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Deep Learning Success
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Mechanism for Deep Learning Success?

TITAN RTX
@

Caffe

theano

TensorFlow O PyTorCh

from torchvision import models
model = models.resnetl8 (pretrained=True)

pred = model (image)
loss = cross entropy(pred, true label)
loss.backward()

optimiser.step()



Mechanism for Deep Learning Success?

Model Capacity

Test Error < Training Error + Train Set Size

e Increase model capacity?

o better train error, worse test error
e Increase train set size?

o (maybe) worse train error, better test error
e Increase model capacity and train set size?
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Why is Low-Data Learning Difficult? Overfitting

Underfitting

“—

0-order polynomial

Optimal

Quadratic

Question: How to diagnose over- vs under-fitting?

Underfitting?

High train error
High test error

Overfitting

Overfitting?

High order polynomial

Low train
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How to Avoid Overfitting?

Classic Solutions

e Try several models with different capacities
e Evaluate validation set performance for each
e Pick the model with best validation performance

Deep learning Issues

e [oo many parameters impact capacity
e In context of data scarcity: would pick a simple model that doesn’t provide
deep learning level of performance



How to Avoid Overfitting?

Ask yourself:

Would my pipeline give me a similar model if | collected a new training set?

How can we control modelling capacity?



Controlling Modelling Capacity: Weight Decay

W

Minimise Training Loss + ||w]|?

Problem: might just make us underfit

<> )
Benefit of weight decay is often quite marginal
in neural networks

How can we more intelligently allocate modelling capacity?
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Transfer Learning

“The application of skills, knowledge, and/or attitudes that were learned in one
Situation to another learning situation” (Perkins, 1992)

Note
e Fine-tuning # Transfer Learning
e Fine-tuning C Transfer Learning
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Transfer Learning: Linear Readout Tuning the model

Use standard methods to

————————————————————————————————————————

i Loss i Loss optimise linear model
Linear Layer S5 LEYES Conventional validation/cross
""""""""""""""""""""""""""""""""""""""""""""""""""""" ., validation is typically sufficient
iOften work wells for other
Feature Copy Weights Feature ‘types of “heads” as well
Extractor Extractor '

fBonus: data augmentation
./ probably still beneficial

\
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Transfer Learning: Fine-Tuning

Back to the mess of deep
learning design choices:

————————————————————————————————————————

! Loss ! Loss
"""""""""""""""""""""" e Which optimiser to use?
Linear Layer Linear Layer
"""""""""""""""""""""""""""""""""""""""""""" e How to tune optimiser
‘: parameters?
Feature Initialise Weights> Feature i o Should we still freeze
Extractor Extractor | some layers?

e Should we do early
stopping?

Source Data + Labels Target Data + Labels \

1 1
1 1
/
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Transfer Learning: Fine-Tuning Considerations

How are we allocating modelling capacity?

e Trying to keep weights near informative initialisation
e Contrast with weight decay: keeping weights near uninformative initialisation

Fine-tuning “tricks”:

e Use a small learning rate Why not add an explicit regulariser like

e Do early stopping weight decay?
e Freeze some layers

o Early layers if task shift

o Later layers if input distribution shift

14



Transfer Learning: Advanced Fine-Tuning

Penalty Term Could also:
ming,, L(fo,, (Z),y) + Ad(0y,Op) e Penalise deviations in
activations
Projection Function e Choose which layers to
freeze/unfreeze

proj (. o0, ) = .eﬁ
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Transfer Learning: Advanced Fine-Tuning

How to measure distance in weight space?

100

dmars (W7 V) = INax; Zj H/VZJ — V;J‘ 75

50

Capacity oc Distance, ept

25

drob (W, V) = \/Zz](m.? — Vij)?

Capacity o< Distance, Gpt, no. units

Aircraft

Accuracy of EfficientNetBO Pre-Trained on ImageNet

B VARS-PGM [ L2-PGM [ MARS-sP [ L2-SP

Butterfly Flowers Pets Faces Textures

-PGM denotes projection method
-SP denotes penalty method

Caltech
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Further Reading

e Lietal. Explicit Inductive Bias for Transfer Learning with Convolutional Networks. ICML 2018.

e Gouk et al. Distanced-Based Regularisation of Deep Networks for Fine-Tuning. ICLR 2020.
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Metric-Based Meta-Learning

Basic idea: shared feature extractor, different head for each task

Task 1 Head Task 2 Head Task n Head

== K ==

Synthesise tasks from meta-train set

1. Synthesise training task from meta-train
2. Compute feature means for each class
Problem: too many heads Feature 3. Measure loss of classifier
Solution: one task per model update Extractor 4. Update feature extractor with
_ backpropagation + SGD
Problem 2: train new head every update 5 Goto 1

Solution 2: use a closed form learner

Nearest centroid classifier: use mean feature vector for each class
20



Gradient-Based Meta-Learning

Meta-knowledge arg mm E L( D”al 07, @)  Outer problem

S.t. 9: = arg m91n ﬁ(Dfr, 9, ¢) Inner problem

Intuitively: find meta-knowledge that gives best performance on unseen data
How to solve?

Model Agnostic Meta-Learning: easiest method, but quite inefficient

¢ = argmin Y L(Dp, sgd-step(sgd-step(¢, D), DI"))
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Bayesian Meta-Learning e o T

Motivation: Bayesian probabilistic modelling )
enables information fusion, incorporating prior S04 ot E N [ S
knowledge, etc

Simple probabilistic classifier: fit a Gaussian
to each class with maximum likelihood (QDA)

Problem: QDA does not work well with small
training datasets—we want different training sets
to give similar models!

Solution: Meta-learn a prior on related tasks,
compute full posterior over parameters




Bayesian Meta-Learning

ECE+TS ECE
Mogel Backbone I-shot 5-shot 1-shot 5-shot
LIN.CLASSIF. Conv-4 3.56 2.88 8.54 7.48
SIMPLESHOT Conv-4 3.82 3.35 3345 4581
QDA Conv-4 8.25 437 4354 26.78
MQDA-MAP Conv-4 275 0.89 8.03 527
MQDA-FB Conv-4 2.33 0.45 4.32 2.92
S2M2+LIN.CLASSIF  WRN 4.93 2.31 33.23  36.84
SIMPLESHOT WRN 4.05 1.80 39.56 55.68
QDA WRN 4.52 1.78 3595 18.53
MQDA-MAP WRN 3.94 094 31.17 17.37
MQDA-FB WRN 2.71 0.74 30.68 15.86

Model Backbone 1-shot 5-shot

MAML [37] Conv-4 5890+ 1.90% 71.50 + 1.00%
RELATIONNET [?7]  Conv-4 5550 £ 1.00% 69.30 +0.80%
PROTONET [ 7] Conv-4 55.50+0.70%  72.02 +0.60%
R2D2 [ 1] Conv-4 62.30+0.20% 77.40 +0.10%
SIMPLESHOT™ [01] Conv-4 59.35+0.89% 74.76 +0.72%
METAQDA Conv-4 60.52 +0.88% 77.33 +0.73%
PROTONET [7] ResNet-12 7220+ 0.70%  83.50 +0.50%
METAOPT [30] ResNet-12*  72.00+0.70%  84.20 + 0.50%
UNRAVELLING [ | /] ResNet-12*  72.30+0.40%  86.30 + 0.20%
BASELINE++ [/, 7] ResNet-18 59.67 +0.90% 71.40 +0.69%
S2M2 (7] ResNet-18 63.66 +0.17% 76.07 +0.19%
METAOPTNET [10] WRN 72.00 +£0.70%  84.20 +0.50%
BASELINE++[17,1] WRN 67.50 +0.64%  80.08 +0.32%
S2M2 (7] WRN 74.81 +0.19% 87.47 +0.13%
METAQDA WRN 75.83 +0.88% 88.79 +0.75%

Note: can use pre-trained feature extractor and still meta-learn prior

Improved calibration: expected calibration
error measures quality of model uncertainty

23



Further Reading

e Hospedales et al. Meta-Learning in Neural Networks: A Survey. IEEE T-PAMI 2021.
e Snell et al. Prototypical Networks for Few-Shot Learning. NeurlPS 2017.
e Finn et al. Model-Agnostic Meta-Learning. ICML 2017.

e Zhang et al. Shallow Bayesian Meta-Learning for Real-World Few-Shot Recognition. ICCV 2021.
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Self-Supervision

Main idea: synthesise supervised “pre-text task™ out of unlabelled data

Pseudo-Label Self-Supervised Downstream
Setup > Generation Process > Pre-Training > Task Adaptation
- ; ; |
Uniabelled Source Dataset
x — 2 = ' . '
___ -l-0-B-:-- H-E-0-B--
K > X < L ‘.'_-_‘ g¢ y L
Update Update ’ (Update) <*——— Update —,

Use-case: alternative to supervised pre-training; use as initialisation for

fine-tuning, linear readout, etc
26



Self-Supervision: Pre-text Tasks

Pseudo-Label Generation Processes

- AR

Transformation Prediction Masked Prediction Instance Discrimination
pu - - z
z=90°
r—— z
 ——
p B 1 3

B/\E L DER

Contrastive Instance Discrimination




Self-Supervision: Pre-text Tasks

Video Text Audio Graph
E 2 ® ©
L e mmyR TET T TR T There is some good in this world, 's worth fighting for, [N > 2] L ] L

| — : z - - ® -9
é @ﬂﬁﬁ Iﬁ—ﬁﬂ i it’'s worth fighting for. me good &"N @"’#‘ &
—

= — | ?
- i s world,

=g 9 " e " ®

Contrastive instance discrimination:

e (Generate multiple views of instance with .

data augmentation Sl :[Contrastive Leaming}: original mage

e Force different views to have similar ﬂ ﬂ
(make similar) (make dissimilar) —2 5\

representation
e (Can be used to train invariances S
o i




Self-Supervision: Results

A lot of academic evaluations focus on ImageNet

Supervised learning is still best for ImageNet

Many-shot (Linear) Few-shot (Kornblith) Detection (Frozen) Dense (SNE)
8 |r=0.93 e * 164
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Many-shot (Finetune) Few-shot (CD-FSL) Detection (Finetune) Dense (Sem. Seg.)
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InsDis
MoCo-v1
PCL-v1
PIRL
PCL-v2
SimCLR-v1
MoCo-v2
SimCLR-v2
SelLa-v2
InfoMin
BYOL
DeepCluster-v2
SwAV
Supervised

Self-supervised learning works better for transfer learning!
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Further Reading

e Ericsson et al. Self-Supervised Representation Learning: Introduction, Advances, and Challenges.
IEEE SPM 2022.

e Ericsson et al. How Well do Self-Supervised Models Transfer? CVPR 2021.
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Dealing with Domain Shift

Assumed to be unknown

Key point: assumed train and test data are independent and identically distributed

What if this isn’t true?

32
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Domain Generalisation
Example Application:
A mobile robot needs to be able to detect whether cows are obstructing its path.

We have plenty of examples of unobstructed paths, and we gather some examples
of what cows look like so we can train a binary classifier.

34



Domain Generalisation

After model deployment

Domain Shift: from environment, different
calibration, time varying concept, etc...

Another solution: causal model with
appropriate invariances

35



Domain Generalisation: Learn Approprlate Invarlances’?

Task Model

» ,
4 (

{ul@1 (), o (), -+
Py @), U(¢ ()))

WL

Convolutional layers

) (b

Positive pair contrastive loss

=4

Siamese lee:n;ing GeM descriptor
g
5
8

Negative pair contrastive loss

In Search of Lost Domain Generalization, ICLR 2021

Algorithm CMNIST RMNIST VLCS PACS Office-Home  Terralnc DomainNet Avg
| ERM 342+12 980+00 768+10 833+06 67.3+03 462+02 408+02 638
IRM 36304 97+£01 TI2E+03 829+06 667+07 440+07 35315 629
DRO 322+37 979+01 775+01 831+06 671+£03 425+02 328+02 618
Mixup 312+21 98.1+01 786+02 837+09 682+03 46.1+16 394+03 63.6
MLDG 369+02 980+0.1 77.1+£06 824+07 676+03 458+12 421+0.1 64.2
CORAL 209+25 981+01 77.0+05 836+06 686+02 48.1+13 419+02 639
MMD 426+3.0 98.1+0.1 767+09 828+03 671+05 463+05 393+09 64.7
DANN 290+77 891455 77.7+03 840+05 655+0.1 457+08 375+02 61.2
C-DANN 31.1+85 963+10 740+10 81714 647+04 406+18 387+02 6l.1
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Domain Generalisation: Is there any hope?

ERM works quite well! But previous work has shown...

e Overfitting behaviour is different

e Tuning hyperparameters is more difficult

What does theory say?

Model Capacity Model Capacity
Test Error < Training Error + Tigin Set Size *  Train Domains

Observation: performance is more dependent on model capacity

37



Domain Generalisation: Smaller Modelling Capacity?

Simple Experiment: in domain vs out of domain performance of linear SVMs,
multiple datasets, varying modelling capacities

Across-domain versus Within-domain on RotatedMNIST
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Domain Generalisation

Instance-wise

: Validation Sets

Domain-wise

Train set

Validation set
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Domain Generalisation: Comparing Validation Sets

Which method for constructing validation sets works best in practice?

' Domain Wise

Instance Wise

| Acc log C Acc log C

Raw pixel RotatedMNIST | 71.6 497 (£0.52) 71.2  6.82(+0.28)
PACS 743 -1.73(£0.40) 70.6 1.56 (=0.66)

DINO VLCS 80.4 -1.04(x0.69) 80.5 -0.87(%0.35)
VIT-B8 OfficeHome 73.6 -0.17(£0.35) 73.1 1.04 (£0.40)
SVIRO 97.2 0.21(%=0.33) 953 4.85(£0.46)

Terra Incognita | 45.4 -0.17 (=0.87) 38.8 5.37(£0.35)

PACS 73.0 -191(£143) 71.6 1.04(£0.89)

DINO VLCS 80.4 -191(x0.66) 80.6 -1.21(%0.35)
VIT-S8 OfficeHome 72.2  -0.69 (£0.57) 723 0.35(=0.40)
SVIRO 945 -1.18(£047) 91.3 5.68 (£0.97)

Terra Incognita | 37.1  0.00(=1.50) 33.1 4.85(£0.57)

Main Observations:

e Tuning with domain-wise
validation set gives better
performance, on average

e Tuning with domain-wise
validation set chooses
stronger regularisation

40



Further Reading

e Gulrajani & Lopez-Paz. In Search of Lost Domain Generalization. ICLR 2021.

e Lietal Finding Lost DG: Explaining Domain Generalisation via Model Complexity. arXiv 2022.
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Adversarial
Perturbation

Adversarial Examples

classified as misclassified as

Stop Sign Max Speed 100
“Adversarial examples are inputs to machine learning models that an attacker has
intentionally designed to cause the model to make a mistake” — Goodfellow, 2017

In many cases the interference is imperceptible

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

it D

+.007 x

Important: not only an issue for deep learning
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Adversarial Examples: Physical Perceptible Interference

Recognition ==&l

e Interference does not have to spatially coincide
e Single patch can be quite versatile

Detection

e Only minor occlusion
: | e Could be made to look more
strainer |nnOCUOUS
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Adversarial Examples: Crafting Interference

Fast Gradient Sign Method (FGSM):

T=ux+esign(V.L(f(x),y))

Projected Gradient Descent:

with:
~0
€r =

repeat:
=7t + e&gn(Vxﬁ(f@t)a y))

~t+1 (!
T = proj(x 76)\ensures |z — 3" <€ .



Adversarial Examples: Adversarial Training

Key point: expose neural network to adversarial attacks during training

Repeat:

1. Sample minibatch, B
2. Foreach(x,y)inB

a. Use FGSM or PGD to find an adversarial example, X’
b. Put(x,y)inB’

3. Update network parameters using B and B’

Pro: very effective Con: very slow
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Further Reading

e Szegedy et al. Intriguing Properties of Neural Networks. arXiv 2013.
e Madry et al. Towards Deep Models Resistant to Adversarial Attacks. ICLR 2018.

e Silva & Najafirad. Opportunities and Challenges in Deep Learning Adversarial Robustness: A
Survey. arXiv 2020.
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