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Source Separation and Beamforming Background: “s"{",;‘;'.;‘c[f%

Overview —
1. Overview
2. Signal Separation
3. Non-adaptive beamforming
4. Adaptive signal processing for beamforming
5. Application of linear algebra to array problems
6. More adaptive signal processing for beamforming
7. Blind source separation
8. Summary
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Signal Separation

» Signal separation requires two components:

Input Signals

Filter

Output Signal

Calculate
Parameters

Universityof

)
Strathclyde

Engineering

» A parametrised
mechanism to separate
the signals (a “filter")

» A means to select the
parameters

» Performance limited by
‘optimum’ filter

» Conventionally we have two “filter” mechanisms:

» Temporal filter — separate by frequency
> Spatial filter (aka beamformer) — separate by AOA

» We will focus on narrowband beamforming in this talk

» Broadband beamforming requires a space-time filter
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Signal Separation Strathclyde

Engineering

P> Parameter selection — the interesting part

» Three cases:
» Non-adaptive — we know everything about the scenario
> “Adaptive” — we don't know everything
> “Blind" — we don't know anything (sort of)

» |mportant parameters:
» AOA of signals
> Array calibration
» Noise statistics
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-

Non-Adaptive Source Separation Strathelyde
Englneering
» Covered in talk by Prof. Weiss

‘ . » Beamformer weights via

A : oL
ol I/ '\ constrained optimisation

( I\ (offline)
%% 4 » Gain towards wanted

signals = 0

» Noise gain as small as
Bearing angle (degrees) pOSSi ble

> Lots of good optimisation algorithms
(DSP text books e.g. Rabiner & Gold - Temporal filters but
basically the same for beamforming)

» Only (N —1) nulls

» Spatially distributed noise can't be removed only suppressed

\M‘p{) r\\ﬂ{(\l \/ \'\“(\{f\vﬁ > S‘Gii‘:'t;;lrds other
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Adaptive Source Separation Strathclyde

>

>

)

Engineering

Aka adaptive beamforming

Assume the known parameters are:

> AOA of the wanted signal(s)
> Array calibration

Beamformer weights via constrained optimisation but online this
time

Gain towards wanted signal = 1
Minimise energy of output

NB. Could use an AOA algorithm here and fixed beamforming but
computationally costly
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Adaptive Source Separation “s"r,;‘;'.;‘c[f%

Engineering

> Beamformer weights: w

» Sensor data at time n: x(n)

» Output at time n: y(n) = wix(n)

> Energy in output: J = SN y(n)]? = ||w XX w]|[3
» Data matrix: X = [x(0),x(1),...,x(N —1)]

» Constraint: wHa(f) =1

» Sample covariance matrix: R = XX#
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Minimum Variance Distortionless Response
(MVDR)

» Minimum Variance := Minimise energy of output

» Distortionless Response := Gain towards wanted signal = 1

R a(h)
VT aH ()R 1a(0)

MVDR Beam Pattern - 1 Jammer

» Gain towards wanted signal = 1

» Small gain (null) towards other
signal

 Gain (d8)

» Noise gain not controlled
In fact adapted to that particular
noise realization

“h 0 E o )
Azimuth angle (degrees)
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Adaptive

Minimum Variance Distortionless Response

(MVDR)

» Multiple noise realizations (blocks of data)

| Constraint

Bearing (°)
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Minimum Variance Distortionless Response Strathelyde

(MVDR)

>

>
>

Engineering

Stabilisation procedures: there are many different ways of
reducing the effects of adapting to the noise realizations.

All effectively try to ‘remove’ influence of noise

Diagonal loading
w = Arg Min (HWH (R+ ILLI)WH%) st.wla(9) =1

“Noise” subspace manipulation
Average noise subspace eigenvalues

Penalty Function Method
w = Arg Min (HWHRWH% + K||lw — WOH%)

“Soft” constraint makes the adapted beam pattern lie close to the
desired pattern.
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. &)
Linear Algebra %"E“ri’iﬁ'c{%

>
4
>

Engineering

MVDR weight vector depends on covariance matrix R
This matrix has structure that can be exploited
Hermitian (symmetric)

RY = (xx")" = xx# =R

We can use linear algebra to study / manipulate the covariance
matrix

Eigenvalue decomposition of Hermitian matrix
R = UAU"
Eigenvectors: U is a unitary matrix
vfu=1

Eigenvalues: A is diagonal, all elements are > 0

Rank of M is number of non-zero eigenvalues
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Eigenvalue Decomposition “s"{",.;‘;'.;‘c[f%

Engineering

» Eigenvectors are not steering vectors
X =AS
» Eigenvalue Decomposition
R = XX = UAU#

» Decomposition of X7?
2 1/2
X =UA

» ‘Hidden’ Unitary Matrix (SVD)
X = UAY2VH

R = UA/2VAVA 22U
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Eigenvalue Decomposition “s";‘;;‘;i';‘d‘}ﬁ

Engineering

» Eigenvectors are not steering vectors

Beam Patterns,
Beam Pattems N - Dam

1 = cigonvector 1

= Eigenvector 2

| SRR

Signal 1
Signal 1

0
. o Y Signal 2
Signal 2

. 2 signals with power ratio
2 equal power signals 101
» Scatter plot .

» Covariance matrix EVD

» Eigenvectors approximately steering vectors when powers are
dissimilar
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Eigenvalue Decomposition Strathclyde
. - Engineering
» Consider two signals

X =a(f)s? +a(fy)s + N

» Covariance matrix
R = XX" = ADA" + o%I

Py 0]

A= [ 3(91) a(eg) ] D= |: 0 P2

» ADAZ¥ is rank two. EVD:

ADAHzU[AOA S}UH

» Covariance matrix EVD

Aa O

R:U[ 0 0

2
}UH—i—azI:U[AA—FJI 0 }UH

0 oI
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Universityof T

Eigenvalue Spectrum Strathclyde

Engineering

» Eigenvalue spectrum
A + o2
o’I

Eigen-spectrum

'Signal' Eigenvalues

» Two large eigenvalues

» five noise realizations

'Noise' Eigenvalues . .
9 > Noise eigenvalues not the same

h and not equal what theory
L suggests — finite data

Eigenvalue amplitude (logarithmic)
5

Index
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Signal and Noise Subspaces g"r,;‘;'.;‘c[f%

Engineering

» Covariance matrix EVD (replace ‘theoretical' 0% by An)

AAx+AN1 O

H
0 AN2 v

R=U

» Partition eigenvectors (assuming Aa + An1 > AN2)
U=[U; U]
» Orthogonal subspaces
U 70 =1 U, 70U, =0
» Covariance matrix EVD

R =Uj (Aa + An1) Ui + Uy (Ang) U
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Rotation Matrices _ _ “S"r,;‘;',;‘c[i%
» Eigenvectors: U is a unitary matrix R

vfu=1
» Can be considered as a rotation in N-dimensional space
» 2-D case (Givens rotations)

e o =]

1 0 0 0 0

0 cos(d) 0O sin(d) 0
U=[..|0 0 I 0 0]..[]

0 —sin(6)* 0 cos(f) 0

0 0 0 1
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Singular Value Decomposition Strathclyde

Engineering

» Not all matrices of interest are Hermitian
» Singular value decomposition of a matrix X: N rows & M
columns
X =UxVH
UisNxN,YXisNxM,and Vis M x M
Singular vectors: U and V are unitary matrices
Singular values: X is diagonal, all elements are > 0
Rank of X is number of non-zero singular values
Relation to EVD

vVvyyvyy

R = XX = uxvivzu? = ux?u”

Eigenvalues are the square of the singular values

18/37



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation S

& ? &)
Universityof x

Stabilized MVDR Beamformer Strathclyde

Engineering

» Recall basic MVDR beamformer suffers from weight jitter

» Covariance matrix EVD

Aa+An1 O ]|:U1H:|

R=[U; Uz][ 0 Avg || UL

» Subspace Projection: remove noise
Orthogonal subspaces: U.fUu, =1, U;fU, =0

X =U;U; X

S ooH Apa+AN1 O U,
R=XX"7=[U, 0][ RN

> Issues with rank deficient R
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Stabilized MVDR Beamformer Sratheiyde
> Average noise eigenvalues e

» Project data onto noise subspace
N = U,U,X

» Calculate a o over several snapshots
R=U

5 Eigen-spectrum

'Signal' Eigenvalues

» Need to decide how to partition U into U;
and Us.

> Look at eigenvalues

‘Noise' Eigenvalues |

» Simple thresholding or more complicated
information theory.

Eigenvalue amplitude (logarithmic)

Index
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Adaptive2

Stabilized MVDR Beamformer

> Average noise eigenvalues

| Constraint

Bearing (°)
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Array Calibration Errors Strathclyde

Engineering

» MVDR minimises power in output signal.
» w = (0 would do this
> ‘Look direction’ constraint protects the wanted signal
wila(9) =1
» What if a(f) is incorrect?
> Wanted signal looks like an unwanted one!
» Add extra constraints
> More that one ‘Look direction’ constraint

» Flatten main lobe — gradient constraint
» Incorporate calibration into problem and solve ...
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Linearly Constrained Minimum Variance Strathelyde

Engineering
(LCMV)
» Minimum Variance = Minimise energy of output
> Linearly Constrained = More than one constraint

WHC:gT

> Solution )
w=R'C(C'R7!C) ¢

LCMV Beam Pattern - 9 Jammers

) ‘ » Gain in wanted direction = 1
(\ » Gain towards other directions = 0

Azimuth angle (degrees)

Gain (dB)
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Linearly Constrained Minimum Variance Strathelyde
Engineering
(LCMV)

» LCMV is a constrained minimisation problem
w = Arg Min (||WHRW||§) stwiC =g’
» If there are M constraints, M components of w are effectively
fixed

» Thus only N — M ‘degrees of freedom’ in the choice of w
i.e. can only null out N — M signals

» Thus have to have N — M >0

» Sometimes the constraints can be linearly dependent or nearly so
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Linearly Constrained Minimum Variance “s"{",;‘;'.;‘c[f%
Engineering
(LCMV)
Consider
wiC =g?
or
H T H C
whC —gT] = [w, 1] {gT}:o
Take SVD

[wi, —1]usvH =0
V' is full rank so
[wh, -1 U =0

If N — R singular values are small

wh, -1] 0,21 =0

Let U121 = [ g(; } then wHC = g’ and C only has R columns
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Linearly Constrained Minimum Variance Strathelyde
Engineering
(LCMV)

Beam Pattems

Beam patterns
black - 9 Constraints

blue - 6 Constraints

vVVvyVvyYy

Beam patterns similar
at constraint points

3
AOA (degrees)

............. Spectrum

» Constraint matrix
singular value spectrum

» 3 small singular values

» 6 constraints ~ 9
constraints
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Universityof %

Linearly Constrained Minimum Variance Strathelyde
(LCMV) _

MS HH ‘

02

Beam Patterns.

> Beam patterns
» black - 9 Constraints
» blue - 6 Constraints

10 o 2

10
AOA (degrees)

» Constraints not strictly achieved due to non-zero singular values

» Threshold on singular values should be set by acceptable ‘null’
gain
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Blind Source Separation Strathclyde

Engineering

» What if we don’t know AOA of wanted signal and array
calibration?

» Recall that
X=AS+N

» Covariance matrix
R = XX? = ADAY + 5?1

Assume that the source signals are statistically independent an
unit powerli.e. D = I. If not redefine array manifold A so that
A+ AD:z
» Define SVD of A
A =UxVH

28 /37



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation S

-

Blind Source Separation Strathclyde

Engineering

» Covariance matrix EVD
XX" =U [2VIVE + 21U = U [22 + 21| UY
» For simplicity assume X + ol ~ X i.e. high SNR
xXx =uzru?
» So the covariance matrix gives us U and 3. Now note that
X =AS+N =UEVIS+ N

» Thus _
Y="'"UX =VIS+ N

where N = YUY A/ is a noise term and assuming £~ exists!
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Blind Source Separation S
Engineering
» We have _
Y = VIS + N
» so S could be extracted from Y if we knew VH

» Then
S= (v lufh)x
» cf. bank of beamformers

WlH

D
Il

: X
WNH

» Blind signal separation is limited by what a bank of beamformers
can do e.g. N sensors — N — 1 nulls
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Blind Source Separation i i

Engineering

» How to estimate VH?
NB
YY? = VHSSHV 4 5252
but SSH =T so
YYH =1+0°872
i.e. a diagonal matrix — the second order statistics of Y will not
help us estimate V7
» Can however use higher order statistics

» Can also use nonlinear cost function
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Blind Source Separation “s"{':.;‘;'.;‘c[i%

Engineering

> E.g. ‘FastlCA’ - iteration to minimise ‘negentropy’
J(Y)=H (Ygauss) — H(Y)

» Y Ggauss 1S Gaussian data with same covariance matrix as Y,
H (Y) is the entropy of Y

H(Y)= - / py () log(py (1)) dy
» lteration
H H ’ H H
Vi =G (VEY)'Y - & (VEY)" v,

G (v) = tanh(aw), v exp(—v?/2), or v?
where 1 < a <2
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Blind Source Separation

» Higher order statistics

> Statistical independence P(z,y) = P(z)P(y)

» Scatter diagram

Dependent Signals

Signal2

o
Signal 1

Signal2

Universityof -

Strathclyde

Engineering

Independent Signals.

o 0z 04
signal 1

» Calculate rotation (i.e. unitary matrix V) to align scatter plot

with axes
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Blind Source Separation g".;‘;;‘;'.;'d‘yde
Engineering
» Estimating the ‘hidden’ rotation matrix
Y =VAS + N
» Loop through all pairs of signals
P> Rotate to align with axes
P> Repeat until rotation angle is below a threshold
QuQn-1.. Q1Y =8

ie. J<s> <ebut J(S)=0s0S~S

» Can show that S is S up to scaling and permutation of the signal

order
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Blind Source Separation o %5
Strathclyde
neering
signal 1 signal 2 signal 3
1.5 3 3
w1 2 2
© 0.5 1 1
S 0
=P 0 0
P B 1
1.5 2 2
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
s 15 1.5 ]
T 1 1
2 05 05 0.5
2 02 o 02
& 1 -0.5 a
D 145 -1 1.5
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
2
52 & 2
(2]
= 1 0.5 0
3 9 B
[} -0.5
21 A 2
Q-2 1.5 -3
€ 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
€18 3 2
= 2 2
& o.g 1 1
T o5 0 [5}
% -o.
= -1 -1 -1
S 15 2 2
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time Time Time

» 3 signals,3 sensors, SNR = 20dB, MVDR as benchmark
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Blind Source Separation smmd;,ﬁ

Engineering

» Need more data to calculate higher-order statistics

signal 1 signal 2 signal 3
1.5 3 3
w1 2 2
< 05 1 b
5 9 o 0
@ 'D;? -1 -1
1. -2 -2
0 20 40 60 80 100 0 20 40 80 80 100 0 20 40 60 80 100
= 1.5 1.5 15
= 1 1 1
— 05 0.5 e
5
2 o o -0.5
T -0.5 -0.5 1
DB -1 -1.5
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

5 1
1 0
0.5 -
0 -2
03 -3
1.5 4

40 60 80 100 o =20 40 B0 80 100 0O 20 40 60 80 100

- 18 3 3

s 2 2

& b3 1 1

o o5 o o

[~ -1 -1

=

= 15 -2 -2

0 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100

Time Time Time

» Previous plot: 1000 data samples, This plot: 100 data samples
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)
Summary A
Engineering
> Signal Separation: filter and parameters
Performance limited by ‘optimum’ filter
» Non-adaptive beamforming
Good optimisation algorithms
» Adaptive signal processing for beamforming
Constrain direction of main beam, reduce everything else
Weight jitter, calibration errors
Lots of linear algebra
» Blind source separation Higher-order statistics or nonlinear
optimisation
Lots of data needed
» Acknowledgment: John Mather (QinetiQ).
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