Roke

Part of the Chemring Group

UDRC WAMI Challenge

Richard Lowe richard.lowe@roke.co.uk

Contents

- Definition of the problem;
- Definition of the challenge to solve;
- Introduction to the dataset;
- Submission.

CLASSIFICATION

Part of the Chemring Group

Problem

Detecting vehicles and pedestrians (targets) in urban areas using an airborne camera, from anything other than a vertical viewpoint, is difficult as much of the road network is occluded by:

- Buildings;
- Trees;
- Shadows.

Determining tracks of a target's movement through such an area is then also difficult, as there is a need to distinguish between:

- a) temporary occlusion;
- b) change in velocity;
- c) permanent occlusion where targets are no longer visible in the state space (having entered a building, for example).

- Some Bayesian trackers contain models of the detection likelihood of a target;
- They require a high level of uncertainty in that model if there is a variable amount of occlusion;
- This high level of uncertainty in the detection likelihood propagates a larger proportion of candidate tracks;
- This is undesirable in regions with low levels of occlusion such as extra-urban areas.

6

- Terrain models can provide some information about an urban area by providing building heights, but they cannot cope with real-time changes in the environment (for example due to building work);
- Knowledge of occlusion using real-time information would aid our filter design, as we can:
 - reduce the detection likelihood in occluded areas;
 - propagate candidate targets;
 - improve re-identification quality as the search space for detection is reduced.

CLASSIFICATION

Part of the Chemring Group

Challenge

Challenge

Determine and label parts of each image that are occluded due to buildings.

- The dataset is a set of frames recorded over Adelaide's business district;
- Given a sequence of images and camera metadata, produce a binary mask for each image where pixels are given a value of occluded (0) or visible (1);
- The binary mask should treat the building footprint as equivalent to occluded ground;
- Novel approaches that can detect occlusions due to trees or areas in deep shadow are also welcomed, however such features won't form part of the scoring metric.

9

Dataset: Target Level

Resolution of a single target:

Dataset: Street Level

Resolution of a building:

IntelligentInsight

Dataset: Single Camera

Resolution of a single camera:

IntelligentInsight

12

Dataset: Whole Scene

Resolution of all six cameras:

IntelligentInsight

13

Dataset format

Series of 48 RAW frames each with 6 cameras:

- Labelling format: date_frame_number_camera_number-VIS;
 - Example: 20140521042753-03032396-05-VIS
- Each camera image is 3248x4872 pixels;
- The framerate is approximately 3Hz;
- There is a small percentage of overlap between each camera;
- The pointing angle of the camera is approximately 45° from horizontal, but can be calculated with the accompanying metadata.

Dataset format

- Image rotation is camera dependent:
 - Even numbers are rotated clockwise and flipped
 - Odd numbers are rotated anticlockwise and flipped
- Each camera is laid out in the frame as follows:

3	1	5
2	0	4

POS Files

• Each frame comes with a POS file to specify the camera metadata:

	Camera								IMU Velocity					
Sensor name	Yaw	Pitch	Roll	Latitude	Longitude	Altitude (ft)	IMU time (s)	GPS week	North	East	Up	IMU status	Offset from UTC	DST Flag
\$LAIR2	109.85 7426	1.8038 28	29.01 4919	39.7531 01	-84.130597	16843.0 46851	33271 7.087 305	1554	- 33.63 5874	83.9319 35	0.340803	3	-4	1

Reading the RAW files

```
#!/usr/bin/python
import numpy as np
file_path = /path/to/file
Even=True
height = 3248
width = 4872
img = np.fromfile(file_path,dtype="B")
img.shape = (height, width)
img = np.rot90(img)
if even:
```

```
img = np.flipud(img)
else:
img = np.fliplr(img)
```


Scoring

- Each image will be compared with our ground-truth data to determine how many buildings are causing occlusion;
- A score will be calculated based on the similarity to our ground-truth using the Jaccard index:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}, \quad 0 \le J(A,B) \le 1$$

Submission

- Submission date will be in October;
- submission portal details will be distributed at a later date;
- data can be submitted as a zipped set of binary masks in png format, labelled using the same format as the input:
 - 20140521042753-03032396-00-MASK
 - (Date frame camera MASK)

