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Challenges in Bayesian multi-target tracking using sonars

In this talk, we will address the following challenges for Gaussian multi-target tracking (MTT)
using sonars.

Bayesian MTT �lter:
Poisson multi-Bernoulli mixture (PMBM) �lter [1, 2].

It computes the �ltering posterior density.
State-of-the-art multiple hypothesis (MHT) tracking algorithm [3].

Gaussian updates with nonlinear/non-Gaussian measurement models:
Suitable modelling of direction-of-arrival measurements [4].
Iterated posterior linearisation �lter (IPLF) [5, 6].
Accurate approximation of normalising constants [7].

Speci�c sonar measurement model.
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Multiple target Bayesian �ltering

In multiple target tracking, we do not know the number of targets
Targets can appear and disappear.

It is suitable to represent the state as a set Xk =
{
x1k , ..., x

nk
k

}
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We use random �nite sets (RFS) to deal with uncertainty on sets of objects [8].
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Multi-target �ltering recursion

Xk evolves with a transition density fk|k−1 (·|Xk−1).

It is observed at time step k by measurements Zk with conditional density f (·|Xk).

All information about Xk is included in the posterior

fk|k−1 (Xk) =

∫
fk|k−1 (Xk |Xk−1) fk−1|k−1 (Xk−1) δXk−1

fk|k (Xk) =
f (Zk |Xk) fk|k−1 (Xk)∫
f (Zk |Y ) fk|k−1 (Y ) δY
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Standard point target model (I)

Standard measurement model
For a given multi-target state Xk at time k, each target state x ∈ Xk is either detected with probability
pD (x) and generates one measurement with density l (·|x), or missed with probability 1− pD (x).
The measurement Zk is the union of the target-generated measurements and Poisson clutter with
intensity λC (·) .
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Standard point target model (II)

Standard dynamic model
Given the current multitarget state Xk , each target x ∈ Xk survives with probability pS (x) and moves
to a new state with a transition density g (· |x ), or dies with probability 1− pS (x).

For example, g (· |x ) can model nearly constant velocity model, a random walk or an Ornstein Uhlenbeck
process.

Target birth model is a Poisson RFS with intensity λB (·).
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Poisson multi-Bernoulli mixture (PMBM) �lter

The posterior and the predicted density are PMBMs [1, 2].

fk′|k (Xk′) =
∑

Y]W=Xk′

f pk′|k (Y ) f mbm
k′|k (W )

f pk′|k (Xk′) = e−
∫
λk′|k (x)dx

[
λk′|k (·)

]Xk′

f mbm
k′|k (Xk′) =

∑
a∈Ak′|k

w a
k′|k

∑
]

n
k′|k

l=1 X l=Xk′

nk′|k∏
i=1

f i,a
i

k′|k
(
X i
)

︸ ︷︷ ︸
Multi−Bernoulli

.

where k ′ ∈ {k, k + 1} and f i,a
i

k′|k (·) is a Bernoulli density (existence r i,a
i

k′|k and single target density

pi,a
i

k′|k (·)).
Union of an independent Poisson RFS f pk′|k (·) and a multi-Bernoulli mixture RFS f mbm

k′|k (·).
Poisson RFS includes information on existing targets that have never been detected.

Useful information in autonomous vehicles, sonar, and search-and-track sensor management [9].

Multi-Bernoulli mixture (MBM) includes information on existing targets that have been detected at
some point.
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Possibility of undetected objects in occluded areas

This �gure was obtained from the YouTube/edX course: L. Svensson, K. Granström: �Multiple Object Tracking�,
https://www.youtube.com/channel/UCa2-fpj6AV8T6JK1uTRuFpw
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Possibility of undetected objects in occluded areas (sonar)
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Interpretation MBM

Each measurement at each time step gives rise to a new potentially detected target (a Bernoulli
RFS)

A new measurement can be the �rst detection of a target,
It can also correspond to another previously detected target or clutter, in which case there is no new
target.

For each Bernoulli component, there are single target association history hypotheses (local
hypotheses), which are data-to-data.

A global hypothesis is represented by one of the multi-Bernoulli RFSs in the mixture.
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Example of posterior visualisation
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Figures obtained from https://www.youtube.com/channel/UCa2-fpj6AV8T6JK1uTRuFpw
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Illustrative example

Three time steps, measurement sets:
Z1 =

{
z11 , z

2

1

}
.

Z2 = ∅.
Z3 =

{
z13
}
.

At time k = 0, the prior is a Poisson RFS.
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Illustrative example: local hypotheses
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For each leaf node, we have r i,a
i

k′|k and pi,a
i

k′|k (·)
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PMBM global hypotheses

Total number of MBs (global hypotheses): 3
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For simplicity: local hypotheses
indexed from left to right.

Each Bernoulli is not represented
in each MB (global hypothesis)
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PMBM update

There are four steps
Update the PPP.
Update single target hypotheses.

Misdetection.
Update with each received measurement.

Create new Bernoulli components.
Construct new global hypotheses.
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PMBM single-target update (I)

In a Gaussian implementation, each Bernoulli single-target density is of the form

pi,a
i

k′|k (x) = N
(
x ; x i,a

i

k′|k ,P
i,ai

k′|k

)
,

The single target update

qi,a
i

k′|k (x) =
l (z |x) pD (x) pi,a

i

k′|k (x)

l (z)

where the normalising constant is

l (z) =

∫
l (z |x) pD (x) pi,a

i

k′|k (x) dx

In sonar measurement modelling, l (z |x) may be non-linear/non-Gaussian.
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PMBM single-target update (II)

Standard non-linear Kalman �lters linearise measurement function w.r.t. the prior.
Analytical linearisation: Extended Kalman �lter [10].
Statistical linear regression: unscented Kalman �lter, cubature Kalman �lter [10, 11, 12]

These approaches have di�culties with su�ciently high non-linearities or high prior uncertainty [13].

We seek an optimal linearisation using iterated statistical linear regressions w.r.t. the current
posterior approximation:

Iterated posterior linearisation �lter [5, 6].
We need E [z |x ] and C [z |x ].
We can deal with direction-of-arrival data from �rst principles, e.g., via von-Mises Fisher (VMF)
distributions [4, 14].
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Gaussian versus VMF direction-of-arrival measurements

With additive Gaussian noise

With VMF angular noise

18 / 26



Sonar scenario

Two own-ships near the surface of the water, one of which transmits an active sonar pulse

Pulse bounces o� the targets and is received by both receivers after a time delay.
Round trip distance.
Varying speed of sound in the water.
Multi-sensor data fusion.

Returns give information on the direction of arrival (subject to refraction) and time delay.
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Sonar scenario (II)

Speed of sound depending on depth according to the Leroy-Robinson-Goldsmith equation
Path of the sound wave is bent according to Snell's law
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Sonar scenario (III)

In our model, we suppose that the received time delay is the delay we would expect for the round
trip distance with a nominal constant sound speed, plus a bias for each target and measurement
noise.

Target state with bias

xt =
(
px,t , ṗx,t , py ,t , ṗy ,t , pz,t , ṗz,t , {φbias,it , θbias,it ,∆tbias,it }NR

i=1

)T
Direction-of-arrival measurements are von-Mises Fisher distributed.

We are simulating the bias from a model that involves physics, but using a tracker that considers it
to be a statistical bias.

Using the bias model explicitly would be possible, but would require knowledge of the environment.
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Sonar scenario (IV)

Results with 10 targets in x y plane.

10 clutter detections per scan.
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Conclusions

The Poisson multi-Bernoulli mixture �lter is a fully Bayesian MHT algorithm.
It computes the �ltering posterior density.
Information on undetected targets.
Probabilistic target existence in each hypothesis.
Single and multi-frame assignment implementations are possible [15].

A Gaussian implementation with highly nonlinear/non-Gaussian measurements can be achieved via
the iterated posterior linearisation �lter.

Particle �lter implementations are also possible [16, 17].
E�cient algorithms for out-of-sequence data [18].

We have provided some results with a sonar model.
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