(2) = n—

B 1

C1l+4e

—0T 7

50



@

Q
9

g'(2)

Why?

e It has some nice property

51



How to solve the problem (find the

theta’s)?
A maximum likelihood view
Assume Ply=1|z0) = hg(x)

Ply=0]z;0) = 1— hg(x)

Or... p(y | 2:0) = (ho(2))” (1 — hy(x)) "

L(O) = p(i] X;0) Objective
Assuming the training B ﬁp(ymx@-@) function
examples were generated i ’
independently _ ﬁ oz (1 — ()"

06) = log L(6)

= > _yPlogh(z”) + (1 —y)log(1 — h(z""))
1=1

52



Contd...

e Lets use gradient ascent 0 := 0 4+ aVyl(0)

9 ] | o
a0, %) (yg RS y>m> o)

1 1 T T
- (v -0 - w0 - o
= (y(1—g(6"x)) — (1 — y)g(6"2)) 2,
= (y— he(z)) z;

0, = 0, +a (y® — ho(z)) 2




PART 2: INTRO TO
PERCEPTRONS

54



What if we take an extreme sigmoidal

ri— .
1.0 '
L |
- |
RS |
i |
0.5 ~ |
i [ ]
0.4 |
0.2
- |
0.0 £}
ol e e e e |
-2 1 0 1

(2) = 1 iftz2>0
==Y 0 if 2 <0



The Perceptron:

A Simple Learning Neuron

Rosenblatt (1958) We want

output y
Threshold 6 = -w, to equal

Xg =1 O_ target t

|
Inputs i
|

Inputs may be from {-1, +1} or {0, +1} y =1f(v)

56



Perceptron Learning Algorithm

One example of a learning algorithm (presents samples

one at a time)

For all input vectors in training set:
1) Present input vector X

2) Calculate y=1 if w'x 20, y=0 if wTx < 0

3) Compare y with target output t
a) If t=1 but y=0, set new w = old w + nx
b) If t=0 but y=1, set new w = old w [ nXx
c) Otherwise (If y=t), do nothing

Repeat until correct for all input vectors.
Factor n is called the learning rate

punish]
punish]

reward]

58



Decision Boundary Example

Xo

(-1,+1 (+1,+1)
®
"Fire" "Don't
y=0 Fire"
X1

(-1,-1) e T ® (+1,-1)

59



Simple Example

"If summer and not raining, play tennis"

Training set. (threshold, x, 1 1 1 1)
Specifies target t SUMmMmer, X, 0011
for different inputs | ramning, X, 0101

play tennis,t 0 0 1 O

raining, X, l
1 °
t=0 t=0
=0 t=1
0O -e &— summer, X,
0 1



Suppose initially

W = (Wp, Wy, W,) = (-0.5, +2.5, -1.5) —
Try input x = (1,1,1):

wTix =-0.5+2.5-1.5>0

Simple Example (cont)

:

so y=1: Wrong

Using n=0.5, 1

subtract nx from w to give us ®

w = (-1.0, +2.0, -2.0) —_— =0 t=0
\

Perceptron decision boundary is

now correct for all inputs.

61



Perceptron Limitations

Problem must be linearly separable
Classic non-linearly separable problem: XOR problem

: .

=1 t=0
— =1
I =1

Minsky & Pappert (1969) - conjectured this limitation
would not be overcome.

But it was...

62



From linear discriminants to more
complex decision surfaces

63



Linear Discriminant Functions

Suppose we wished to decide whether some data

X =(Xg, Xo,eeey Xg)
belonged to one of two categories

One way to do this is to construct a Discriminant function. Let g(x)
define the categories as:

o, g(x)>0
(X) _{wz, g(x)<0

If g(x) is linear we can write:

d
g(X) =W'X + Wy = D WX + W,
i=1
where w = {w,, ... , wg} are called the weights and w, is called the
bias or threshold weight.

See ch 5.2 Linear Discriminant Functions

Duda Hart
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Simple Linear Classifier

Output emits
o(x) +1if wix + wp >0
A —1 otherwise

output unit

bias unit W,

input units

Each unit shows its effective input-output function.
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Decision surface

g(x) = 0 defines a decision surface which separates points into

w,; and w,. If g(x) is linear, this decision surface is a hyperplane.
The hyperplane divides the space into two regions:
R, :g(x) >0, hence x is in w; and
R, :g(x) =0, hence x isin w,
Suppose x, and x, are both on the decision surface. Then:
WX, +Wy =W'X, +W, i.e. W' (X;—X,)=0.

Therefore w is normal (orthogonal) to the hyperplane.
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Q@

L’

N
4+ Hyperplane decision surface
&0\\/ Let us write
(J/\@ X,
J X =X +rl
vl

where x  1s normal projection

of x — H and r 1s distance from H
(¥ >0 on + ve side, ¥ <0 on -ve)
Since g(xp) =0,

g(x)=wx+w, —w(x —i—r‘

— = |lw|

= r=g(x)/||w|

2(x) measures dist from x to A.

67



(nonlinear) discriminant function:

g(x) = WO+ZWX +ZZW XX,

=l j=1

@"  We can generalize g(x) by adding terms x;x; to give a quadratic

Can generalize
to cubic, etc.

We can view this as a linear discriminant function in a new space.

Let y,(x) define a new variable as a (nonlinear) function of x.

d
g(x) = Zai Y; (X)

See ch 5.3 Generalized Linear Discriminant Functions
Duda Hart

Note we have absorbed
the bias weight in this
formulation - A process
called augmentation.

68



.. Quadratic discriminan
g-(x.) =W, + WX+ W, X* =a,y, +a,Y, +a5Y,

with

y= (11 X, XZ); a= (Wo, Wl’ Wll)'

i

Mapping y takes a line and transforms it to a parabola
in 3D. The plane splits the resulting y space into
regions corresponding to 2 categories. This gives a
non-simply connected decision region in the 1D x
space. Decision in y is convex, but not in x.

t: 1-d example

Data remains
one-dimensional

[
s
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Linearly Separable Case (2 category)

Suppose we have n samplesy,,...y,, each labelled either w, or w, and
we wish to learn a discriminant function g(y) = a'y, that correctly
classifies the data.

Sample y; is correctly classified if
a'y, >0 wheny, is labelled o,
or
a'y, <Owheny. islabelled w,

A data set is called linearly separable if there exists a vector a which
correctly classifies all samples. This is called a separating vector or
solution vector.

[ The case of g(y) = aTy+a, with augmentation: y'=[y1]',a'=[a,a,]' ]

See Ch 5.4 The Two-Category Linearly-
Separable Case Duda Hart 70



How to find a

Great now we have understood what the a must satisfy (linear
Inequalities) and some properties.

However, we still do not know how to find a

We are given some data and their labels and we need a procedure
to find a

We need to find a criterion that when optimized we have a solution
vector a.

— Lets call this criterion J(a). Observe it is a scalar function of a :
returns a value pending on a

— If we make good choices of J() we can use optimization theory.
[We will talk about this a lot later in the class. |

— Learning a classifier is then reduced to an optimization problem
— We will consider for now a simple approach: Gradient Descent

71



Gradient Descent

Simple concept: Consider | am at some point in my function J(a,). | need to
move to a new point a,,,. What is a good point?

Gradient: Gradient points in the direction of the greatest rate of increase of
the function. (Generalization of derivative in multivariate functions)

Update :a(k +1) = a(k) —n(k)VJ(a(k))
Learning rate (k)
Gradient vector VJ (-

Basic gradient descent algorithm :

VIS eSS 3
W‘m 1.Initialize k « 0, a(1), &, 1(.)
ST e e

2.k« k+1
3.a<a—-nk)Vi(@)
4.1 |n(k)VJI(a) |> 0, repeat from 2.



Perceptron Revisited

J(a)

Could J = number of samples misclassified?
No — the function is piecewise constant.

Why is this bad? The cost function has 0
gradient at most points and wherever non-zero
has discontinuities. We need a better cost.

solution
region

The Perceptron

J,@=> (-a'y) 3
warning: Data are yeYn | !
assumed normalized

When is J,(a)=07

Is J,(a) always positive?

-2 solution \

0 region 2 dg

In the 2-category problem it is possible to normalize the data: negate T
all y; labelled as w,. Then we require: aTyl. > ( for all samples.
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Perceptron Algorithm

[V, (@] =03, @108 = 3 (-¥)) | 35 imed normatized

yeYn

.e. VJp(a):Z(—y) sogradient descentruleis:
yeYy

a(k +1) =a(k) - (k) > (-y)

yeYy
where Y, is set of samples misclassified by a(k).

Batch Perceptron Algorithm

1. Inttialize a, 7(-), stopping criterion &,k <0

n(k) is the
2.k <« k+1 learning rate
3 a< a4 ﬂ(k)zerm y or step size

4.1f |77(k)zer y |> 0, repeat from 2.



PART 3: INTRO TO NEURAL
NETS
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Multilayer Neural Networks

Linear discriminants are good for many problems but not general
enough for demanding applications.

We can get more complex decision surfaces with nonlinear pre-
processing,

Yi = ¢; (X)

Where ¢,(.), is, for example, a polynomial expansion to some order k.

But too many free parameters, so we may not have enough data
points to fix them. =» learn which nonlinearities to use.

The best-known method is based on gradient descent: the so-called
backpropagation algorithm.
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Three-Layer Network

ol

Network has:

* Input layer

 Hidden layer output k

« Output layer ~
with adjustable weights o W

between layers

Also:

* Bias unit
with weights to all hidden
and output units.

Biological terms sometimes used:
“neuron” = unit; “synapses” = connection; “synaptic weight” = weight.
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Operation

Step 1: each d-dimensional input vector (x1,...,x4) is presented
to input layer of the network and augmented with)a~hjas term
rg = 1 to give x = (zg, x1,...,2q)

'old school’ term for input
vector was input pattern.

Step 2: at each hidden layer we calculate the weighted sum of
inputs to give the net activation:

d d
net; = Z T Wi + Wi = inwﬁ = W]-TX
i=1 i=0
where w;; is the weight from the input unit ¢ to the hidden unit j

Step 3: The hidden unit emits the output: y;, = f (net,)
where f(.) is some nonlinear activation function

MLSP
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Operation (cont)

Step 4: At each output unit we calculate the weighted sum of the
hidden layer units it is connected to giving:

Ny ng
~ ~ ~ ~ ~ T
nety, = E YWk + Wro = E YjWk; — WLy

where wy; is the weight from the hidden unit j to the output unit k

Step 5: each output unit emits zx = f (nety)
where f(.) is again the nonlinear activation function.

We can therefore think of the network as calculating ¢ discriminant
functions:

2k = gk (%)

MLSP
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Example: XOR Problem

Using f(.) = sgn(.) : )
Z, = (X; OR x,) AND NOT (x; AND x,)
= X; XOR X,.

L
i
s Z
CEAT RS
2 ﬂ[[fb&'ﬂ#’#
L2 A2
e, W
L2 £ 4
0 %j roos Y output k
SR 2A TN L7~ [P
1 \QETAA ) &, . fraessy
&z ~ < v, s RS
A 4w . 22z i 7 X
R : A Ny, W ‘ Petesesexdlll)
- F SRET Vi Y2 v AT AT )
e Tl e T
B g \ geesm ) /)
X ’ ] LT LG TIT
’ -l Lidden R TSI
hias @ ‘ 1SRRI
bias # - IR
( 7 v
a,
o’ Wi ! X,
-
input i
«‘,‘}r "'2
MLSP

80



General Feedfoward Operation

General form of output discriminant functions:

d
() = 2 — f zwk] (zwﬂmwjo)wko

i=1
[Note that the w,;s are dlfferent from the w;;s ]

Question: can every decision be implemented with a 3-layer network?
Answer [Kolmogorov + others]: (in theory) Yes.

Typically needs very nasty functions at each layer.

cost history

--------------

See 6.2 and onwards ®
Duda Hart " 81



Backpropagation

We have seen that we can approximate any function but how do we
learn functions?

Perceptrons (single layer network): each input affects the output via its
weight: so we know which weight to change to reduce errors.

Multilayer networks (a.k.a multilayer perceptron, MLP): hidden units
have no “teacher” — so how reduce the error?

This is known as the credit assignment problem.

Backpropagation solves the credit assignment problem using a smooth
activation function f(.) and gradient descent.
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Some known non-linearities (activation functions)

Hame

Tdentity

Einary step

Logistic (a.k a
Soft step)

TarH

arcTan

Rectified
Linear Unit
{RelIl)

Parameteric
Rectified
Linear Unit
{PReLI) (2]

Exponential
Linear Unit
(ELIr) 5]

SoftPlus

Plot

Equation

f@)=2

|0 for <0
f(f}_{1 for x>0

1
f(r}_l—{—f'_'r
z) = tanh(z) = _ 2

flz) = te i

- f(z) = tan"'(z)

0 for <0
f(r}_{r for >0

f(z) = { ar for <0

x for x>0

v | a(e*—=1) for <0
f(r.}—{ x for >0

Derivative
flx)=1
vy ) 0 for x#0
f(.r)[:g—_}{ ?7 for =0

f'(z) = f(z)(1- f(x))

o241

0 for 2 <0
1 for >0

for x>0

(z)+a for <0
1 for >0

7=
{ for <0
{
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Some known non-linearities (activation functions)

Hame

Identity

Einary step

Logistic (a.k.a
Seft step)

TarH

ArcTan

Plot

Equation

These were the “classical ones”.

flz)==x

0 for <0
ﬂ”:{1 for z>0

1
@)= 15o=

') = tanh(z) = 2 1
f(zx) = tanh(z) = 7o
f(z) = tan"'(z)
MLSP

Derivative
f(2)=1
yoovn | 0 for x#0
-””g{? for =0

f(z) = f(z)(1 = f(z))
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Some known non-linearities (activation functions)

Rectified / : : :

_ _ / _J 0 for <0 v ) 0 for <0
P / f(”_{ z for >0 ! (I)_{ 1 for z>0
Parameteric .

Rectified / ar for x<0 iy | a for <0
Linear Unit 4 f(z)= { x for >0 flx)= { 1 for >0

(PReLT) 2]

Exponential ' - i . i
- afle* —1) for z<0 - { flz)+a for <0
Linear Unit T = ) =

(ELU) 1% flz) { x for x>0 fz) 1 for x>0

SoftPlus flz) =log.(1+ €") fi(z) =
- 1 _|_ t—.—r

The newer ones. Some have contributed to the new Al revolution.

MLSP
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Backpropagation: why needed?

We have seen that we can approximate any function but how do we
learn functions?

Perceptrons (single layer network): each input affects the output via its
weight: so we know which weight to change to reduce errors.

Multilayer networks (a.k.a multilayer perceptron, MLP): hidden units
have no “teacher” — so how can we reduce the error?

This is known as the credit assignment problem.

Backpropagation solves the credit assignment problem using a smooth
activation function f(.), gradient descent and the chain rule.

MLSP
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Backpropagation Network
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Backpropagation: Outline

Step 1: start with an untrained network (random weights)

Step 2: present training data to network and calculate outputs: z(n) = g(x(n))
This generates a training error:

= 5 203 (h(m) — )’ = 5 3 tn) — ()]
n k=1

where w represents the set of all weights in the network and t(n) are the target
outputs

Step 3: change the weights in the direction of the negative gradient:

oJ oJ
Nae O Awpg = —n

Aw =

OWpq

where 7 is the learning rate (step size).

Step 4: iterate until convergence

MLSP

See 6.3
Duda Hart



But | know things...

| just need to be able to calculate
0J

OWpq

Indeed. For example, if we need to find:

0.
Oy,

we can use the chain rule to differentiate the training error, and then use general
form of the forward pass, and use the chain rule again.

d
gk(X = XL = Z wkj <Z Wi xs + 1Uj0> + ’u~)k0
i=1
True...but there is a more “elegant” way.

MLSP
See 6.2 and onwards

Duda Hart
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& . .
+ Backpropagation: hidden-to-output
&ﬁ\ Let us calculate the gradient for a 3-layer network. We work backwards,

@
9

O

starting at the hidden-to-output weights. The chain rule gives:

0J  Oneéty( 8 et (
D P AR I s
0wk3 onéty(n) ka (9wa
where 05,(n) = _%éat—i(n) is termed the sensitivity of J to the net

activation of k. Applying the chain rule again:

O (n) = TOnite(n) — Dan(n) Onétr(n) (te(n) — zi(n) ) f (néty(n))

~\~
error

where f/(.) is the derivative of f(.).

MLSP
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O

o§ . .

+ Backpropagation: hidden-to-output
&ﬁ\ Let us calculate the gradient for a 3-layer network. We work backwards,

@ starting at the hidden-to-output weights. The chain rule gives:

9

oJ  Onéty( (‘3 ety (
D SRR I e
8wkj onéty(n) ka 8wkj
where 05,(n) = _&ngt—i(n) is termed the sensitivity of J to the net

activation of k. Applying the chain rule again:

~ . aJ . aJ aZk (n) o / ~
where f/(.) is the derivative of f(.).
, onéty(n)
Since  netg(n Z Wi Y; (N =4 3Tkj = y;(n)
Hence
Aty; = —ndJ [0Wr; =1 Y 0x(n) = 772 te(n) — zK(n)) f* (nétg(n)) y;(n)

91



O
$§
£ Backpropagation: input-to-hidden

@
»
RS

(ﬁgain using the chain rule for input-to-hidden units we have:
oJ oJ  0yj(n) Onet;(n)

ow;; — Jy;(n) Onet;(n)  Ow;;

(Note that ay?{n) involves all outputs k= 1,...,c.)

Mo O S ) — )| = = 3 (k) — ()

dyj(n)  dy;(n) |2 &= — y;(n)

O0zk(n) Onétg(n) B c o -
Oneti(n) Oy;(n) __,;“’“(")‘z’“("”f (néty.(n)) b

since 0,(n) = (tx(n) — zi(n)) f’ (néty(n))

MLSP
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O
-§

& Hidden Units (cont)

@
@e also have 3
% 0 et (n),

onet;(n)

thus we can define

R oJ oJ  Oyj(n)
%(n) = Onetj(n)  0Oy;(n) Onet;(n) (et Zwkjak

as the hidden unit sensitivities. Note that the output sensitivities are propa-
gated back to the hidden unit sensitivities; hence the name
“back-propagation of errors”.

Finally we have:

onet;(n)

(921)'7’7; — (n)

So the update rule for the input-to-hidden weights is:

afu‘iiznzwxn) —nzlzwm ] 7' (net;(n)) z(n)

n

ijz’ = N

MLSP
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Backwards propagation

wn QOO - O C
I 2

hidden Q 5
input . . .

The backpropagation algorithm can be easily generalized to any
network with feed-forward connections, e.g. more layers, different
nonlinearities in different layers, etc.

= [’ (net;(n)) > 5_; Wr;jor(n)
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Criticisms of MLPs

MLPs provide one way to achieve the required expressive power
needed to build general classifiers. However they do have their
weaknesses:

— Possibility of multiple (local) minima
— g(x) is nonlinear in terms of the weights: this makes training slow.
— ad hoc solution (how many units, hidden layers, etc?)

Other popular discriminant learning structures:

— Support Vector Machines (SVMs), left as “self-learning”
— Convolutional Networks (CNNs), Sen Wang will cover these
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TensorFlow Demo

https://playground.tensorflow.org/
Start with the bottom left (linear activation)
— Observations: linearly separable

— Start with a very simple net 1 layer 1 node (linear
activations)

Move to upper right still separable but not linear in input
space

— Options to fix: change layer size, add layers, change
activation, change inputs?

96
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PART 4: SUPPORT VECTOR
MACHINES

97



@‘\
~Q %
%Q@

Support Vector Machines
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S
£ |
4 Support Vector Machines
N
¥
&« SVMs solve a problem in linear or non-linear space by

projecting the input space into a new (possibly infinite)

space.
p Principle of Support Vector Machines
(SVM)
¢ @ @
° O
. . |
o O 0
O O 0

Input Space Feature Space

Ch 5.11 Duda
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Q@

K°
& Support Vector Machines

@
~
§SVMS aim to solve the linearly separable problem. First map feature
% space into high (possibly co—) dimensional space.

Then find separating hyperplane with maximal margin. Recall,
intuitively we are more confident in classifying point far away from

the decision boundary. v

Learning takes the form of a constrained optimization scheme.

Ch 5.11 Duda
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4 Why max margin

@ + For example these possible hyperplanes. Which one
you will choose? «,

« “Direction 1” has
a narrow margin
thus on unseen
(test) data it has
higher likelihood
of error.

« Clearly
‘direction 2’ is
preferred

-

direction 2

Y

£

Ch 5.11 Duda
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O
§

@ . . . . .

+  SVMs: Maximizing the Margin
uppose that we have a margin y, such that w®aTy; > y for all
% points, i = 1,2, ..., n. We therefore want to solve the following:

/)

%

()

max y, such that: wWaTy; >y
and: ||a|| =1

This is a messy optimization problem. However, equivalently we can
solve:
min ||a||?, such that: 0 WaTy; > 1

That is, we search for the minimum size weight vector that is able to
separate the data with a margin of y = 1.

This form of the problem is a constrained quadratic optimization
problem. It is convex and (relatively) easy to solve.

Ch 5.11 Duda
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o@®

& The Support Vectors

@
»
@% Interestingly the Max margin solution only depends on a subset of

%" the training data — those that lie exactly on the margin (why?). These
are called the support vectors (SVs).

Support vectors

Also

» the support vectors
also define the equation of the
optimal hyperplane:
a ~weighted sum of w0y,

« The hyperplane is unique
the SVs are not unique. Why?

Ch 5.11 Duda
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9

3
@ﬁ@y}\
0

SVM Generalization Error

N
o _
{

% « Cross Validation (CV) — Break the data into a training
set and a testing set. Use the training data to learn the
classifier then evaluate on the test data

« Leave-one-out CV: choose one data point at random as
the testing set.
{X1, X5yueny X, xp+1,...xn}
* Note the LOOCYV error will be unaffected unless x; is a
support vector. Therefore we have:
error £

#OIEVs
LOOCY n

 Therefore the number of SVs tells us how confident we
are in the SVM.

Ch 5.11 Duda



PART 5: FEATURE
ENGINEERING
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Principal Component Analysis

MLP can learn “functions” of data but with high dimensional inputs they need
some help!

This topic concerns decomposing signals into useful low dimensional subsets:
— For feature space selection in classification
— For redundancy reduction
— To avoid overfitting
— For signal separation

The key aim is to find a linear transform of the data that better represents the
underlying information

e.g. Fourier transform of an image concentrates information into low
frequencies
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PCA — Graphical Intuition

Suppose | want to characterize fish population. ¥
Measure length/breadth and plot. -

o
130 . : b
10 o ;- .o, Subtract mean from each axis (center)
a0 | . _..‘,': Sove Note relationship between _ * o
. g
ni e .:‘: data matters only. _ ARG
. M
a0 T T T | * ..... o *
G0 go 100 120 140 | . ...:: £
y §

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%?20graphical%20explanation.htm 107



http://www.cmbi.ru.nl/edu/bioinf4/prac-microarray/stats/PCA%20graphical%20explanation.htm

PCA — Graphical Intuition

Suppose | want to characterize fish populatlon %

Measure Ienqth/breadth and plot. o A S %}
10 o oo Subtract mean from each axis (center)
% - . ",‘,': ?.-l'. Note relationship between _ * o
W data matters only. ! .3 % ;:
o length i i o
a0 L] o'. "

T T T .
B0 80 100 120 140 Y

| can move | o Ve
the axis! But how to chose
them? | can rotate them.

What is my objective: position one axis in such a way that it accounts for the

largest proportion of the data's variance.

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm 108
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PCA — Graphical Intuition

Suppose | want to characterize fish populatlon '
Measure Ienqth/breadth and plot.

.
10 o0 R “oLHE e
& &
o | o ;- .o, Subtract mean from each axis (center)
a0 - . _..‘,': P ol Note relationship between _ * o
] o g0
70 - o .:’: data matters only. _ o g | 0" e,
] length f.f d »
a0 . . . | . eon® Ll
B0 a0 100 120 140 ...:.
| can move | e & £
o : o g
the axis! But how to chose 5l

them? | can rotate them.

What is my objective: position one “new” axis in such a way that it accounts

for the largest proportion of the data's variance.

Inspired by http://www.cmbi.ru.nl/edu/bioinf4/prac-
microarray/stats/PCA%20graphical%20explanation.htm 109
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PCA — Graphical Intuition

What might you call this new axis? size = length + breadth
However, we could make one of the variables more important.
size = 0.75 x length + 0.25 x breadth

[these are weights and are important! They tell us the “significance” of each of
the original variables.

What about the second axis of the ellipse?

Obijective: account for as much of the remaining variation as possible but must
also be uncorrelated (orthogonal) with the first. [trivial in 2D]

Apart from size, how else do the above fish differ?

Not much, minor differences in shape. If we ignore 29 axis (after rotation) we
would lose information about the different shapes, but since they are all very
similar in shape we wouldn't lose much information at all.

Thus, in the above example we can reduce the data's dimensionality from two
(length and breadth) to one (size), with little information loss.
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£ PCA& Subspace Projections

@
S

\

7,

&’ Introduced by Pearson in 1901 “On lines and planes of
closest fit to a system of points in space.” (a.k.a. Karhunen-
Loéve transform (KLT), or the Hotelling transform,...).

Suppose our data consists of d-dimensional vectors x" e R¢
and we want a low-dimensional approximation for the data.

Let u; be an orthonormal basis for R? (i.e. UTU = 1) then
we can approximate X by:

M d
x=) (u'x)u + 2@!].
i=1 j=M+

Each bj IS a
constant
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S

£ L
& Subspace Projections
\/
W
¥

“ x has d degrees of freedom while x has M deg. of freedom.

Principal Component Analysis — choose u; and b; to best
approximate x in the LSE sense, ie., minimize E,,:

15 S

n=l j=M+1

ZHUTX(”) uTxO|

Taking the derivative with respect to b; gives:
N

> (e -b;)=0 = bj=§22“"— Zu x® —

n=1 n=1
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S

& L.
+  Subspace Projections (cont.)
&
§So we can write:

&
=22 D) - %))
273 M
:%i ZN:uz(x(”)—X x" — _)T Zu R, U
j=M+1 n=1 J M+1

where R, is the sample covariance matrix for {x(™}
Minimizing E,, with respect to u; is satisfied by:
R.u;=A4u; forj=1,...,M

l.e. the M basis vectors are the principal eigenvectors of the
sample covariance matrix.
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PCA Algorithm and Projection on
Principal Directions

The PCA algorithm is summarized as follows:

1. subtract mean X from data

2. Calculate sample covariance matrix, R, for{X, — X}
3. Perform eigenvalue decomposition: R, = UAU'
4,

Approximate data by the first M components that have
the largest eigenvalue:

X, ~X+ Y (U] (%, - )Y,

Recall by design eigenvectors are ORTHOGONAL with
each other u;'u;=0 (i # j) and have length 1 (u;"u;=1).
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PCA example: eigenfaces

In face recognition a common practice is to first project
data (after alignment) onto a low dimensional PCA space,

e.g. images from images AT&T Laboratories Cambridge.

Eigenfaces capture appearance and lighting conditions quite well.

115



An Interactive demo

» http://setosa.io/ev/principal-component-analysis/

116
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& Kernel PCA

$
qﬁ%ear) PCA method is built upon the eigenanalysis of (n
o number of data points)

& . o
R =—XTX=—§:x.xT
X n n_:1_|_|

There is an equivalent built upon the eigenanalysis of
XX e XXy
K=XX"=| :
Xo Xy e XX,

known as the Gram matrix.

The kernel PCA method is the kernelized version of this,

where inner products are replaced by kernel operations.
117



Kernels

» Achieve projections in higher dimensions as we saw in GLD
without actually explicitly defining the projection

» Examples of kernels
e Radial basis Functions:

e Polynomial:
K(x,2)=(x'z+1)% >0

e Hyperbolic Tangent:
K(x,z) =tanh( 8X' z+7)

for appropriate values of j, y. 118



O
S Kernel PCA: The algorithm
Z@
&
(ﬁ

e Compute the Gram matrix.
KGj)=K(x,x,), i,j=12...n
e Compute the m dominant eigenvalues / eigenvectors.
A ,a, ., k=12,..m
e Perform normalization to unity.
l=nla,a,, k=12,..,m

e Given a vector X, perform the following “nonlinear
mapping”.

y(K) = Zak (HK(x,X), k=12,...,m
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$
N

N
O\Z@ e The kernel PCA is equivalent with performing a (linear)
S PCA in a Reproducing kernel Hilbert space (RKHS) H,
@ after a mapping
X—>¢(x)eH
e It can be shown that the dominant eigenvectors of
1 n
=D B(x)9" (%)
N5

are given in terms of the dominant eigenvectors of the
Gram matrix, i.e.,
n

Ve =Y 2,()p(x), k=12,..m

Hence the projection of @#(X) on V,is given by:

(v, 90) = D8, (B0, 400) = X2, (HK (x,, )

=1

i1=1
using the pr'operties of the RKHS. 120



PART 6: BIAS AND VARIANCE
DILEMMA
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Why we care about generalisation?

% We can always train an algorithm to zero “training” error.
> e.g. neural networks can approximate any function
» Does this really matter?

% What matters is how the algorithm will perform on new
unseen data that are NOT the same as the training data

» How will the algorithm then behave?

> If the algorithm has understood the underlying structure
=» then it should do well

% We say then that the algorithm “generalizes well”
(we now formalize this using the bias and variance dilemma)
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Overfitting in ML

Given a limited data set maximising the likelihood L(w) may lead to overfitting.
If the model order (dimensions of w) is large enough we can ‘exactly’ fit model

to data.
3.5 T T T T T T 3.5
o o
o
3+ © ° 3+ © VO ©
o CNPAN o N\
o O \ ° O\
25 /9 o O S © 25+ /O g 0 \®
o O‘x\ o o % o o
2l 1 24
o o 0\ © o o O\ ©
L o ® o % jo) ] I O ® o o b
1.5 1 15
°© o %0/ ° oo 0o/ &
1k @ 002 _— 1k ® ° =
° o © o 4
0.5 , , : : °Q : 0.5 °Q
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
3rd order polynomial fit 10t order polynomial fit

Ch 9.3.1 Duda
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N
&
& Overfitting in ML
U
s | -
@@ Overfitting relates to Model Order Selection. As with estimating power spectra

the problem comes from a bias -variance trade-off. Consider the expected error
between an optimal estimator F(x) (ie. the true function) and an empirical
estimator g(x). [We use a trick.]

E, {(F(@) - 9(2))’} = E, {( F(2) - Eo{9(@)} + Eu{g(@)} - () )* ]
~ E, {(F(¢) - E{g()})" } +E. { E-{9(@)} — 9(2))’}

7/
~"~ ~"~

bias? variance

+ 2E, {(F(z) - E.{g(2)}) (E.{g(2)} - g(x))}

The expectation over ) =0
all possible different
training sets (also
known as the
ensemble average).

It is not the E we used
to denote as the cost

kfunction thus far. /

To show why this is 0 do the multiplication
and then recall properties of the
Expectation of constants!
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Low Variance High Variance

2]

3

an) _

3

Q

—

[ ]

o. o ®
L)

[72]

3

[an)

c

L

Fig. 1 Graphical illustration of bias and variance.
Source: http://scott.fortmann-roe.com/docs/BiasVariance.html 5-125



Example In regression

. |dentify high bias { variance cases:

Ignore the data = Use all data =

*  Big approximation errors * No approximation errors
(high bias) (zero bias)
* No variation between data sets * Variation between data sets
(no variance) (high variance)

5-127



Overfitting in ML

These examples tell us:
« Too complex a model — high variance.
« Too simple a model — high bias (the simplest model is the fixed value).

Possible solution on diagnosis for models and data (size)
Cross-validation: Break the data into 3 pieces: training, validation and
testing sets. Set the testing set apart, do not touch it, till the end.

Use the training data to learn the model parameters.

But identify the best model order (and other parameters such as step size,
regularizers, type of activation function etc) using the validation (“out-of-
sample”) set.

If you are happy with the performance on the validation set, then you can now
take the testing set and run the algorithm on the testing set.
Then report results on the training and testing sets.
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Diagnosing bias/variance: the practical

picture
« Finding a good model size

Validation
(or testing)
error

error

Training
error

degree of polynomial d

5-129



Bias vs variance: on data size

Typical curve with high variance

Test error

error

Desired performance

Training error

m (training set size)

Test error decreases as m increases =» larger training
set may help

There is a gap between training & test error

5-130



Bias vs. variance: on data size

« Typical curve with high bias

Test error

ﬁ Training error

/ Desired performance

error

m (training set size)

« We are in trouble: training error is high too
« Small gap between the two errors

5-131



Take away messages

Supervised learning relies on examples to learn

— Unsupervised does not
« Semi-supervised combines them

It is easier to classify when data are linearly separable

We can always project to new features to solve linear problems
— By design (e.g. via polynomial functions)
— Or we can summarise them statistically (e.g. PCA)
— Or we can learn them (via NNs)

We cannot create magic

— Itis not training error we care for but generalization to unseen
data and hence testing error

 We have theoretical tools (bias and variance dilemma) and
practical tools to assess this
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Thank you

« Sotirios (Sotos) Tsaftaris
« Emaill; S.Tsaftaris@ed.ac.uk
« Web: https://vios.science

« Additional slides on machine learning and deep learning
and particularly in augmentation are here:
https://edin.ac/2vSP6T3 (Tutorial at ICASSP 2019 on
Data augmentation techniques for deep learning )
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PART 7: Convolutional Neural
Networks & Deep Learning
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Convolutional Neural Networks &
Deep Learning

135



From “hand-designed” feature spaces
to data-driven ones...

Computer sees

0 17 81 18 57 €0

-~

] 99 4 87 17 40 98 43 69 48 04 56 62 0

149 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 6f

2 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91

2 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 8¢ Extract Human

4 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 S¢ . )

2 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 ¢ f t r englneerlng
7 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 ea U eS

4 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 7: .

136 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 9f (e.g. InpUt X and X2)
g 17 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 9:

6 39 42 96 35 31 47 S5 58 88 24 00 17 54 24 36 29 85 57

6 56 00 48 35 71 89 07 05 44 44 37 44 60 21 S8 51 54 17 S¢

9 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 4C

4 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 6¢ o .0

8 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 6¢ DeCISlon

4 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 3¢ i

0 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 1¢

0 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 5¢ funCtlon ¢

decision
e.g. SVM, GLD,

MLP
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TRAINING
During the
training phase, a
neural network is
fed thousands of
labeled images of
various anirals,
learning to
classify them.

What if we could “extract”
automatically good
features....

INPUT

An unlabeled
image is ehown
to the pretrained
network.

FIRST LAYER
The neurons
respond to
different simple
shapes, like edges.

HIGHER LAYER
Neurons respond
to more complex
structures.

TOP LAYER
MNeurons respond
to highly complex,
abstract concepts
that we would
identify as differ-
ent animals.

OUTPUT

The network
predicts what the
object most likely
is, based on its
10% WOLF 90% DOG training,

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/ 137



Convolutional Networks (CNNSs)

Consider the problem of building a classifier that is insensitive to
translation (or scale, rotation, etc.). A Convolutional Network encodes

the invariance within the MLP structure [LeCun 1998].

P C3:1. maps 160101150‘ —
: feature maps ‘1. maps 1
INPUT 62828 &

maps
6@14x14

I v
| Full conAoaim | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Figure from: LeCun, Boser, Denker, Henderson, Howard,
Hubbard, Jackel. (December 1989). "Backpropagation
Applied to Handwritten Zip Code Recognition”. Neural
Computation. 1 (4): 541-51.

Ch 6.10.4 Duda and Inspired by Goodfellow et al Deep learning book 138



Convolutional Networks (CNNSs)

Consider the problem of building a classifier that is insensitive to
translation (or scale, rotation, etc.). A Convolutional Network encodes
the invariance within the MLP structure [LeCun 1998].

Input

Let us first review 2D
convolution =»

Can | write w conv | as a
matrix multiplication?

Next layer O = W*|

W must have a correct
shape and

I: a vector (input layer)!

Inspired by Goodfellow et al Deep learning book

Q

b

c d

e

1

]
]

Kernel

w

Y

bxr +
fz

fy

CcT
gz

cw
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fr +
jz

fw
Jy

gz
kz

quw
ky

hx

Iz
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32

Convolution Layer

o 32%x32%3 image
32

5x5x3 filter w
/

>O 1 number:

the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i,e. 5*5*3 = 75-dimensional dot Product +
bias)

wliz b

140



Convolution Layer

32x32x3 Image

/ 5x5x%3 filter activation map

32
convolve (slide) over all spatial locations
L
32
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Convolution Layer

consider a second, green filter

32%x32%3 Image

/ 5x5x3 filter
2

=0

convolve (slide) over all spatial
locations

32

activation map

a

28

b
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Convolution Layer

For example, if we had 6 5x5 filters, we'll get 6 separate

activation maps: L
activation map

32

28

Convolution Layer

32 A

3 6
We stack these up to get a “new image” of size 28x28x6!
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ConvNet is a sequence of Convolutional Layers, interspersed
with activation functions

32

32

Convolutional Layers

CONV,
RelLU
e.g.6
OX9X3
filters

28

28
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Convolutional Layers

ConvNet is a sequence of Convolutional Layers, interspersed

with activation functions

32

32

CONV,
RelLU
e.g.6
OX9X3
filters

28

28

CONV,
RelLU
e.g. 10
5x5x6
filters

N

24

CONV,
RelLU
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Convolutional Networks (CNNSs)

« Connections are
restricted: hidden units
are connected identically
to neighbours to encode
shift/delays

« Training using back prop.
but with ties weights
across shifted units
(weight sharing)

* The resulting MLP has
much fewer weights to
train than a traditional
MLP

Figure from Goodfellow, Bengio and
Courville, Deep Learning, MIT Press, 2016

N ONORONONO

connections
due to small

convolution G e ° a °
kernel

Dense
connections

Convolution

shares the same

parameters
across all spatial

locations

Traditional
matrix
multiplication
does not share

05 0l050,
0, 0l050,

O O-G
ORONOKO

any parameters 16



Convolutional Networks (CNNSs)

» Growing “influence” with

depth =
(the top layer is influenced

by a large span of inputs 0 0 a @ o
despite only connected to 3
previous units)

Figure from Goodfellow, Bengio and
Courville, Deep Learning, MIT Press, 2016 147



Pooling

« Max pooling helps with invariance and down sampling
reduces number of parameters

— Reduces dimensionality of representations

Single depth slice

Max pooling with 2x2
filters and stride 2

MLSP
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Pooling on the layers

« Important to remember that pooling operates on each
activation map independently

224x224x64

112x112x64

pool

e

> o 112
224 downsampling

224
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CNNs & Deep Learning

 CNNs are often considered the ancestors of Deep Learning.

 The idea is to use MLP with many (= 3) hidden layers. This involves
lots of ‘tricks’ to make training work: convolution, subsampling,
pooling of outputs,..., pretraining (helps to start the weights with
good initial values)

G =64 G0=50:=10 30=30=10 26=26x 16 13=13=16 1=1=130 1=1=7
5x5 — o
I H O —
CO-layer S0-layer Cl-layer S1-layer C2-layer: F-layer
10 kernels (2= &4 kernels (2=2) 2880 kernels {fally \
(5+3) (55 (13%13)  connected) | _EN" c =
but exhibit state-of-the-art performance... Application to face detection and

pose estimation
e.g. see - http://www.cs.nyu.edu/~yann/research
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Deep learning has many

hyperparameters

* Network design

« Activation function

« Optimisation choices CS 4620

 Lots of ‘tricks’ to make \Nte\\'\gent Sygtems
training work: convolution,
subsampling, pooling of
outputs,..., good initialisation, Changing random sty
pretraining (helps to start the until your program warks i
weights with good initial "hacky" and "bag coding practice."
values), batch normalisation,
learning rate schedules, Adam, But if you do it fast enoughit s
RMSprop, SELu, PrelLu, noise “Machine Learning”
injection, label smoothing,..., and pays 4x your current salary.

MLSP

Image source: | saw it on https://www.reddit.com/r/MachineLearning/, but supposedly it is
taken from a course at CS 4620. No copyright claimed. Original source unknown. 151



More Demos

o http://cs.stanford.edu/people/karpathy/convnet|s/
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Some additional info

« Additional slides on machine learning and deep learning
and particularly in augmentation are here:
https://edin.ac/2vSP6T3 (Tutorial at ICASSP 2019 on
Data augmentation techniques for deep learning )
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