

Source Separation and Beamforming

Stephan Weiss, Ian K. Proudler and Fraser K. Coutts

UDRC Consortium: Edinburgh, Heriot-Watt, Strathclde & Belfast Centre for Signal & Image Processing Department of Electonic & Electrical Engineering University of Strathclyde, Glasgow, Scotland, UK

> UDRC Summer School, 1 July 2021 With many thanks to:

J.G. McWhirter, J. Pestana, J. Corr, K. Thompson, Z. Wang, and C. Delaosa

This work was supported by QinetiQ, the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the MOD University Defence Research Collaboration in Signal Processing.

Polynomial Matrix Co-Enthusiasts

Today's Overview

- 1. Narrowband array processing and beamforming;
- 2. Narrowband blind source separation;
- 3. Polynomial matrix fundamentals and algorithms;
- 4. Broadband array applications.

University of Strathclyde Engineering

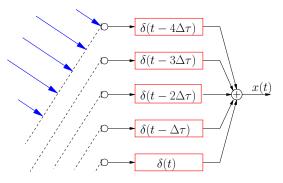
Narrowband Beamforming

Contents:

1. Introduction
2. Spatial Sampling
3. Steering Vector8
4. Data Independent Beamformer Design9
5. Statistically Optimum Beamformer Design
6. Beamforming and MIMO
7. Summary

Intuitive Beamforming

► A farfield wavefront arrives at a sensor array:

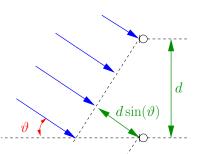


- due to the direction of arrival (DOA) and finite propagation speed, the wavefront will arrive at different sensors with a delay $\Delta \tau$;
- with appropriate processing (beamforming), the sensor signals can be aligned to create constructive interference at the output x(t).

University of Strathclyde Engineering

Spatial Sampling

- For unambiguous spatial sampling, we need to take at least two samples per wavelength of the highest frequency component in the array signals;
- analogy from temporal sampling (Nyquist): take at least two samples per period (relating to the highest frequency component);
- ▶ Wavelength λ and frequency f are related by the propagation speed c in the medium: $\lambda = \frac{c}{f}$;



maximum sensor distance

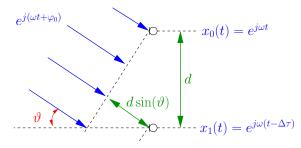
$$d = \frac{\lambda_{\text{max}}}{2} = \frac{c}{2f_{\text{max}}}$$

time delay between sensors

$$\Delta \tau = \frac{d \sin(\theta)}{c} = \frac{\sin(\theta)}{2f_{\text{max}}}$$

Spatial and Temporal Sampling

▶ Consider the array signals $x_0(t)$ and $x_1(t)$ due to a source $_{e^j}(\omega t + \varphi_0)$.



• sampling with $t = nT_{\rm s}$ leads to

$$x_0[n] = e^{j\omega nT_s}$$
 and $x_1[n] = e^{j\omega(nT_s - \Delta\tau)}$

ullet with $f_{
m max}=rac{f_{
m s}}{2}=rac{1}{2T_{
m s}}$ and normalised angular frequency $\Omega=\omega T_{
m s}$,

$$x_0[n] = e^{j\Omega n}$$
 and $x_1[n] = e^{j\Omega n} \cdot e^{-j\Omega \sin(\vartheta)}$

Narrowband Array Signals

A narrowband source with norm. angular frequency Ω illuminates an M-element linear array of equispaced sensors:

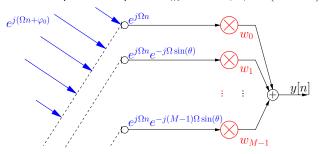
$$\mathbf{x}[n] = \begin{bmatrix} x_0[n] \\ x_1[n] \\ \vdots \\ x_{M-1}[n] \end{bmatrix} = e^{j\Omega n} \cdot \begin{bmatrix} 1 \\ e^{-j\Omega\sin(\vartheta)} \\ \vdots \\ e^{-j(M-1)\Omega\sin(\vartheta)} \end{bmatrix} = e^{j\Omega n} \cdot \mathbf{s}_{\Omega,\vartheta}$$

- the vector $\mathbf{s}_{\Omega,\vartheta}$ characterises the phase shifts of waveform with frequency Ω and DOA ϑ measured at the array sensors;
- since a narrowband signal $e^{j\Omega n}$ only causes phase shifts rather than delays, constructive interference can be accomplished by a set of complex multipliers rather than processors $\delta(t-m\Delta\tau)$, $m=0,1,\ldots(M-1)$;
- beamforming problem: how to select the set of complex coefficients?

8/:

Narrowband Array Processing

Find a set of complex multipliers w_m , m = 0, 1, ... (M-1)



to steer the array characteristic towards this source, the output

$$y[n] = [w_0 \ w_1 \ \dots \ w_{M-1}]e^{j\Omega n} \begin{bmatrix} 1 \\ e^{-j\Omega\sin(\vartheta)} \\ \vdots \\ e^{-j(M-1)\Omega\sin(\vartheta)} \end{bmatrix} = e^{j\Omega n} \mathbf{w}^{\mathbf{H}} \mathbf{s}_{\Omega,\vartheta}$$

should fulfill $y[n] = e^{j\Omega n}$, leading to $\mathbf{w}^{\mathbf{H}} \mathbf{s}_{\Omega,\vartheta} = 1$.

For later convenience and compatibility, the Hermitian transpose operator $\{\cdot\}^H$ is used to denote the coefficient vector

$$\mathbf{w}^{\mathrm{H}} = [w_0 \ w_1 \ \dots \ w_{M-1}]$$

as a result, the vector w hold the complex conjugates of the coefficients,

$$\mathbf{w} = \left[\begin{array}{c} w_0^* \\ w_1^* \\ \vdots \\ w_{M-1}^* \end{array} \right]$$

- ► to access the actual unconjugated coefficients, the beamforming vector w* has to be considered
- note that

$$\mathbf{w}^{\mathbf{H}}\mathbf{s}_{\Omega,\vartheta} = 1 \qquad \longrightarrow \qquad \mathbf{s}_{\Omega,\vartheta}^{\mathbf{H}}\mathbf{w} = 1$$

Overview Narrowband Beamforming

Narrowband Beamforming — Single Source

► The expression $\mathbf{s}_{0,\vartheta}^{\mathbf{H}}\mathbf{w} = 1$ forms a system with one single equation and M unknowns

$$\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}} = 1$$

ightharpoonup general solution to an underdetermined system Ax = b is the right pseudo-inverse A^{\dagger} ,

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b} = \mathbf{A}^{\mathrm{H}} (\mathbf{A} \mathbf{A}^{\mathrm{H}})^{-1} \mathbf{b}$$

here:

$$\mathbf{w} = (\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}})^{\dagger} \cdot 1 = \mathbf{s}_{\Omega,\vartheta} \cdot (\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}} \mathbf{s}_{\Omega,\vartheta})^{-1} \cdot 1 = \frac{\mathbf{s}_{\Omega,\vartheta}}{\|\mathbf{s}_{\Omega,\vartheta}\|_{2}^{2}} = \frac{1}{M} \mathbf{s}_{\Omega,\vartheta}$$

- \triangleright the complex conjugation for \mathbf{w}^* inverts and therefore compensates the phase of the steering vector, which could have been foreseen
- the formulation via the pseudo-inverse will be very powerful for more complicated cases.

Narrowband Beamformer Example

- Source parameters: $\Omega = \frac{\pi}{2}$ and $\vartheta = 30^{\circ}$; array parameter: M = 5:
- steering vector (with $\Omega \sin(\vartheta) = \frac{1}{4}\pi$):

$$\mathbf{s}_{\Omega,\vartheta}^{\mathrm{T}} = \begin{bmatrix} 1 & e^{-j\frac{1}{4}\pi} & \dots & e^{-j\frac{4}{4}\pi} \end{bmatrix}$$

- coefficient vector is given by $\mathbf{w} = (\mathbf{s}_{\Omega, \vartheta}^{\mathrm{H}})^{\dagger}$;
- numerical solution in Matlab: Omega=1/4; theta = pi/6; M=5;

```
s = \exp(-\operatorname{sqrt}(-1) * \operatorname{Omega*sin}(\operatorname{theta}) * (0:(M-1)'));
```

- w = pinv(s');
- angle([s conj(w)])/pi yields:
 - -0.00000 0.00000
 - -0.25000 0.25000
 - -0.50000 0.50000
 - -0.75000 0.75000
 - -1.00000 1.00000

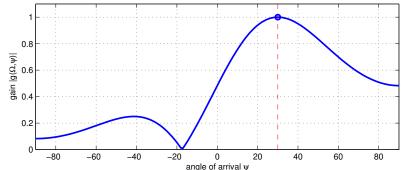
University of Strathclyde Engineering

Beam Pattern I

- The beamformer has a unit gain towards a source with frequency Ω and DoA θ ; what is its gain response towards other angles of arrival?
- \blacktriangleright the beam pattern measures the response of a beamformer by sweeping the angle ψ of a source with frequency Ω

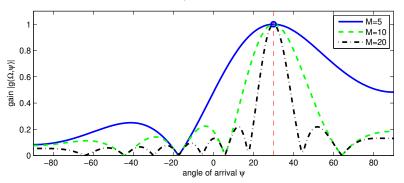
$$g(\Omega, \psi) = \mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega, \psi}$$

beam pattern for the previous example:



Beam Pattern II

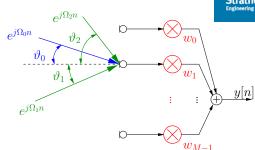
▶ Below are a number of beam patterns for the case $\Omega = \frac{\pi}{2}$ and $\vartheta = 30^{\circ}$ for variable M;



- ightharpoonup increasing the sensor number M narrows the main beam, and increases the number of spatial zeros;
- analogous characteristic in the time domain: increased temporal support leads to higher frequency resolution.

Interference

Many scenarios contain a source of interest and a number of interferers: signal of interest: $\{\Omega_0, \vartheta_0\}$ two interferers: $\{\Omega_1, \vartheta_1\}, \{\Omega_2, \vartheta_2\}$



- we would like to control the beampattern to place spatial nulls in the directions of the interfering sources;
- Problem formulation and solution :

$$\begin{bmatrix} \mathbf{s}_{\Omega_{0},\vartheta_{0}}^{H} \\ \mathbf{s}_{\Omega_{1},\vartheta_{1}}^{H} \\ \mathbf{s}_{\Omega_{2},\vartheta_{2}}^{H} \end{bmatrix} \mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \mathbf{w} = \begin{bmatrix} \mathbf{s}_{\Omega_{0},\vartheta_{0}}^{H} \\ \mathbf{s}_{\Omega_{1},\vartheta_{1}}^{H} \\ \mathbf{s}_{\Omega_{2},\vartheta_{2}}^{H} \end{bmatrix}^{\dagger} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Narrowband BF Example — Multiple Sources

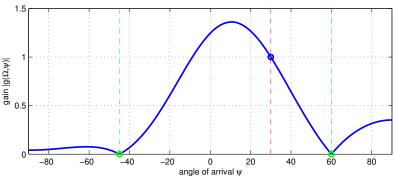
- ightharpoonup The signal of interest illuminates an M=5 element array at a frequency $\Omega_0 = \frac{\pi}{2}$ with a DoA $\vartheta_0 = 30^\circ$
- two interferers at $\Omega_1=\Omega_2=\Omega_0$ are present with DoA $\vartheta_1=-45^\circ$ and $\vartheta_2 = 60^{\circ}$
- results via right pseudo-inverse of steering vectors

$\angle \mathbf{s}_{\Omega_0,\vartheta_0}$	$\angle \mathbf{s}_{\Omega_1,\vartheta_1}$	$\angle \mathbf{s}_{\Omega_2,\vartheta_2}$	∠ w *	$ \mathbf{w} $
0.00	0.00	0.00	-42.81	0.3172
45.00	63.64	-77.94	-105.01	0.3004
90.00	127.28	-155.89	-90.00	0.2343
135.00	-169.08	126.17	-74.99	0.3004
180.00	-105.44	48.23	-137.19	0.3172

- the angle of w is no longer intuitive; also note that the coefficients in w no longer have the same modulus
- amongst a manifold of solutions, the right pseudo-inverse provides the minimum norm solution.

Multiple Source Example — Beampattern

Beam pattern for previous example with one source of interest and two interferers:

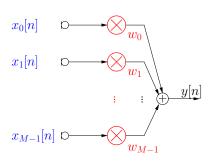


- the pseudo-inverse is the minimum-nomr solution, keeping the general gain response as low as possible;
- the minimum norm property protects against spatially white noise.

Data Independent Beamforming

- Previous beamformer designs were based on the knowledge of DoA of the signal of interest and of interfering sources;
- remaining degrees of freedom are invested to suppress spatially white noise;
- using the analogy between spatial and temporal processing, classical filter design techniques can be invoked to design arrays with a bandpass-type angular response;
- beamformers based on source parameters (frequency, DoA) rather the actual received waveforms are termed data independent beamformers;
- ▶ this is in contrast to statistically optimum beamformers, which take the received signal statistics into account.

Statistically Optimum Beamforming



- Statistically optimum beamformer minimise e.g. the signal power of the beamformer output, y[n];
- to avoid the trivial solution $\mathbf{w} = \mathbf{0}$, the signal of interest needs to be protected by constraints;
- ▶ this results in e.g. the following constrained optimisation problem

$$\min_{\mathbf{w}^*} \mathcal{E}\{|y[n]|^2\} \quad \text{subject to} \quad \mathbf{s}_{\Omega,\vartheta}^{\mathbf{H}} \mathbf{w} = 1$$

▶ the solution to this specific statistically optimum beamformer is known as the minimum variance distortionless response (MVDR).

- ▶ Solving the MVDR problem: minimise the power of $y[n] = \mathbf{w}^H \mathbf{x}$ subject to the contraint $\mathbf{w}^H \mathbf{s}_{\Omega_0, \vartheta_0} = 1$;
- ▶ Formulation using a Lagrange multiplier λ :

$$\frac{\partial}{\partial \mathbf{w}^*} \left(\mathbf{w}^{\mathrm{H}} \mathcal{E} \left\{ \mathbf{x} \mathbf{x}^{\mathrm{H}} \right\} \mathbf{w} - \lambda (\mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega_0, \vartheta_0} - 1) \right) = \mathbf{R}_{xx} \mathbf{w} - \lambda \mathbf{s}_{\Omega_0, \vartheta_0} = \mathbf{0}$$

▶ the solution $\mathbf{w} = \lambda \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0}$ is inserted into the constraint equation to determine λ :

$$\lambda \mathbf{s}_{\Omega_0, \vartheta_0}^{\mathrm{H}} \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0, \vartheta_0} = 1$$

therefore

$$\mathbf{w}_{\text{MVDR}} = \left(\mathbf{s}_{\Omega_0,\vartheta_0}^{\text{H}} \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0}\right)^{-1} \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0}$$

this stastically optimum beamformer has various other names, e.g. Capon beamformer.

MVDR Beamformer — Simple Case

In the case of spatially white noise input, such that

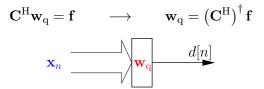
$$\mathbf{R}_{xx} = \sigma_{xx}^2 \mathbf{I} \qquad \longrightarrow \qquad \mathbf{R}_{xx}^{-1} = \sigma_{xx}^{-2} \mathbf{I}$$

the MVDR solution reduces to

$$\mathbf{w}_{\text{MVDR}} = \frac{\mathbf{s}_{\Omega_0, \vartheta_0}}{\|\mathbf{s}_{\Omega_0, \vartheta_0}\|_2^2} = \frac{\mathbf{s}_{\Omega_0, \vartheta_0}}{M} \quad ;$$

this is identical to the data independent beamformer in the absence of interference (i.e. no spatially structured noise);

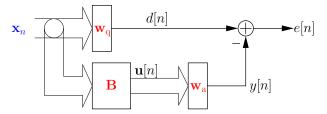
- Generalised Sidelobe Canceller (GSC)
 - ► The generalised sidelobe canceller is a specific implementation of the MVDR beamformer; it transforms the constrained MVDR problem into an unconstrained optimisation problem;
 - ▶ a first guess at the solution is performed by the quiescent beamformer \mathbf{w}_{q} , which is identical to the previously defined data independent beamformer, obtained by inverting the constraint equation



▶ the quiescent beamformer eliminates interferers captured by C and f, but passes the signal of interest, any interferers unaccounted for in the constraints, and spatially distributed noise.

GSC — Idea

GSE idea: produce array signals that are free of any contribution from the signal of interest, and use the resulting signal vector $\mathbf{u}[n]$ to eliminate remaining interference from the quiescent output:



- ▶ the blocking matrix **B** eliminates the signal of interest and any interferers captured by the constraints;
- ▶ the vector \mathbf{w}_a will be based on the statistics of $\mathbf{u}[n]$ and d[n] to minimise the beamformer output variance $\mathcal{E}\{|e[n]|^2\}$.

GSC — Blocking Matrix

▶ In order to project away from the constraints,

$$\mathbf{B} \cdot \mathbf{C} = \mathbf{B} \cdot \begin{bmatrix} \mathbf{s}_{\Omega_0, \vartheta_0} & \mathbf{s}_{\Omega_1, \vartheta_1} & \dots & \mathbf{s}_{\Omega_{r-1}, \vartheta_{r-1}} \end{bmatrix} = \mathbf{0}$$

▶ assuming that the *r* constraints are linearly independent, the singular value decomposition of the constraint matrix yields

$$\mathbf{B} \cdot egin{bmatrix} \mathbf{U}_0 & \mathbf{U}_0^ot \end{bmatrix} egin{bmatrix} \sigma_0 & & & & & \mathbf{0} \ & \ddots & & & \mathbf{0} \ & & \sigma_{r-1} & & & \end{bmatrix} \cdot \mathbf{V}^\mathrm{H} & = & \mathbf{0} \ & & & & & \mathbf{0} \end{bmatrix}$$

lacktriangle the matrix $\mathbf{U}_0^\perp \in \mathbb{C}^{M imes (M-r)}$ spans the nullspace of \mathbf{C}^{H} , and

$$\mathbf{B} = (\mathbf{U}_0^{\perp})^{\mathrm{H}} \in \mathbb{C}^{(M-r) \times M}$$

has the required property, as $(\mathbf{I}_{-}^{\perp})^{\mathrm{H}} \cdot [\mathbf{I}_{0} \ \mathbf{I}_{-}^{\perp}] \mathbf{\Sigma} = [\mathbf{0} \ \mathbf{I}]$

$$(\mathbf{U}_0^\perp)^H \cdot \begin{bmatrix} \mathbf{U}_0 \ \mathbf{U}_0^\perp \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} \mathbf{0} \ \mathbf{I} \end{bmatrix} \cdot \boldsymbol{\Sigma} = \boldsymbol{0}.$$

GSC — Unconstrained Optimisation

- ▶ The beamforming vector w_a is adjusted to minimise the beamformer's output power:
- ▶ the MMSE or Wiener solution is given by

$$\mathbf{w}_{\mathrm{a}} = \mathbf{R}_{uu}^{-1} \cdot \mathbf{p} = \frac{\mathbf{B} \mathbf{R}_{xx} (\mathbf{C}^{\mathrm{H}})^{\dagger} \mathbf{f}}{\mathbf{B} \mathbf{R}_{xx} \mathbf{B}^{\mathrm{H}}}$$

with the covariance matrix

$$\mathbf{R}_{uu} = \mathcal{E}\{\mathbf{u}[n] \cdot \mathbf{u}^{\mathrm{H}}[n]\} = \mathbf{B} \,\mathcal{E}\{\mathbf{x}[n] \cdot \mathbf{x}^{\mathrm{H}}[n]\} \,\mathbf{B}^{\mathrm{H}} = \mathbf{B}\mathbf{R}_{xx}\mathbf{B}^{\mathrm{H}}$$

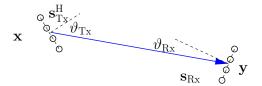
and the cross-correlation vector

$$\mathbf{p} = \mathcal{E}\{\mathbf{u}[n] \cdot d^*[n]\} = \mathbf{B}\mathbf{R}_{xx}\mathbf{w}_{\mathbf{q}}$$

iterative optimisation schemes, such as the least mean squares (LMS) algorithm may be used to approximate the MMSE solution.

Beamforming and MIMO Processing

 Assume a transmission scenario with an M-element transmit (Tx) antenna array and an N-element receive (Rx) array;



- ▶ in the absence of scatterers and any attenuation, the farfield transmission from the transmit antenna is characterised by a steering vector $\mathbf{s}_{\mathrm{Tv}}^{\mathrm{H}}$;
- the incoming waveform at the Rx device is described by another steering vector \mathbf{s}_{Rx} ;
- lacktriangle the overall MIMO system between a Tx vector $\mathbf{x} \in \mathbb{C}^M$ and an Rx

MIMO Requirements

- ▶ The farfield assumption is convenient for beamforming, but leads to a rank one MIMO system matrix which is incompatible with the desire to extract multiple independent subchannels or with to achieve diversity;
- rich scattering in connection with MIMO usually implies multiple reflections of signals;
- together with a sufficiently large antenna spacing means that the farfield assumption is invalid and the MIMO system matrix is not rank deficient;
- ▶ some suggestions of "sufficiently large spacing" imply an antenna element distance of $d > 10\lambda$;
- recall spatial sampling requires $d < \frac{1}{2}\lambda$!

Beamforming with $d > \frac{1}{2}\lambda$

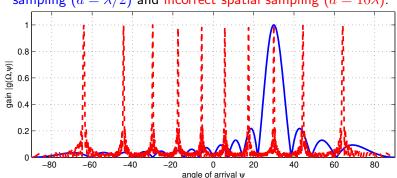
▶ For a flexible spatial sampling with $d = \alpha \lambda$, $0 < \alpha \in \mathbb{R}$, the steering vector for a waveform with normalised angular frequency Ω and DoA ϑ is

$$\mathbf{y} = e^{j\Omega n} \begin{bmatrix} 1 \\ e^{j2\alpha\Omega\sin(\vartheta)} \\ \vdots \\ e^{j2\alpha(M-1)\Omega\sin(\vartheta)} \end{bmatrix} = \mathbf{s}_{2\alpha\Omega,\vartheta} \cdot e^{j\Omega}$$

- inspecting $\mathbf{s}_{2\alpha\Omega,\vartheta}$ the steering vector is aliased to a different frequency $2\alpha\Omega$;
- ▶ although the correct frequency can be retrieved unambigiously from temporal sampling of any array element, at Ω various different angles could provide the same steering vector $\mathbf{s}_{2\alpha\Omega,\vartheta}$;
- ▶ the array performs spatial undersampling, resuling in spatial aliasing.

Spatial Undersampling Example

- Beamforming parameters: signal of interest with $\Omega = \frac{\pi}{2}$, direction of arrival $\vartheta = 30^{\circ}$, M = 32 array elements;
- data independent beamformer design with correct spatial sampling $(d = \lambda/2)$ and incorrect spatial sampling $(d = 10\lambda)$:



MIMO systems perform beamforming, but may dissipate energy into aliased directions.

Summary

- Spatial sampling by an array of sensors (e.g. antenna elements) has been explored:
- the spatial data window of a narrowband source is characterised by the steering vector;
- appropriate data independent beamformers can be designed based on the steering vectors of desired sources and interferers;
- statistically optimum beamformers are based on the signal statistics:
- ▶ a specific statistically optimum beamformer, the generalised sidelobe canceller, has been reviewed — it uses signal statistics to improve the performance of a data independent beamformer derived from the constraint equations;
- some similarities and differences between beamforming and MIMO systems have been highlighted.