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Current Work: Research in ML at UoE and UDRC

e Open-Set Recognition (OSR)
e Few-shot classification
o Class-incremental learning
o Cross-domain classification
e Both recognition and OoD detection
e Discriminative and generative models

e Main thrust of our research:

1) Classify objects in images
2) Learn new objects fast with few-shots

3) ldentify novel classes as anomalies and learn them

4) Maintain the capability of alerting the user for
threats for seen and unseen abnormal data
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Few-Shot Robust Classification and OoD Detection
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e Sample generation on the boundary
e Impose low confidence on boundary
e Few-shot OoD detection
o Robust to the number of few-shots

Few-Shot Outlier B /

Exposure, FS-OE |

Robust Few-Shot Class-Incremental OSR

e Learn a prior N— +-

. Few-shot adaptation 0 200 400 600 F::)ESVH‘INO:)O I1200) 1400 1600 1800 2000
e Discern between base classes,
new FS classes, unknown OoD

—

Il ! I !

Prior: Meta-Training ] ”[ Few-Shot Adaptation: Meta-Testing ]“[ Inference: Evaluation ]

|

|

|

I v I |
I . l I l l |
Detection and 1| Query set: Cross- |
recognition : : :
I |
|

|

|

|

|

|

|

Learned
source
boundary,

Cross-class domain

|1 \Target domin; I

I\ Support Set Learned target I
I I
I boundary; Br(z) 1 ‘ Anomaly Detection J

I I of unseen data

Contrastive
negative
training

=R ™ -

RLEEES NS

Source domain;
Normal class

I
[ Classification and OoD detection ] ||[Contrastive negative training with FSi]I | [Multi-class Classification]
- - _ _ __ _ __ _ _ __ _ __ __ _______ S o - ___ J




“WP3.1 Robust Generative Neural Networks,”

UDRC Progress Update Meeting, November 2021

Our Publication Outcomes

o “OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for

Sample Generation on the Boundary”
o Contrastive negative training avoiding invertibility, 2021

e “REFGAN: Few-Shot Detection of OoC using GANs
with Negative Retraining,” in Proc. ICTAI 2021
® GANs for detecting Objects of Concern with few-shots

e “Few-Shot Robust Model for Classification
and OoD Detection,” Submitted, 2021

e “Negative-Data Discriminative Classifier for
Few-Shot Class-Incremental Open-Set Recognition”

e Large scale MetaAudio paper

o Benchmark and survey: Few-shot acoustic classification
e Multi-task learning

o Cross-domain meta-learning
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OoD Minimum Anomaly Score GAN

e Rarity of relevant OoDs: Learn directly from data only from the normal class
o Reduced human intervention for supervision, e.g. feature extraction
o Generate minimum-anomaly-score OoDs
m Invertibility is not necessary

e Retraining by including OoD samples on the distribution boundary
o Perform self-supervised negative data augmentation
Self-supervised learning: Improve both unsupervised learning and AD
Evaluation: Leave-one-out methodology
o Improvement over benchmarks for AD
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Few-Shot Adaptive Detection of OoC: REFGAN

Robust OoC detection

o OoC: Rare & different from normality

m Might be unknown during training

Our proposed methodology:

Negative REtraining with Few-shots
GAN (REFGAN)
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Negative-data-based few-shot adaptation
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Fig. I: REFGAN where the blue points are OoNC, the red
points are FSOoC, and the green points are B(z) samples.
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Fig. 2: Training of the proposed REFGAN using the FSOoC
samples, together with active negative sampling and training.

“REFGAN: Few-Shot Adaptive Detection of Objects of Concern
using GANs with Negative Retraining,” ICTAI 2021



