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Overview

Learning with Limited Labelled Data

● Transfer Learning
● Meta-Learning
● Self-Supervised Learning

Dealing with Domain Shift

● Domain Generalisation
● Adversarial Domain Shift
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Deep Learning Success
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Mechanism for Deep Learning Success?

from torchvision import models
model = models.resnet18(pretrained=True)

pred = model(image)

loss = cross_entropy(pred, true_label)

loss.backward()

optimiser.step()
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Mechanism for Deep Learning Success?

Test Error < Training Error +
Model Capacity
Train Set Size

● Increase model capacity?
○ better train error, worse test error

● Increase train set size?
○ (maybe) worse train error, better test error

● Increase model capacity and train set size?
○ better train and test error!
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Why is Low-Data Learning Difficult? Overfitting
Underfitting

0-order polynomial

Optimal

Quadratic

Overfitting

High order polynomial

Question: How to diagnose over- vs under-fitting? 

Overfitting? 

● Low train 
error 

● High test error 

Underfitting? 

● High train error 
● High test error 6



How to Avoid Overfitting?

Classic Solutions

● Try several models with different capacities
● Evaluate validation set performance for each
● Pick the model with best validation performance

Deep learning Issues

● Too many parameters impact capacity
● In context of data scarcity: would pick a simple model that doesn’t provide 

deep learning level of performance
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How to Avoid Overfitting?

Ask yourself:

Would my pipeline give me a similar model if I collected a new training set?

How can we control modelling capacity?
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Controlling Modelling Capacity: Weight Decay

w1

w2

Problem: might just make us underfit

Benefit of weight decay is often quite marginal 
in neural networks

How can we more intelligently allocate modelling capacity?

Minimise Training Loss + ||w||2
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Transfer Learning

“The application of skills, knowledge, and/or attitudes that were learned in one 
situation to another learning situation” (Perkins, 1992)

Note
● Fine-tuning ≠ Transfer Learning
● Fine-tuning ⊂ Transfer Learning
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Transfer Learning: Linear Readout

Copy WeightsFeature 
Extractor

Linear Layer

Loss

Source Data + Labels

Feature 
Extractor

Linear Layer

Loss

Target Data + Labels

Tuning the model

Use standard methods to 
optimise linear model

Conventional validation/cross 
validation is typically sufficient

Often work wells for other 
types of “heads” as well

Bonus: data augmentation 
probably still beneficial
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Transfer Learning: Fine-Tuning

Initialise WeightsFeature 
Extractor

Linear Layer

Loss

Source Data + Labels

Feature 
Extractor

Linear Layer

Loss

Target Data + Labels

Back to the mess of deep 
learning design choices:

● Which optimiser to use?

● How to tune optimiser 
parameters?

● Should we still freeze 
some layers?

● Should we do early 
stopping?
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Transfer Learning: Fine-Tuning Considerations

How are we allocating modelling capacity?

● Trying to keep weights near informative initialisation
● Contrast with weight decay: keeping weights near uninformative initialisation

Fine-tuning “tricks”:

● Use a small learning rate
● Do early stopping
● Freeze some layers

○ Early layers if task shift
○ Later layers if input distribution shift

Why not add an explicit regulariser like 
weight decay?
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Transfer Learning: Advanced Fine-Tuning
Penalty Term

Projection Function

proj                            (    ) θpt θft  θpt θft=

Could also:

● Penalise deviations in 
activations

● Choose which layers to 
freeze/unfreeze
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Transfer Learning: Advanced Fine-Tuning

How to measure distance in weight space?

Capacity  ∝  Distance, θpt 

Capacity  ∝  Distance, θpt, no. units

-PGM denotes projection method
-SP denotes penalty method
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Further Reading

● Li et al. Explicit Inductive Bias for Transfer Learning with Convolutional Networks. ICML 2018.

● Gouk et al. Distanced-Based Regularisation of Deep Networks for Fine-Tuning. ICLR 2020.
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Meta-Learning

fθ∈Θ
ŷx

Θ θ1
        θ2
  θ3

Θ’

P
P1

P2

P3

Capacity ∝ |Θ|

Only use relevant 
subset of Θ

Meta-learning finds 
this subset

“Meta-train” set
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Metric-Based Meta-Learning
Basic idea: shared feature extractor, different head for each task

Feature 
Extractor

Task 1 Head Task 2 Head Task n Head…

Synthesise tasks from meta-train set

Problem: too many heads
Solution: one task per model update

Problem 2: train new head every update
Solution 2: use a closed form learner

1. Synthesise training task from meta-train
2. Compute feature means for each class
3. Measure loss of classifier
4. Update feature extractor with 

backpropagation + SGD
5. Go to 1

Nearest centroid classifier: use mean feature vector for each class
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Gradient-Based Meta-Learning

Meta-knowledge

Inner problem

Outer problem

Intuitively: find meta-knowledge that gives best performance on unseen data

How to solve?

Model Agnostic Meta-Learning: easiest method, but quite inefficient
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Bayesian Meta-Learning

Problem: QDA does not work well with small 
training datasets—we want different training sets 
to give similar models!

Simple probabilistic classifier: fit a Gaussian 
to each class with maximum likelihood (QDA)

Solution: Meta-learn a prior on related tasks, 
compute full posterior over parameters

Motivation: Bayesian probabilistic modelling 
enables information fusion, incorporating prior 
knowledge, etc
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Bayesian Meta-Learning

Note: can use pre-trained feature extractor and still meta-learn prior

Improved calibration: expected calibration 
error measures quality of model uncertainty
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Further Reading

● Hospedales et al. Meta-Learning in Neural Networks: A Survey. IEEE T-PAMI 2021.

● Snell et al. Prototypical Networks for Few-Shot Learning. NeurIPS 2017.

● Finn et al. Model-Agnostic Meta-Learning. ICML 2017.

● Zhang et al. Shallow Bayesian Meta-Learning for Real-World Few-Shot Recognition. ICCV 2021.
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Self-Supervision

Main idea: synthesise supervised “pre-text task” out of unlabelled data

Use-case: alternative to supervised pre-training; use as initialisation for 
fine-tuning, linear readout, etc
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Self-Supervision: Pre-text Tasks
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Self-Supervision: Pre-text Tasks

Contrastive instance discrimination: 
● Generate multiple views of instance with 

data augmentation
● Force different views to have similar 

representation
● Can be used to train invariances 28



Self-Supervision: Results
A lot of academic evaluations focus on ImageNet

● Supervised learning is still best for ImageNet

Self-supervised learning works better for transfer learning! 29



Further Reading

● Ericsson et al. Self-Supervised Representation Learning: Introduction, Advances, and Challenges. 
IEEE SPM 2022.

● Ericsson et al. How Well do Self-Supervised Models Transfer? CVPR 2021.
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Dealing with Domain Shift

Key point: assumed train and test data are independent and identically distributed

What if this isn’t true?

Train Test

Z1
Train, …, Zm

Train, Z1
Test, …, Zm

Test ~ P

Assumed to be unknown
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Domain Generalisation

Example Application:

A mobile robot needs to be able to detect whether cows are obstructing its path. 
We have plenty of examples of unobstructed paths, and we gather some examples 

of what cows look like so we can train a binary classifier.
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Domain Generalisation

Train set examples
After model deployment

Domain Shift: from environment, different 
calibration, time varying concept, etc…

Another solution: causal model with 
appropriate invariances
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Domain Generalisation: Learn Appropriate Invariances?

In Search of Lost Domain Generalization, ICLR 2021
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Domain Generalisation: Is there any hope?

ERM works quite well! But previous work has shown…

● Overfitting behaviour is different

● Tuning hyperparameters is more difficult

What does theory say?

Test Error < Training Error +                              +
Model Capacity
Train Set Size

Model Capacity
Train Domains

Observation: performance is more dependent on model capacity
37



Domain Generalisation: Smaller Modelling Capacity?
Simple Experiment: in domain vs out of domain performance of linear SVMs, 
multiple datasets, varying modelling capacities
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Domain Generalisation: Validation Sets

Instance-wise

Train set

Validation set

Domain-wise
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Domain Generalisation: Comparing Validation Sets

Main Observations:

● Tuning with domain-wise 
validation set gives better 
performance, on average

● Tuning with domain-wise 
validation set chooses 
stronger regularisation

Which method for constructing validation sets works best in practice?
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Further Reading

● Gulrajani & Lopez-Paz. In Search of Lost Domain Generalization. ICLR 2021.

● Li et al. Finding Lost DG: Explaining Domain Generalisation via Model Complexity. arXiv 2022.
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Adversarial Examples

“Adversarial examples are inputs to machine learning models that an attacker has 
intentionally designed to cause the model to make a mistake” – Goodfellow, 2017

In many cases the interference is imperceptible

Important: not only an issue for deep learning 43



Adversarial Examples: Physical Perceptible Interference
Recognition

● Interference does not have to spatially coincide
● Single patch can be quite versatile

Detection

● Only minor occlusion
● Could be made to look more 

innocuous
44



Adversarial Examples: Crafting Interference

Fast Gradient Sign Method (FGSM):

Projected Gradient Descent:

with:

repeat:
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Adversarial Examples: Adversarial Training

Key point: expose neural network to adversarial attacks during training

Repeat:

1. Sample minibatch, B
2. For each (x, y) in B

a. Use FGSM or PGD to find an adversarial example, x’
b. Put (x’, y) in B’

3. Update network parameters using B and B’

Pro: very effective Con: very slow
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Further Reading

● Szegedy et al. Intriguing Properties of Neural Networks. arXiv 2013.

● Madry et al. Towards Deep Models Resistant to Adversarial Attacks. ICLR 2018.

● Silva & Najafirad. Opportunities and Challenges in Deep Learning Adversarial Robustness: A 
Survey. arXiv 2020.
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