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Source Separation and Beamforming Background:
Overview
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Signal Separation
◮ Signal separation requires two components:

◮ A parametrised
mechanism to separate
the signals (a “filter”)

◮ A means to select the
parameters

◮ Performance limited by
‘optimum’ filter

◮ Conventionally we have two “filter” mechanisms:
◮ Temporal filter – separate by frequency
◮ Spatial filter (aka beamformer) – separate by AOA

◮ We will focus on narrowband beamforming in this talk

◮ Broadband beamforming requires a space-time filter

3 / 37



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation Summary

Signal Separation

◮ Parameter selection – the interesting part

◮ Three cases:
◮ Non-adaptive – we know everything about the scenario
◮ “Adaptive” – we don’t know everything
◮ “Blind” – we don’t know anything (sort of)

◮ Important parameters:
◮ AOA of signals
◮ Array calibration
◮ Noise statistics
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Non-Adaptive Source Separation
◮ Covered in talk by Prof. Weiss

◮ Beamformer weights via
constrained optimisation
(offline)

◮ Gain towards wanted
signal = 1

◮ Gain towards other
signals = 0

◮ Noise gain as small as
possible

◮ Lots of good optimisation algorithms
(DSP text books e.g. Rabiner & Gold - Temporal filters but
basically the same for beamforming)

◮ Only (N − 1) nulls

◮ Spatially distributed noise can’t be removed only suppressed
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Adaptive Source Separation

◮ Aka adaptive beamforming

◮ Assume the known parameters are:
◮ AOA of the wanted signal(s)
◮ Array calibration

◮ Beamformer weights via constrained optimisation but online this
time

◮ Gain towards wanted signal = 1

◮ Minimise energy of output

◮ NB. Could use an AOA algorithm here and fixed beamforming but
computationally costly
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Adaptive Source Separation

◮ Beamformer weights: w

◮ Sensor data at time n: x(n)

◮ Output at time n: y(n) = wHx(n)

◮ Energy in output: J =
∑N−1

n=0
|y(n)|2 = ||wHXXHw||22

◮ Data matrix: X = [x(0),x(1), ...,x(N − 1)]

◮ Constraint: wHa(θ) = 1

◮ Sample covariance matrix: R = XXH
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Minimum Variance Distortionless Response
(MVDR)

◮ Minimum Variance := Minimise energy of output

◮ Distortionless Response := Gain towards wanted signal = 1

w =
R−1a(θ)

aH(θ)R−1a(θ)

◮ Gain towards wanted signal = 1

◮ Small gain (null) towards other
signal

◮ Noise gain not controlled
In fact adapted to that particular
noise realization
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Minimum Variance Distortionless Response
(MVDR)
◮ Multiple noise realizations (blocks of data)
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Minimum Variance Distortionless Response
(MVDR)
◮ Stabilisation procedures: there are many different ways of

reducing the effects of adapting to the noise realizations.

◮ All effectively try to ‘remove’ influence of noise

◮ Diagonal loading

w = Arg Min
(

||wH (R+ µI)w||22
)

st.wHa(θ) = 1

◮ “Noise” subspace manipulation
Average noise subspace eigenvalues

◮ Penalty Function Method

w = Arg Min
(

||wHRw||22 + κ||w −w0||
2
2

)

“Soft” constraint makes the adapted beam pattern lie close to the
desired pattern.
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Linear Algebra
◮ MVDR weight vector depends on covariance matrix R

◮ This matrix has structure that can be exploited

◮ Hermitian (symmetric)

RH =
(

XXH
)H

= XXH = R

◮ We can use linear algebra to study / manipulate the covariance
matrix

◮ Eigenvalue decomposition of Hermitian matrix

R = UΛUH

◮ Eigenvectors: U is a unitary matrix

UHU = I

◮ Eigenvalues: Λ is diagonal, all elements are ≥ 0

◮ Rank of M is number of non-zero eigenvalues
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Eigenvalue Decomposition

◮ Eigenvectors are not steering vectors

X = AS

◮ Eigenvalue Decomposition

R = XXH = UΛUH

◮ Decomposition of X?

X
?
= UΛ1/2

◮ ‘Hidden’ Unitary Matrix (SVD)

X = UΛ1/2VH

R = UΛ1/2
✘✘✘
VHVΛ1/2UH
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Eigenvalue Decomposition

◮ Eigenvectors are not steering vectors

2 equal power signals
2 signals with power ratio
10:1

◮ Scatter plot
◮ Covariance matrix EVD
◮ Eigenvectors approximately steering vectors when powers are

dissimilar
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Eigenvalue Decomposition
◮ Consider two signals

X = a(θ1)s
T
1 + a(θ2)s

T
2 +N

◮ Covariance matrix

R = XXH = ADAH + σ2I

A =
[

a(θ1) a(θ2)
]

D =

[

P1 0
0 P2

]

◮ ADAH is rank two. EVD:

ADAH = U

[

ΛA 0
0 0

]

UH

◮ Covariance matrix EVD

R = U

[

ΛA 0
0 0

]

UH + σ2I = U

[

ΛA + σ2I 0
0 σ2I

]

UH
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Eigenvalue Spectrum

◮ Eigenvalue spectrum
[

ΛA + σ2

σ2I

]

◮ Two large eigenvalues

◮ five noise realizations

◮ Noise eigenvalues not the same
and not equal what theory
suggests – finite data
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Signal and Noise Subspaces

◮ Covariance matrix EVD (replace ‘theoretical’ σ2 by ΛN)

R = U

[

ΛA +ΛN1 0
0 ΛN2

]

UH

◮ Partition eigenvectors (assuming ΛA +ΛN1 > ΛN2)

U =
[

U1 U2

]

◮ Orthogonal subspaces

U1
HU1 = I U1

HU2 = 0

◮ Covariance matrix EVD

R = U1 (ΛA +ΛN1)U1
H +U2 (ΛN2)U2

H
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Rotation Matrices
◮ Eigenvectors: U is a unitary matrix

UHU = I

◮ Can be considered as a rotation in N-dimensional space
◮ 2-D case (Givens rotations)

[

cos(θ) sin(θ)
− sin(θ)∗ cos(θ)

] [

x1
y1

]

=

[

x2
y2

]

◮ Can build N-D rotation from 2-D ones

U = [•] ...













I 0 0 0 0
0 cos(θ) 0 sin(θ) 0
0 0 I 0 0
0 − sin(θ)∗ 0 cos(θ) 0
0 0 0 I













... [•]
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Singular Value Decomposition

◮ Not all matrices of interest are Hermitian

◮ Singular value decomposition of a matrix X: N rows & M
columns

X = UΣVH

U is N ×N , Σ is N ×M , and V is M ×M

◮ Singular vectors: U and V are unitary matrices

◮ Singular values: Σ is diagonal, all elements are ≥ 0

◮ Rank of X is number of non-zero singular values

◮ Relation to EVD

R = XXH = UΣVHVΣUH = UΣ2UH

Eigenvalues are the square of the singular values
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Stabilized MVDR Beamformer

◮ Recall basic MVDR beamformer suffers from weight jitter

◮ Covariance matrix EVD

R =
[

U1 U2

]

[

ΛA + ΛN1 0
0 ΛN2

] [

U1
H

U2
H

]

◮ Subspace Projection: remove noise
Orthogonal subspaces: U1

HU1 = I, U1
HU2 = 0

X̂ = U1U1
HX

R̂ = X̂X̂H =
[

U1 0
]

[

ΛA + ΛN1 0
0 ✟

✟✟ΛN2

] [

U1
H

0

]

◮ Issues with rank deficient R̂
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Stabilized MVDR Beamformer
◮ Average noise eigenvalues

◮ Project data onto noise subspace

N = U2U2
HX

◮ Calculate a σ over several snapshots

R̂ = U

[

ΛA + ΛN1 0
0 σ2I

]

UH

◮ Need to decide how to partition U into U1

and U2.

◮ Look at eigenvalues

◮ Simple thresholding or more complicated
information theory.
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Stabilized MVDR Beamformer

◮ Average noise eigenvalues
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Array Calibration Errors

◮ MVDR minimises power in output signal.

◮ w = 0 would do this

◮ ‘Look direction’ constraint protects the wanted signal

wHa(θ) = 1

◮ What if a(θ) is incorrect?

◮ Wanted signal looks like an unwanted one!

◮ Add extra constraints
◮ More that one ‘Look direction’ constraint
◮ Flatten main lobe – gradient constraint
◮ Incorporate calibration into problem and solve ...
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Linearly Constrained Minimum Variance
(LCMV)
◮ Minimum Variance = Minimise energy of output
◮ Linearly Constrained = More than one constraint

wHC = gT

◮ Solution
w = R−1C

(

CHR−1C
)

−1
g

◮ Gain in wanted direction = 1

◮ Gain towards other directions = 0

23 / 37



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation Summary

Linearly Constrained Minimum Variance
(LCMV)

◮ LCMV is a constrained minimisation problem

w = Arg Min
(

||wHRw||22
)

st.wHC = gT

◮ If there are M constraints, M components of w are effectively
fixed

◮ Thus only N −M ‘degrees of freedom’ in the choice of w
i.e. can only null out N −M signals

◮ Thus have to have N −M > 0

◮ Sometimes the constraints can be linearly dependent or nearly so
.....
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Linearly Constrained Minimum Variance
(LCMV)
Consider

wHC = gT

or
[

wHC− gT
]

=
[

wH ,−1
]

[

C

gT

]

= 0

Take SVD
[

wH ,−1
]

UΣV H = 0

V is full rank so
[

wH ,−1
]

UΣ = 0

If N −R singular values are small
[

wH ,−1
]

U1Σ1 = 0

Let U1Σ1 =

[

C̃

g̃T

]

then wHC̃ = g̃T and C̃ only has R columns
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Linearly Constrained Minimum Variance
(LCMV)

◮ Beam patterns

◮ black - 9 Constraints

◮ blue - 6 Constraints

◮ Beam patterns similar
at constraint points

◮ Constraint matrix
singular value spectrum

◮ 3 small singular values

◮ 6 constraints ≈ 9
constraints
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Linearly Constrained Minimum Variance
(LCMV)

◮ Beam patterns

◮ black - 9 Constraints

◮ blue - 6 Constraints

◮ Constraints not strictly achieved due to non-zero singular values

◮ Threshold on singular values should be set by acceptable ‘null’
gain
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Blind Source Separation

◮ What if we don’t know AOA of wanted signal and array
calibration?

◮ Recall that
X = AS+N

◮ Covariance matrix

R = XXH = ADAH + σ2I

Assume that the source signals are statistically independent an
unit power i.e. D = I. If not redefine array manifold A so that
A← AD

1

2

◮ Define SVD of A
A = UΣVH
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Blind Source Separation

◮ Covariance matrix EVD

XXH = U
[

ΣVHVΣ+ σ2I
]

UH = U
[

Σ2 + σ2I
]

UH

◮ For simplicity assume Σ+ σI ≈ Σ i.e. high SNR

XXH = UΣ2UH

◮ So the covariance matrix gives us U and Σ. Now note that

X = AS+N = UΣVHS+N

◮ Thus
Y ≡ Σ−1UHX = VHS+ Ñ

where Ñ = Σ−1UHN is a noise term and assuming Σ−1 exists!
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Blind Source Separation

◮ We have
Y = VHS+ Ñ

◮ so S could be extracted from Y if we knew VH

◮ Then
Ŝ =

(

VΣ−1UH
)

X

◮ cf. bank of beamformers

Ŝ =





w1
H

:
wN

H



X

◮ Blind signal separation is limited by what a bank of beamformers
can do e.g. N sensors → N − 1 nulls
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Blind Source Separation

◮ How to estimate VH?
NB

YYH = VHSSHV + σ2Σ−2

but SSH = I so
YYH = I + σ2Σ−2

i.e. a diagonal matrix – the second order statistics of Y will not
help us estimate VH

◮ Can however use higher order statistics

◮ Can also use nonlinear cost function
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Blind Source Separation

◮ E.g. ‘FastICA’ - iteration to minimise ‘negentropy’

J (Y ) = H (YGauss)−H (Y)

◮ YGauss is Gaussian data with same covariance matrix as Y,
H (Y) is the entropy of Y

H (Y ) = −

∫

pY (y) log(pY (y))dy

◮ Iteration

Vk+1 = G
(

VH
k Y

)H
Y −G

′ (

VH
k Y

)H
Vk

G (v) = tanh(αv), v exp(−v2/2), or v3

where 1 ≤ α ≤ 2
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Blind Source Separation

◮ Higher order statistics

◮ Statistical independence P (x, y) = P (x)P (y)

◮ Scatter diagram

◮ Calculate rotation (i.e. unitary matrix V) to align scatter plot
with axes
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Blind Source Separation

◮ Estimating the ‘hidden’ rotation matrix

Y = VHS+ Ñ

◮ Loop through all pairs of signals

◮ Rotate to align with axes

◮ Repeat until rotation angle is below a threshold

QnQn−1...Q1Y = Ŝ

i.e. J
(

Ŝ
)

< ǫ but J (S) = 0 so Ŝ ≈ S

◮ Can show that Ŝ is S up to scaling and permutation of the signal
order
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Blind Source Separation

◮ 3 signals,3 sensors, SNR = 20dB, MVDR as benchmark
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Blind Source Separation

◮ Need more data to calculate higher-order statistics

◮ Previous plot: 1000 data samples, This plot: 100 data samples
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Summary

◮ Signal Separation: filter and parameters
Performance limited by ‘optimum’ filter

◮ Non-adaptive beamforming
Good optimisation algorithms

◮ Adaptive signal processing for beamforming
Constrain direction of main beam, reduce everything else
Weight jitter, calibration errors
Lots of linear algebra

◮ Blind source separation Higher-order statistics or nonlinear
optimisation
Lots of data needed

◮ Acknowledgment: John Mather (QinetiQ).
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