

Introduction to Beamforming and Source Separation

Stephan Weiss

Centre for Signal & Image Processing Department of Electronic & Electrical Engineering University of Strathclyde, Glasgow, Scotland, UK

UDRC-EURASIP Summer School, Edinburgh, 30 June 2022

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the MOD University Defence Research Collaboration in Signal Processing.

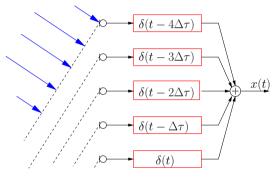
1 Beamforming

Contents:

1.	Introduction	. 1
2.	Spatial Sampling	2
3.	Steering Vector	. 3
4.	Data Independent Beamformer Design	. 4
5.	Statistically Optimum Beamformer Design	. 8
6.	Beamforming and MIMO	.9
7.	Broadband beamforming	10
8.	Summary	11

1.1 Intuitive Beamforming

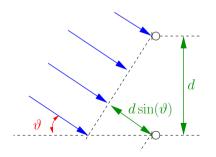
► A farfield wavefront arrives at a sensor array:



- due to the direction of arrival (DOA) and finite propagation speed, the wavefront will arrive at different sensors with a delay Δτ;
- with appropriate processing (beamforming), the sensor signals can be aligned to create constructive interference at the output x(t).

1.2 Spatial Sampling

- For unambiguous spatial sampling, we need to take at least two samples per wavelength of the highest frequency component in the array signals;
- analogy from temporal sampling (Nyquist): take at least two samples per period (relating to the highest frequency component);
- ▶ Wavelength λ and frequency f are related by the propagation speed c in the medium: $\lambda = \frac{c}{f}$;



maximum sensor distance

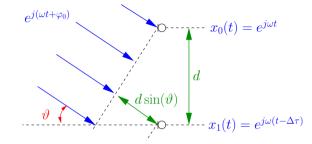
$$d = \frac{\lambda_{\max}}{2} = \frac{c}{2f_{\max}}$$

time delay between sensors

$$\Delta \tau = \frac{d\sin(\vartheta)}{c} = \frac{\sin(\vartheta)}{2f_{\max}}$$

Spatial and Temporal Sampling

• Consider the array signals $x_0(t)$ and $x_1(t)$ due to a source $e^{j(\omega t + \varphi_0)}$:



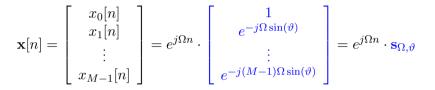
▶ sampling with $t = nT_s$ leads to

$$x_0[n] = e^{j\omega nT_s}$$
 and $x_1[n] = e^{j\omega(nT_s - \Delta \tau)}$

• with $f_{\max} = \frac{f_s}{2} = \frac{1}{2T_s}$ and normalised angular frequency $\Omega = \omega T_s$, $x_0[n] = e^{j\Omega n}$ and $x_1[n] = e^{j\Omega n} \cdot e^{-j\Omega \sin(\vartheta)}$

1.3 Steering Vector

A narrowband source with norm. angular frequency Ω illuminates an *M*-element linear array of equispaced sensors:



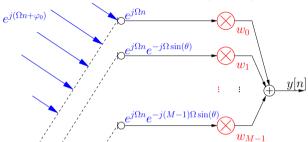
- the vector s_{Ω,ϑ} characterises the phase shifts of waveform with frequency Ω and DOA ϑ measured at the array sensors;
- since a narrowband signal $e^{j\Omega n}$ only causes phase shifts rather than delays, constructive interference can be accomplished by a set of complex multipliers rather than processors $\delta(t m\Delta \tau)$, $m = 0, 1, \dots (M 1)$;
- beamforming problem: how to select the set of complex coefficients?

1.4 Data Independent Beamformer

should

ELECTRONIC & ELECTRICAL ENGINEERING

Find a set of complex multipliers w_m , $m = 0, 1, \dots, (M-1)$:



▶ to steer the array characteristic towards this source, the output

$$y[n] = \begin{bmatrix} w_0 & w_1 & \dots & w_{M-1} \end{bmatrix} e^{j\Omega n} \begin{bmatrix} 1 \\ e^{-j\Omega\sin(\vartheta)} \\ \vdots \\ e^{-j(M-1)\Omega\sin(\vartheta)} \end{bmatrix} = e^{j\Omega n} \mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega,\vartheta}$$
fulfill $u[n] = e^{j\Omega n}$, leading to $\mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega,\vartheta} = 1$.

7/37

Coefficient Vector

▶ For later convenience and compatibility, the Hermitian transpose operator $\{\cdot\}^H$ is used to denote the coefficient vector

$$\mathbf{w}^{\mathrm{H}} = \begin{bmatrix} w_0 & w_1 & \dots & w_{M-1} \end{bmatrix}$$

$$\mathbf{w} = \left[egin{array}{c} w_0^* \ w_1^* \ dots \ w_{M-1}^* \end{array}
ight]$$

- \blacktriangleright to access the actual unconjugated coefficients, the beamforming vector \mathbf{w}^* has to be considered
- note that

$$\mathbf{w}^{\mathrm{H}}\mathbf{s}_{\Omega,\vartheta} = 1 \qquad \longrightarrow \qquad \mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}}\mathbf{w} = 1$$

Narrowband Beamforming — Single Source

The expression $\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}} \mathbf{w} = 1$ forms a system with one single equation and M unknown

 \blacktriangleright general solution to an underdetermined system $\mathbf{A}\mathbf{x}=\mathbf{b}$ is the right pseudo-inverse $\mathbf{A}^{\dagger},$

$$\mathbf{x} = \mathbf{A}^{\dagger}\mathbf{b} = \mathbf{A}^{\mathrm{H}}(\mathbf{A}\mathbf{A}^{\mathrm{H}})^{-1}\mathbf{b}$$

 $\begin{bmatrix} \mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}} \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix}$

here:

$$\mathbf{w} = (\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}})^{\dagger} \cdot 1 = \mathbf{s}_{\Omega,\vartheta} \cdot (\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}} \mathbf{s}_{\Omega,\vartheta})^{-1} \cdot 1 = \frac{\mathbf{s}_{\Omega,\vartheta}}{\|\mathbf{s}_{\Omega,\vartheta}\|_{2}^{2}} = \frac{1}{M} \mathbf{s}_{\Omega,\vartheta}$$

- the complex conjugation for w* inverts and therefore compensates the phase of the steering vector, which could have been foreseen
- ▶ the formulation via the pseudo-inverse will be powerful for more complicated cases.

Narrowband Beamformer Example

• Source parameters: $\Omega = \frac{\pi}{2}$ and $\vartheta = 30^{\circ}$; array parameter: M = 5;

• steering vector (with $\Omega \sin(\vartheta) = \frac{1}{4}\pi$):

$$\mathbf{s}_{\Omega,\vartheta}^{\mathrm{T}} = \begin{bmatrix} 1 & e^{-j\frac{1}{4}\pi} & \dots & e^{-j\frac{4}{4}\pi} \end{bmatrix}$$

• coefficient vector is given by $\mathbf{w} = (\mathbf{s}_{\Omega,\vartheta}^{\mathrm{H}})^{\dagger}$;

- > numerical solution in Matlab; Omega=1/4; theta = pi/6; M=5; s = exp(-sqrt(-1)*Omega*sin(theta)*(0:(M-1)')); w = pinv(s');
- angle([s conj(w)])/pi yields:

-0.00000 0.00000

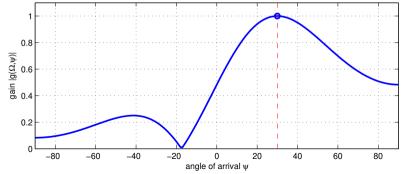
- -0.25000 0.25000
- -0.50000 0.50000
- -0.75000 0.75000
- -1.00000 1.00000

Beam Pattern I

- ▶ The beamformer has a unit gain towards a source with frequency Ω and DoA θ ; what is its gain response towards other angles of arrival sheeting
- \blacktriangleright the beam pattern measures the response of a beamformer by sweeping the angle ψ of a source with frequency Ω

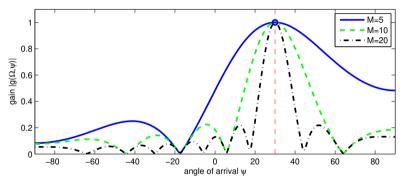
$$g(\Omega,\psi) = \mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega,\psi}$$

beam pattern for the previous example:



Beam Pattern II

• Below are a number of beam patterns for the case $\Omega = \frac{\pi}{2}$ and $\vartheta = 30^{\circ}$ for variable M;

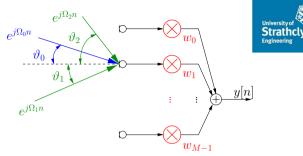


- increasing the sensor number M narrows the main beam, and increases the number of spatial zeros;
- analogous characteristic in the time domain: increased temporal support leads to higher frequency resolution.

DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

Interference

Many scenarios contain a source of interest and a number of interferers: signal of interest:
 {Ω₀, ϑ₀}
 two interferers:
 {Ω₁, ϑ₁}, {Ω₂, ϑ₂}



- we would like to control the beampattern to place spatial nulls in the directions of the interfering sources;
- Problem formulation and solution :

$$\begin{bmatrix} \mathbf{s}_{\Omega_{0},\vartheta_{0}}^{\mathrm{H}} \\ \mathbf{s}_{\Omega_{1},\vartheta_{1}}^{\mathrm{H}} \\ \mathbf{s}_{\Omega_{2},\vartheta_{2}}^{\mathrm{H}} \end{bmatrix} \mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \mathbf{w} = \begin{bmatrix} \mathbf{s}_{\Omega_{0},\vartheta_{0}}^{\mathrm{H}} \\ \mathbf{s}_{\Omega_{1},\vartheta_{1}}^{\mathrm{H}} \\ \mathbf{s}_{\Omega_{2},\vartheta_{2}}^{\mathrm{H}} \end{bmatrix}^{\dagger} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

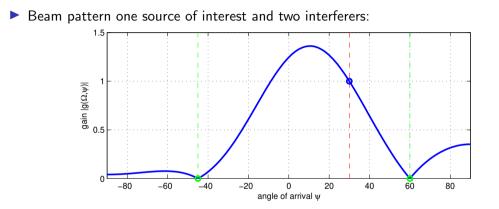
Narrowband BF Example — Multiple Sources

- ▶ The signal of interest illuminates an M = 5 element array at a frequency $\Omega_0 = \frac{\pi}{2}$ with a DoA $\vartheta_0 = 30^\circ$
- \blacktriangleright two interferers at $\Omega_1=\Omega_2=\Omega_0$ are present with DoA $\vartheta_1=-45^\circ$ and $\vartheta_2=60^\circ$
- results via right pseudo-inverse of steering vectors

$\angle \mathbf{s}_{\Omega_0, \vartheta_0}$	$\angle \mathbf{s}_{\Omega_1,\vartheta_1}$	$\angle \mathbf{s}_{\Omega_2, \vartheta_2}$	$\angle \mathbf{w}^*$	$ \mathbf{w} $
0.00	0.00	0.00	-42.81	0.3172
45.00	63.64	-77.94	-105.01	0.3004
90.00	127.28	-155.89	-90.00	0.2343
135.00	-169.08	126.17	-74.99	0.3004
180.00	-105.44	48.23	-137.19	0.3172

- the angle of w is no longer intuitive; also note that the coefficients in w no longer have the same modulus
- amongst a manifold of solutions, the right pseudo-inverse provides the minimum norm solution.

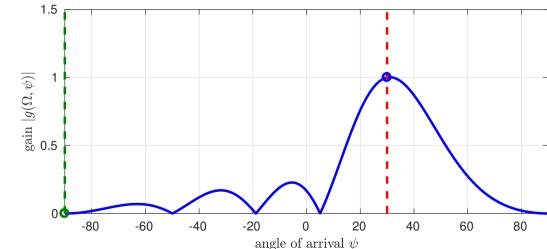
Multiple Source Example — Beampattern

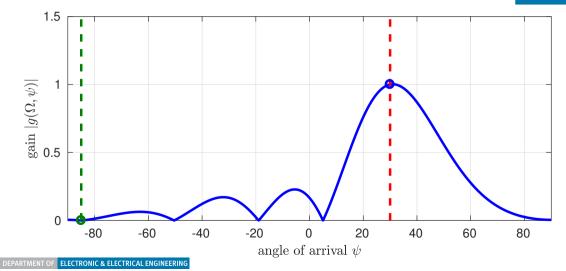


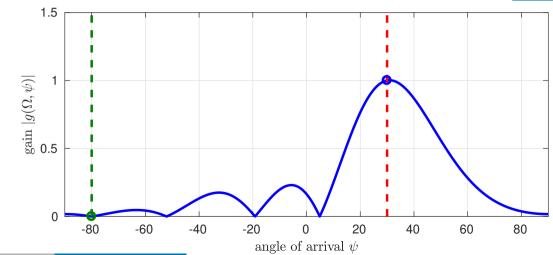
the pseudo-inverse is the minimum norm solution, keeping the general gain response as low as possible;

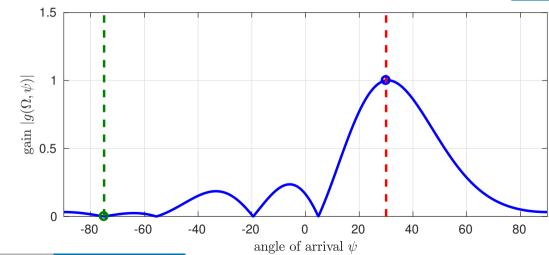
the minimum norm property protects against spatially white noise.

DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

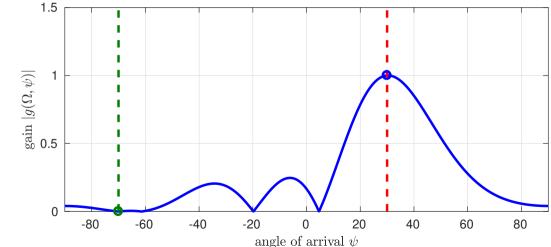


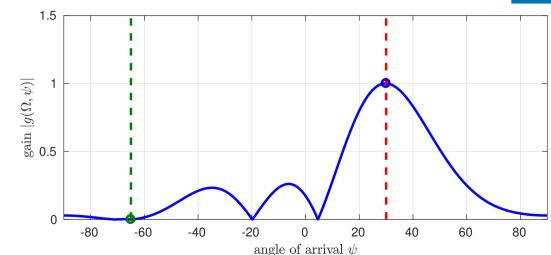


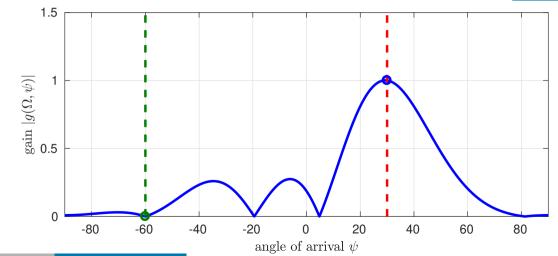


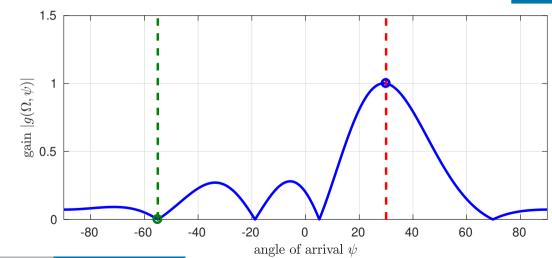


DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

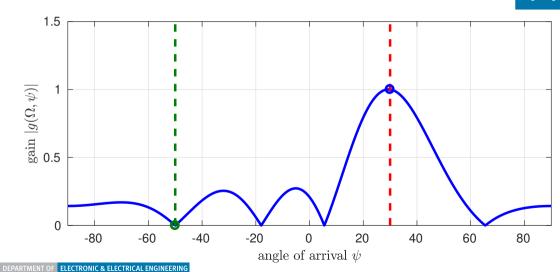


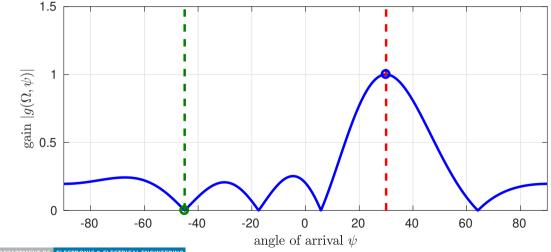


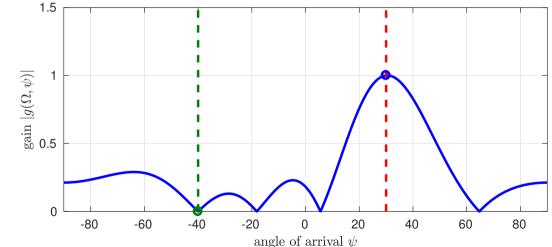




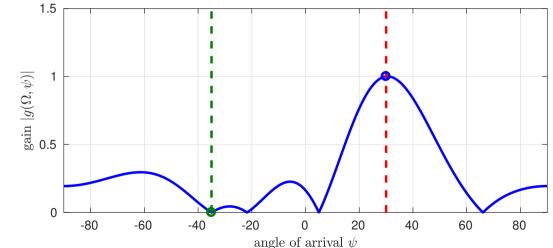
• M = 5 sensors, source of interest towards $\theta_0 = 30^\circ$, interferer variable:

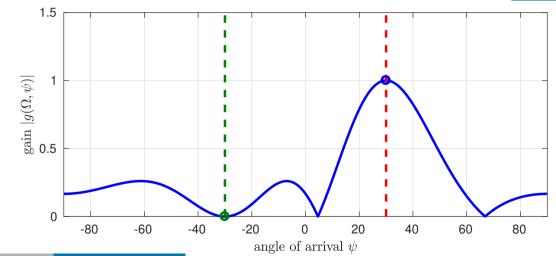


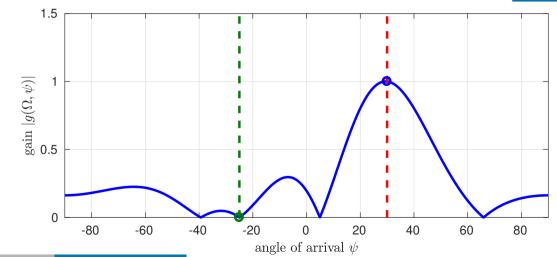


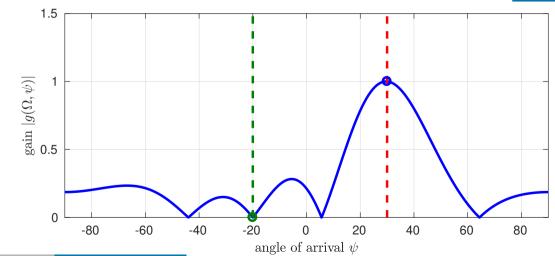


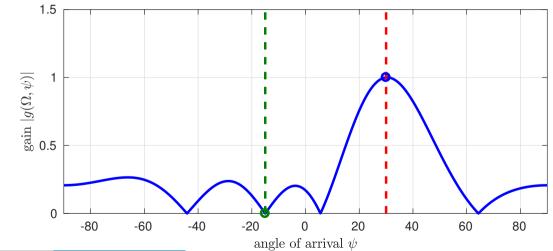
DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

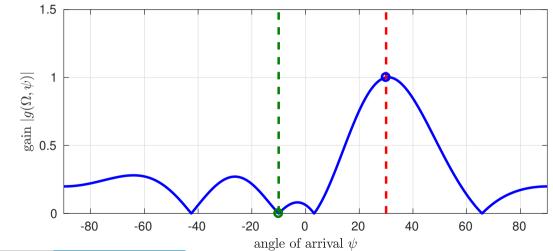


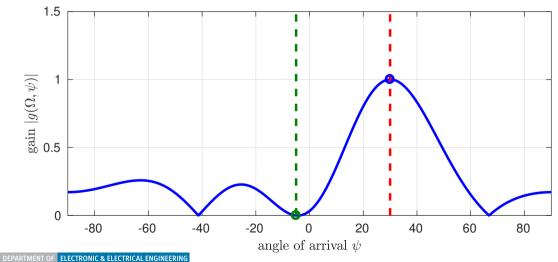


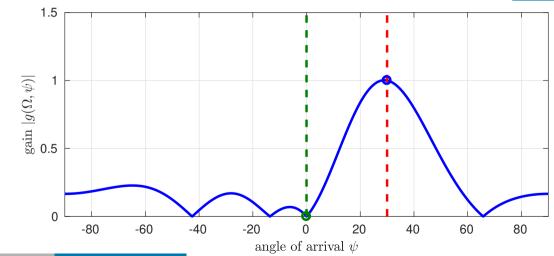


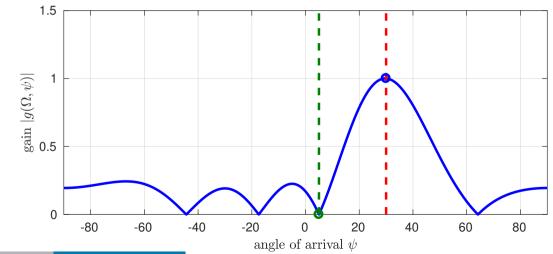


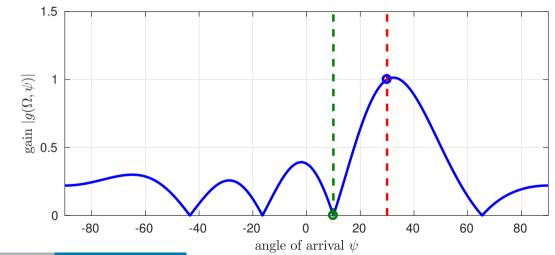


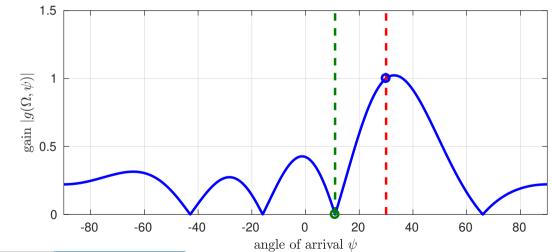


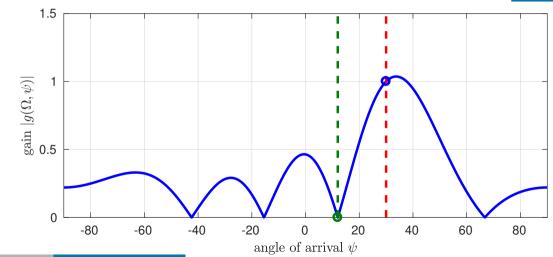


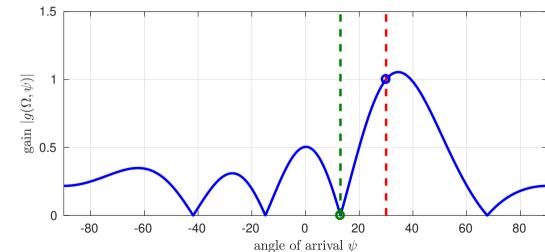


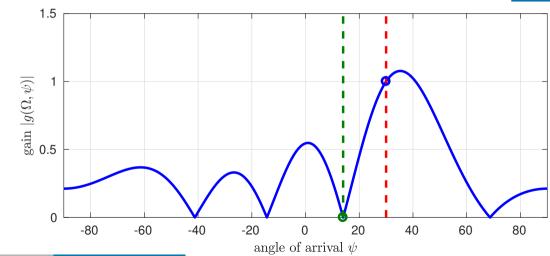


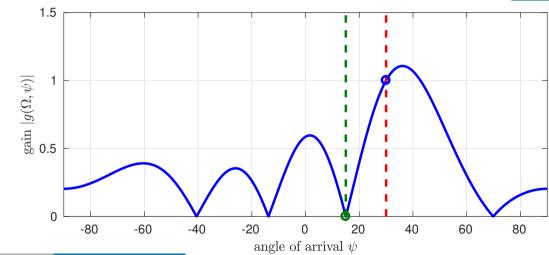


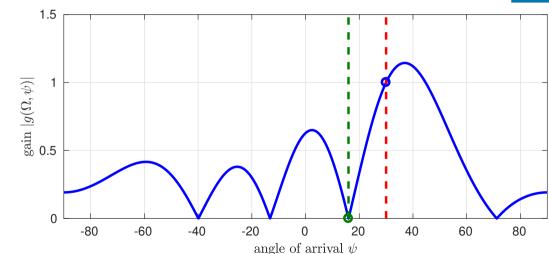


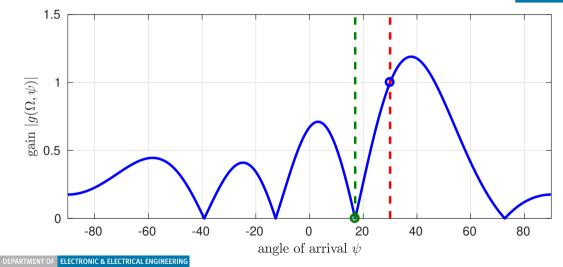


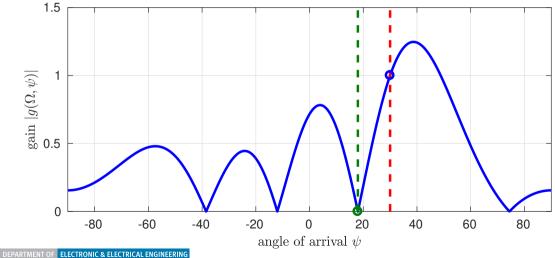


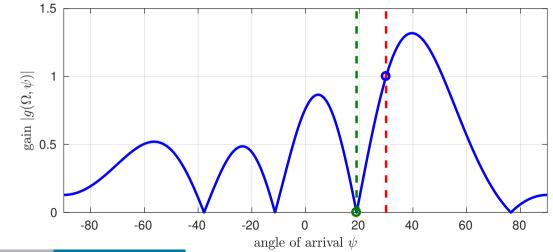


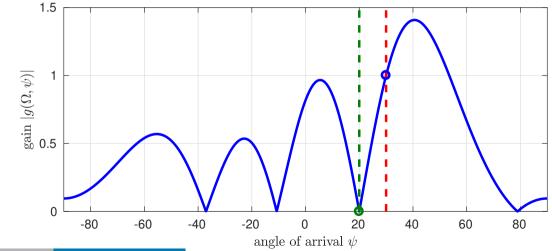


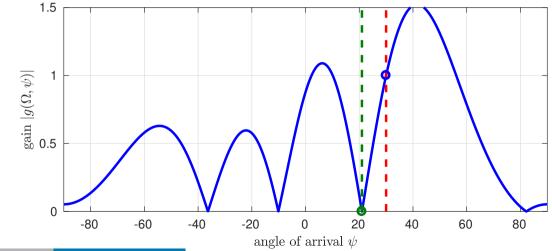


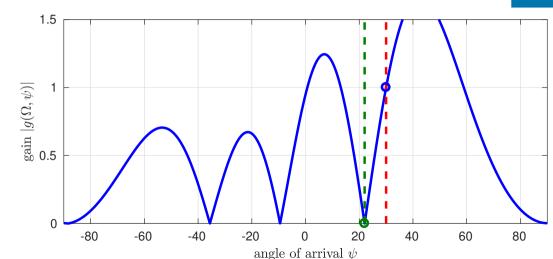


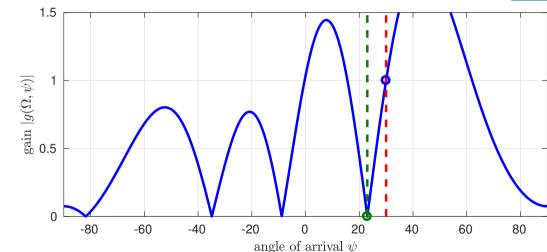


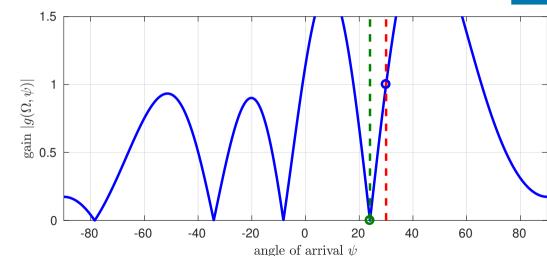






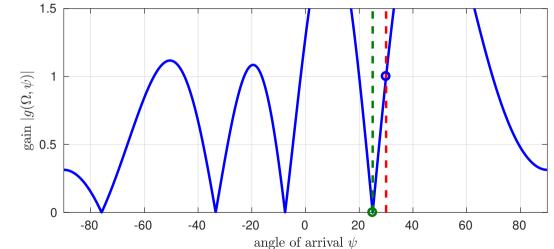


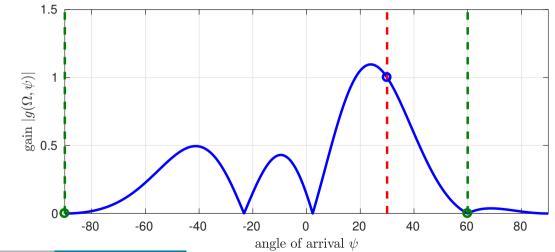


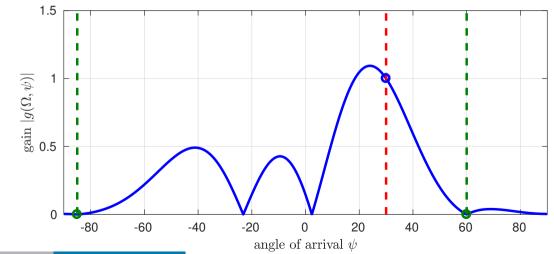


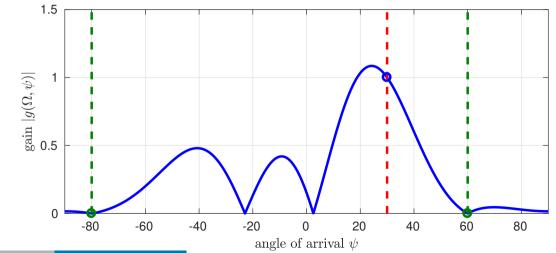
DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING

 \blacktriangleright M = 5 sensors, source of interest towards $\theta_0 = 30^\circ$, interferer variable:

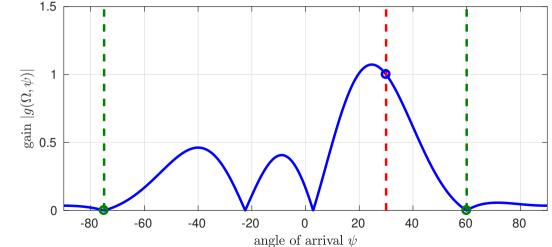


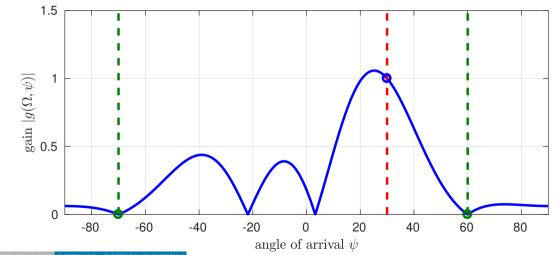




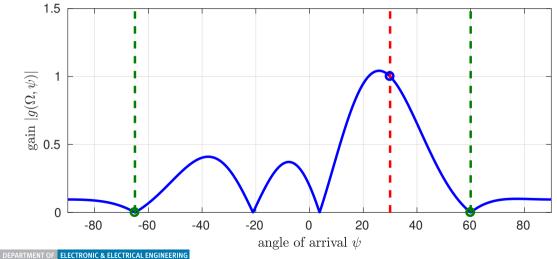


DEPARTMENT OF ELECTRONIC & ELECTRICAL ENGINEERING





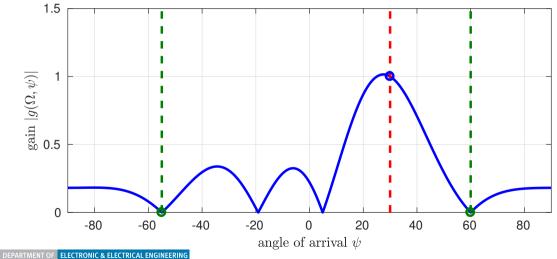
 \blacktriangleright M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:

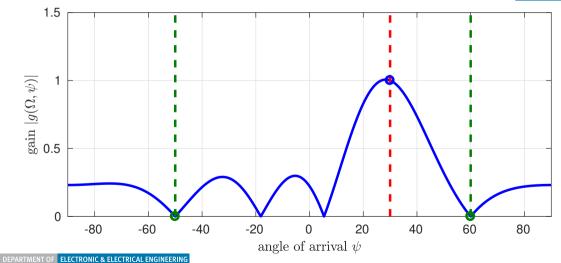


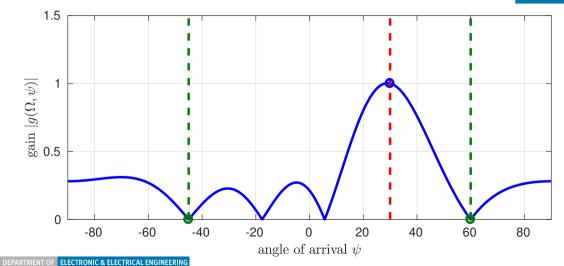
University Strathclyde

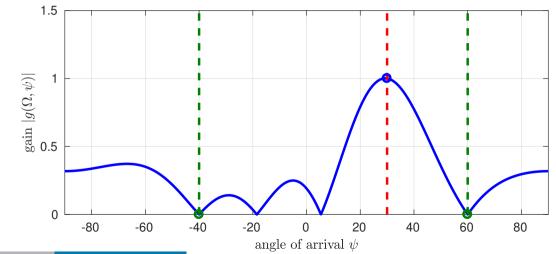


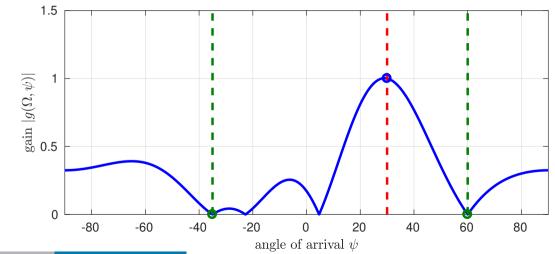
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:

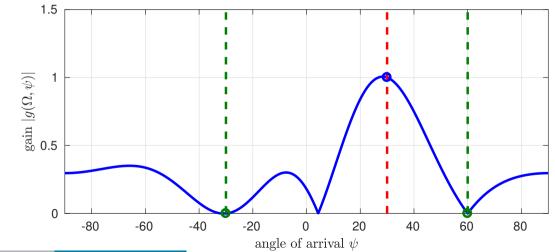


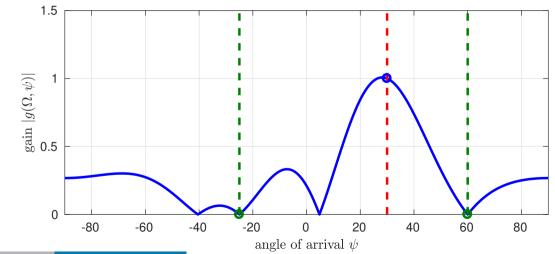


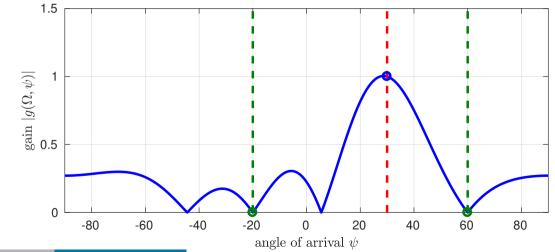




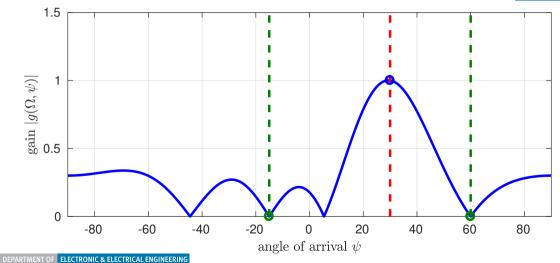


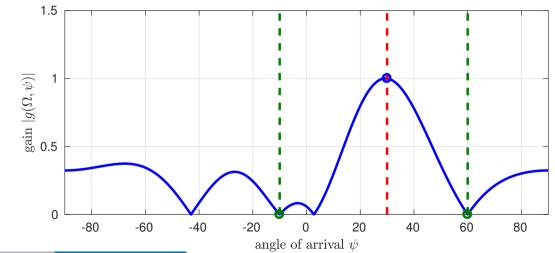


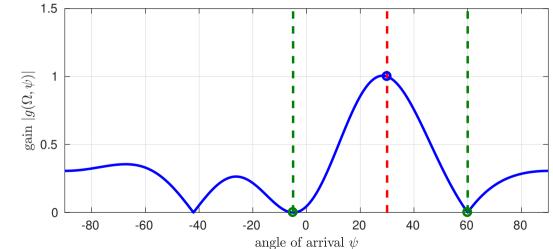


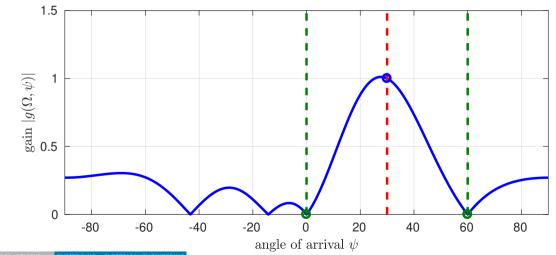


 \blacktriangleright M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:

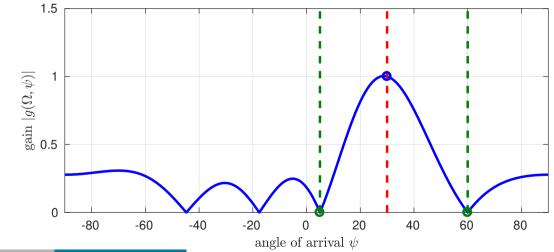


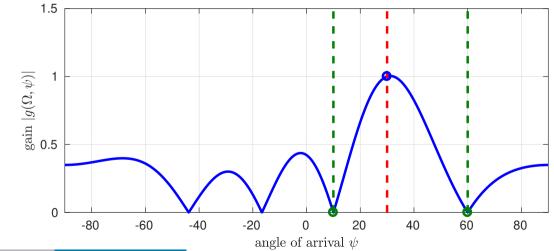


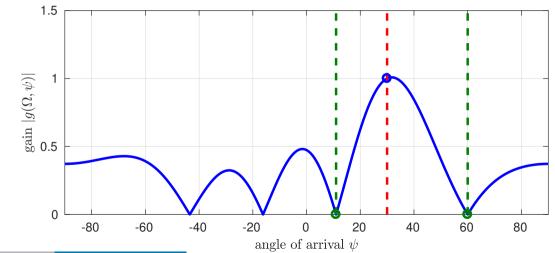


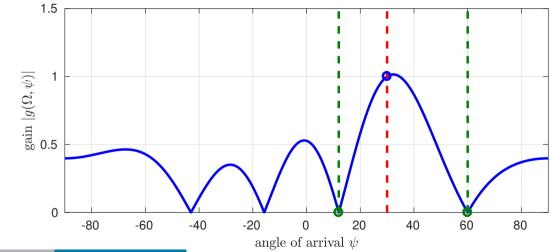


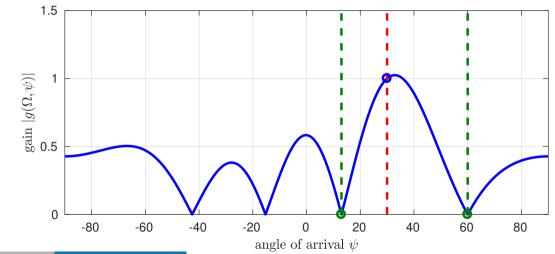
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:

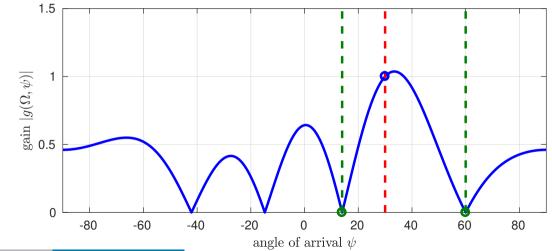


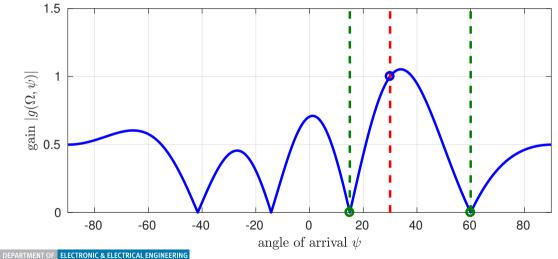


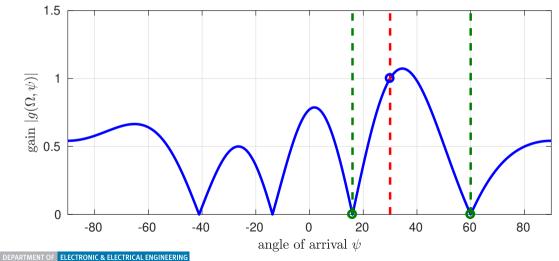


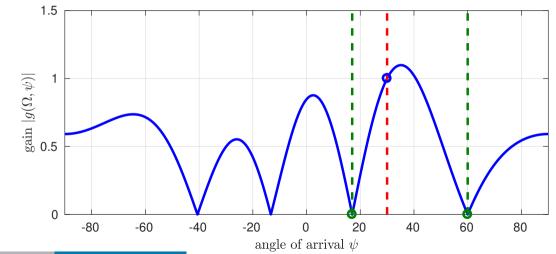


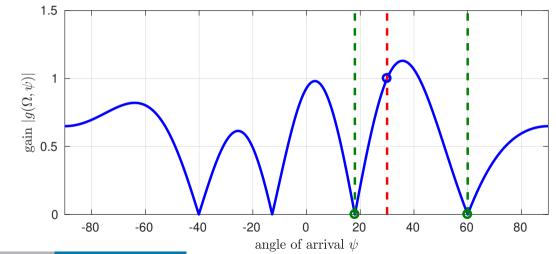




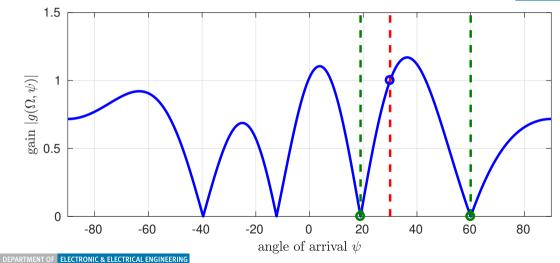




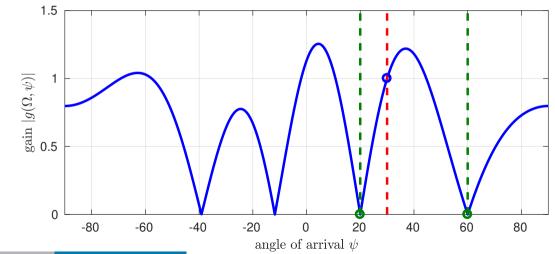


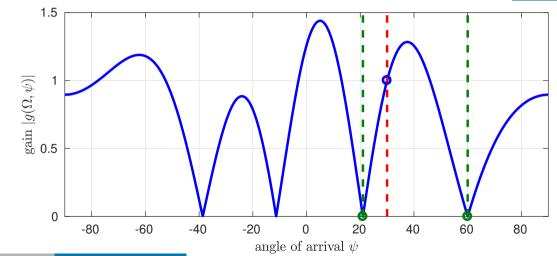


 \blacktriangleright M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:

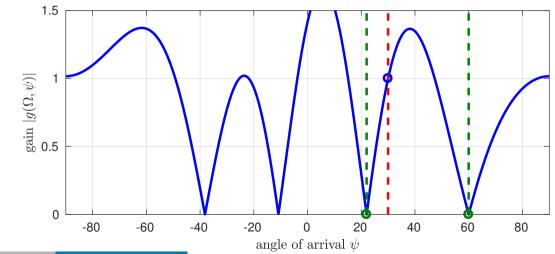


17/37

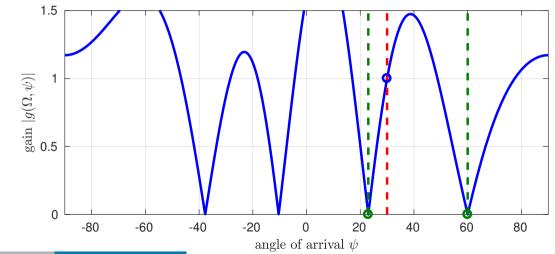




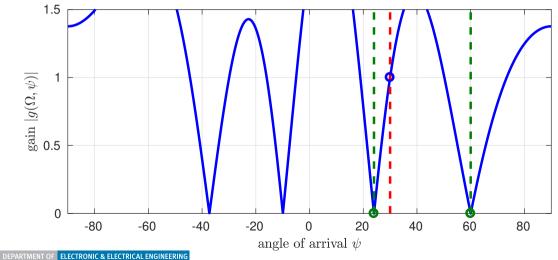
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:



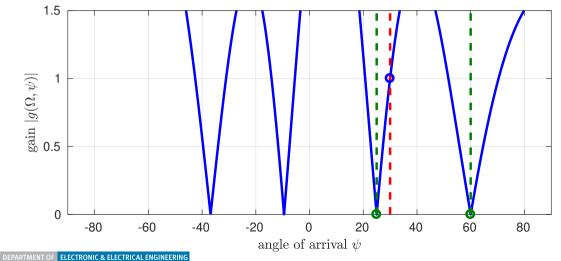
University of Strathclvde

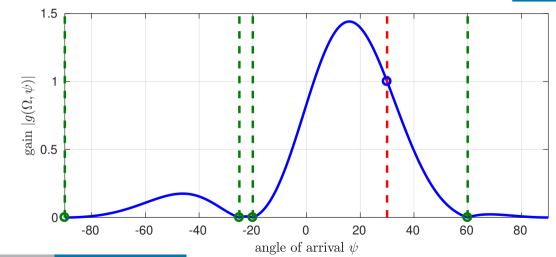


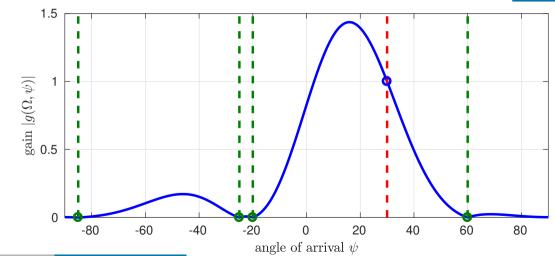
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one fixed and one variable interferer:

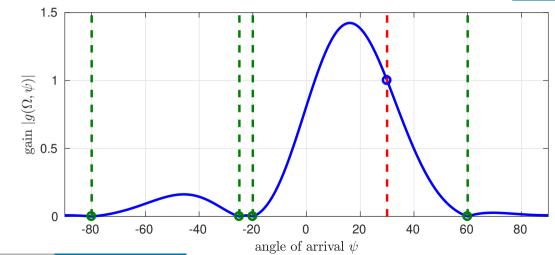


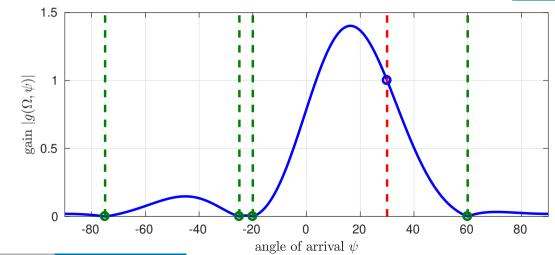
University of Strathclvde

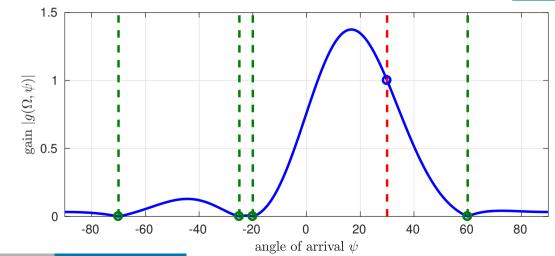


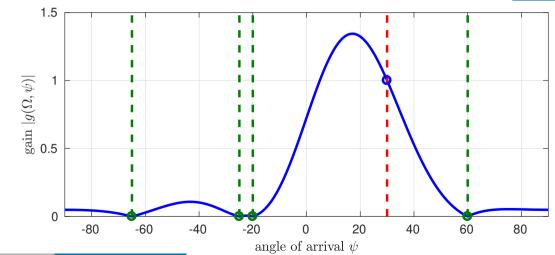




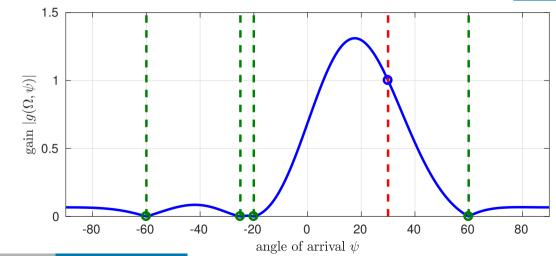




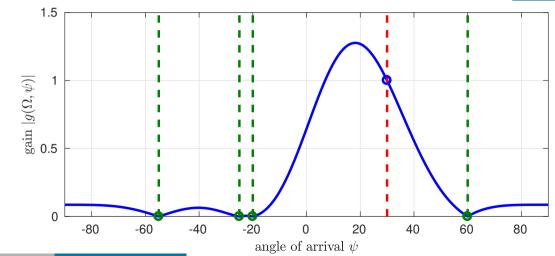




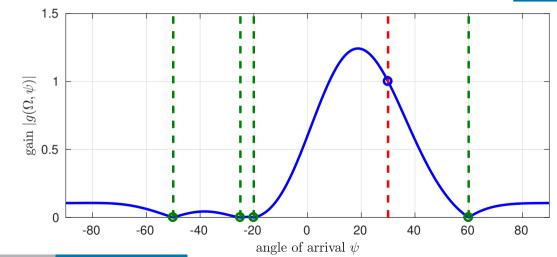
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

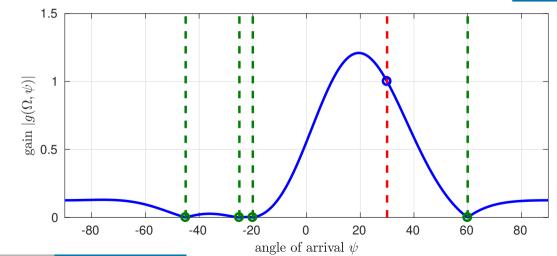


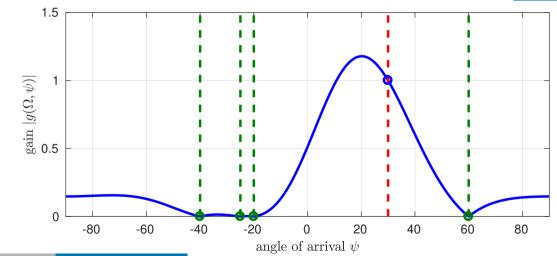
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

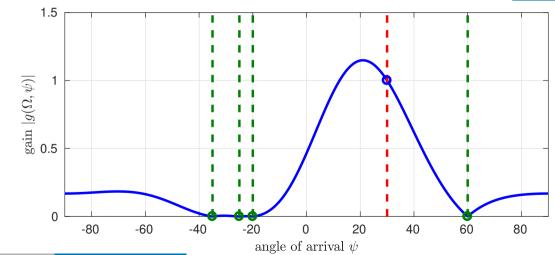


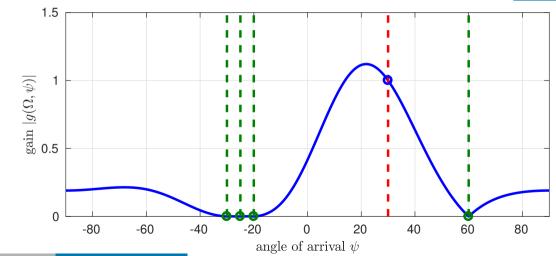
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

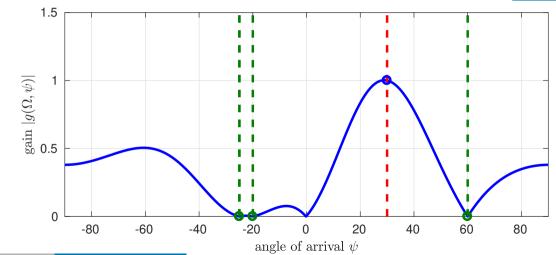


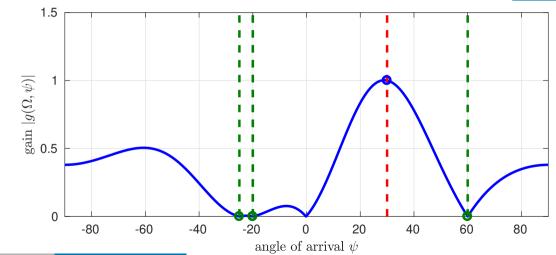




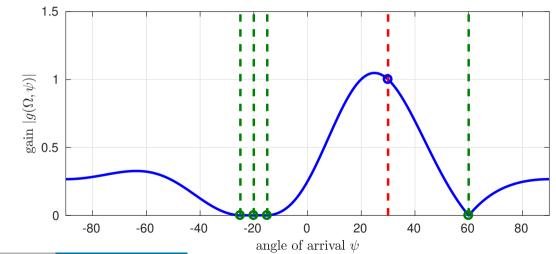




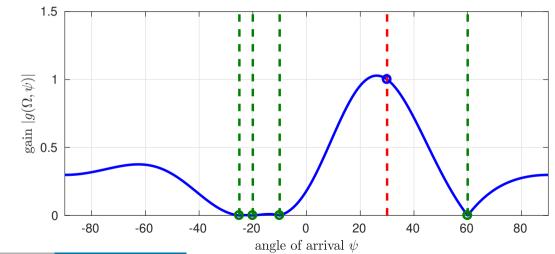


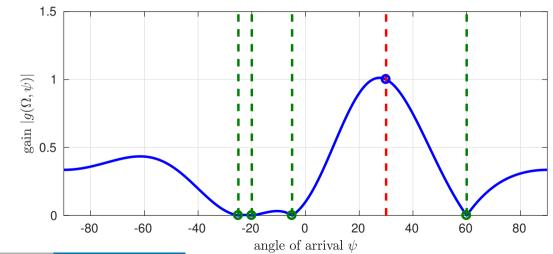


• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

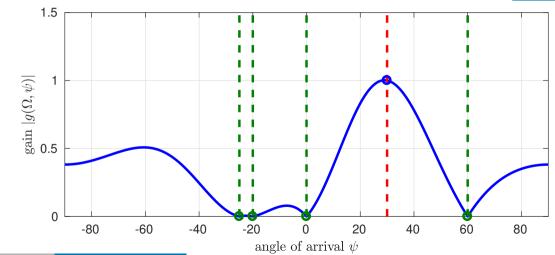


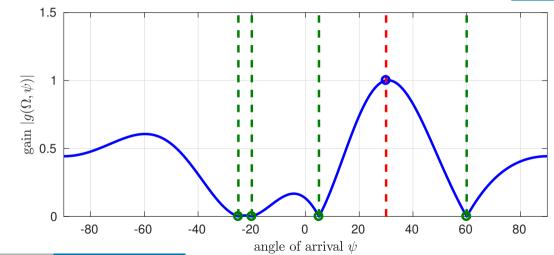
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

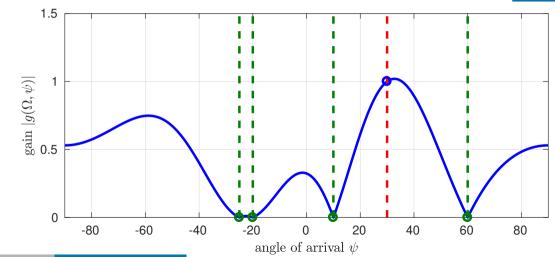


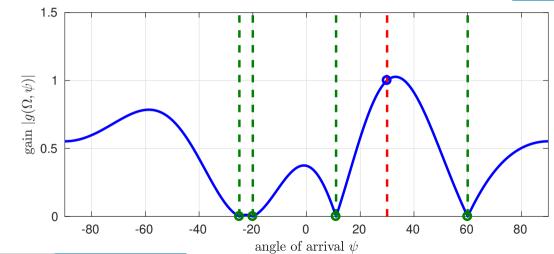


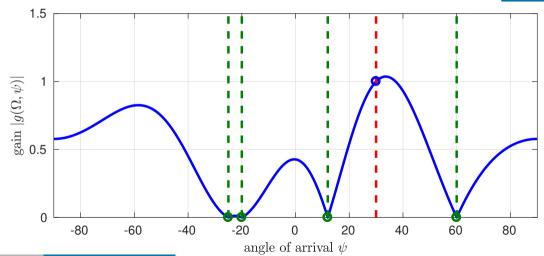
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

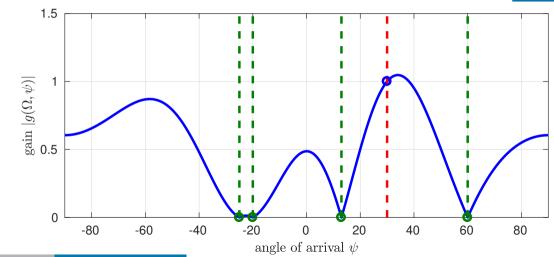




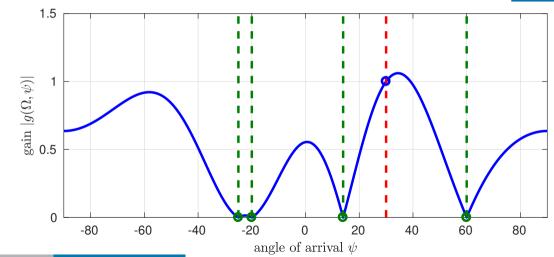




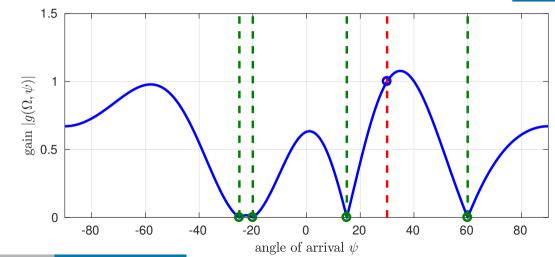


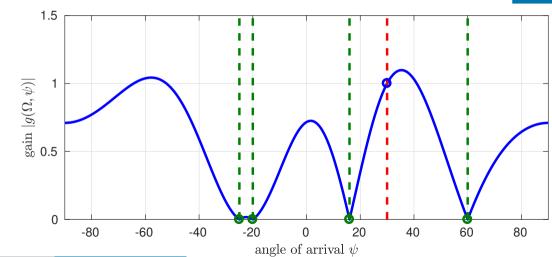


• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

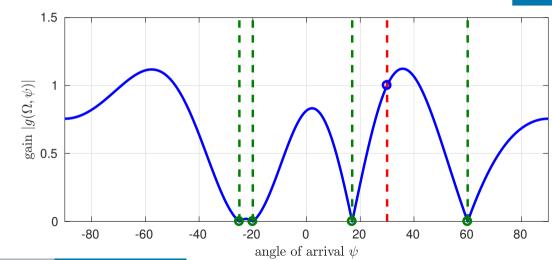


• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

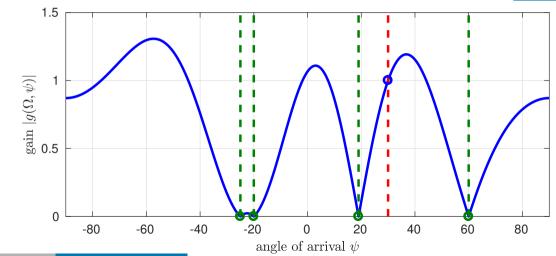


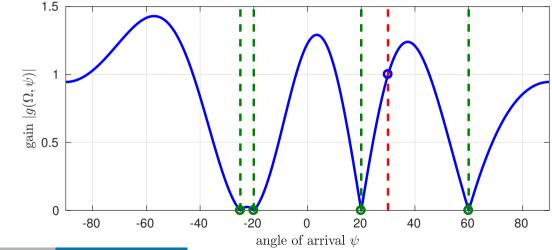


• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

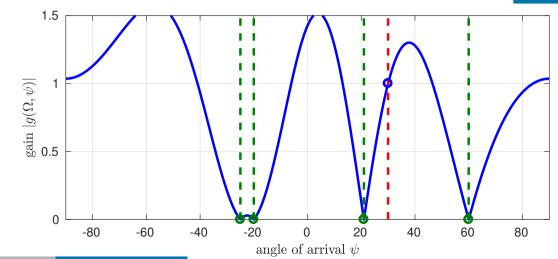




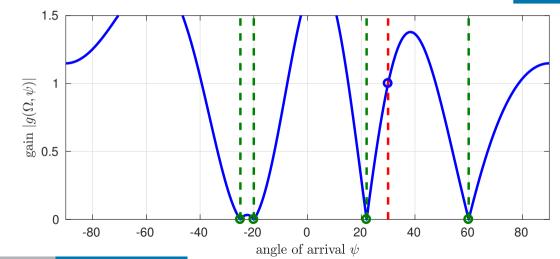




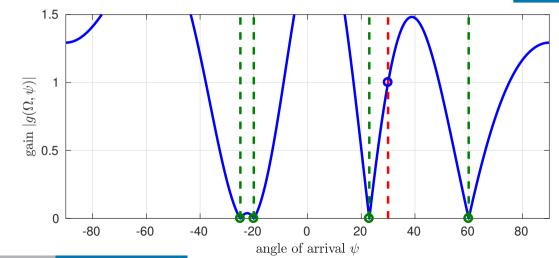
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:



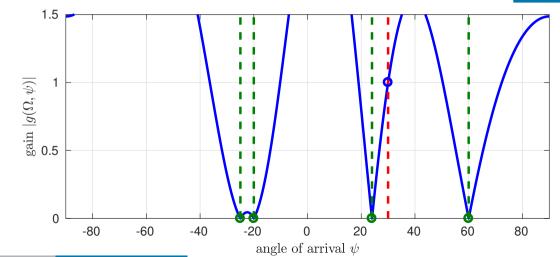
• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

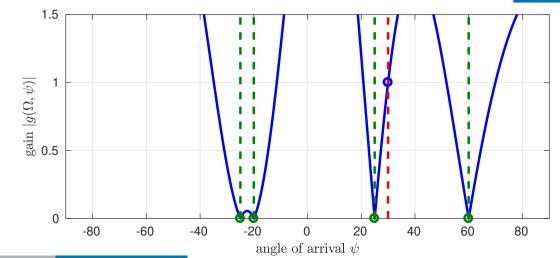


• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:



• M = 5 sensors, SOI $\theta_0 = 30^\circ$, one variable and three fixed interferers:

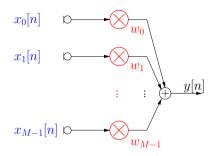




Data Independent Beamforming

- Previous beamformer designs were based on the knowledge of DoA of the signal of interest and of interfering sources;
- remaining degrees of freedom are invested to suppress spatially white noise;
- using the analogy between spatial and temporal processing, classical filter design techniques can be invoked to design arrays with a bandpass-type angular response;
- beamformers based on source parameters (frequency, DoA) rather the actual received waveforms are termed data independent beamformers;
- this is in contrast to statistically optimum beamformers, which take the received signal statistics into account.

1.8 Statistically Optimum Beamforming



- Statistically optimum beamformer minimise
 e.g. the signal power of the beamformer output, y[n];
- to avoid the trivial solution w = 0, the signal of interest needs to be protected by constraints;

this results in e.g. the following constrained optimisation problem

$$\min_{\mathbf{w}^*} \mathcal{E}\{|y[n]|^2\} \qquad \text{subject to} \qquad \mathbf{s}_{\Omega,\vartheta}^{\mathbf{H}} \mathbf{w} = 1$$

the solution to this specific statistically optimum beamformer is known as the minimum variance distortionless response (MVDR).

MVDR Beamformer

Solving the MVDR problem: minimise the power of y[n] = w^Hx subject to the contraint w^Hs_{Ω0,ϑ0} = 1;

Formulation using a Lagrange multiplier λ :

$$\frac{\partial}{\partial \mathbf{w}^*} \left(\mathbf{w}^{\mathrm{H}} \mathcal{E} \left\{ \mathbf{x} \mathbf{x}^{\mathrm{H}} \right\} \mathbf{w} - \lambda (\mathbf{w}^{\mathrm{H}} \mathbf{s}_{\Omega_0, \vartheta_0} - 1) \right) = \mathbf{R}_{xx} \mathbf{w} - \lambda \mathbf{s}_{\Omega_0, \vartheta_0} = \mathbf{0}$$

• the solution $\mathbf{w} = \lambda \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0}$ is inserted into the constraint equation to determine λ :

$$\lambda \mathbf{s}_{\Omega_0,\vartheta_0}^{\mathrm{H}} \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0} = 1$$

therefore

$$\mathbf{w}_{\mathrm{MVDR}} = \left(\mathbf{s}_{\Omega_0,\vartheta_0}^{\mathrm{H}} \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0}\right)^{-1} \mathbf{R}_{xx}^{-1} \mathbf{s}_{\Omega_0,\vartheta_0}$$

▶ this stastically optimum beamformer has various other names, e.g. Capon beamformer.

MVDR Beamformer — Simple Case

In the case of spatially white noise input, such that

$$\mathbf{R}_{xx} = \sigma_{xx}^2 \mathbf{I} \qquad \longrightarrow \qquad \mathbf{R}_{xx}^{-1} = \sigma_{xx}^{-2} \mathbf{I}$$

the MVDR solution reduces to

$$\mathbf{w}_{\text{MVDR}} = \frac{\mathbf{s}_{\Omega_0,\vartheta_0}}{\|\mathbf{s}_{\Omega_0,\vartheta_0}\|_2^2} = \frac{\mathbf{s}_{\Omega_0,\vartheta_0}}{M} \quad ;$$

 this is identical to the data independent beamformer in the absence of interference (i.e. no spatially structured noise);

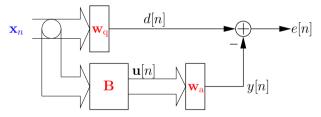
Generalised Sidelobe Canceller (GSC)

- The generalised sidelobe canceller is a specific implementation of the MVDR beamformer; it transforms the constrained MVDR problem into an unconstrained optimisation problem;
- \blacktriangleright a first guess at the solution is performed by the quiescent beamformer w_q , which is identical to the previously defined data independent beamformer, obtained by inverting the constraint equation

the quiescent beamformer eliminates interferers captured by C and f, but passes the signal of interest, any interferers unaccounted for in the constraints, and spatially distributed noise.

GSC — Idea

GSE idea: produce array signals that are free of any contribution from the signal of interest, and use the resulting signal vector u[n] to eliminate remaining interference from the quiescent output:



- the blocking matrix B eliminates the signal of interest and any interferers captured by the constraints;
- ▶ the vector \mathbf{w}_{a} will be based on the statistics of $\mathbf{u}[n]$ and d[n] to minimise the beamformer output variance $\mathcal{E}\{|e[n]|^2\}$.

GSC — Blocking Matrix

In order to project away from the constraints,

 $\mathbf{B} \cdot \mathbf{C} = \mathbf{B} \cdot \begin{bmatrix} \mathbf{s}_{\Omega_0, \vartheta_0} & \mathbf{s}_{\Omega_1, \vartheta_1} & \dots & \mathbf{s}_{\Omega_{r-1}, \vartheta_{r-1}} \end{bmatrix} = \mathbf{0}$

assuming that the r constraints are linearly independent, the singular value decomposition of the constraint matrix yields

$$\mathbf{B} \cdot \begin{bmatrix} \mathbf{U}_0 & \mathbf{U}_0^{\perp} \end{bmatrix} \begin{bmatrix} \sigma_0 & & & \\ & \ddots & & \mathbf{0} \\ & & \sigma_{r-1} & \\ \hline & \mathbf{0} & & \mathbf{0} \end{bmatrix} \cdot \mathbf{V}^{\mathrm{H}} = \mathbf{0}$$

 \blacktriangleright the matrix $\mathbf{U}_0^\perp \in \mathbb{C}^{M \times (M-r)}$ spans the nullspace of \mathbf{C}^{H} , and

$$\mathbf{B} = (\mathbf{U}_0^{\perp})^{\mathrm{H}} \in \mathbb{C}^{(M-r) \times M}$$

has the required property, as $(\mathbf{U}_0^{\perp})^{\mathrm{H}} \cdot \begin{bmatrix} \mathbf{U}_0 & \mathbf{U}_0^{\perp} \end{bmatrix} \boldsymbol{\Sigma} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \end{bmatrix} \cdot \boldsymbol{\Sigma} = \mathbf{0}.$

GSC — Unconstrained Optimisation

- \blacktriangleright The beamforming vector \mathbf{w}_a is adjusted to minimise the output power;
- the MMSE or Wiener solution is given by

$$\mathbf{w}_{\mathrm{a}} = \mathbf{R}_{uu}^{-1} \cdot \mathbf{p} = rac{\mathbf{B}\mathbf{R}_{xx}(\mathbf{C}^{\mathrm{H}})^{\dagger}\mathbf{f}}{\mathbf{B}\mathbf{R}_{xx}\mathbf{B}^{\mathrm{H}}}$$

with the covariance matrix

$$\mathbf{R}_{uu} = \mathcal{E}\left\{\mathbf{u}[n] \cdot \mathbf{u}^{\mathrm{H}}[n]\right\} = \mathbf{B} \mathcal{E}\left\{\mathbf{x}[n] \cdot \mathbf{x}^{\mathrm{H}}[n]\right\} \ \mathbf{B}^{\mathrm{H}} = \mathbf{B}\mathbf{R}_{xx}\mathbf{B}^{\mathrm{H}}$$

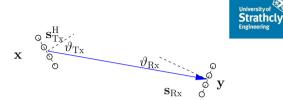
and the cross-correlation vector

$$\mathbf{p} = \mathcal{E}\{\mathbf{u}[n] \cdot d^*[n]\} = \mathbf{B}\mathbf{R}_{xx}\mathbf{w}_{q}$$

iterative optimisation schemes, such as the least mean squares (LMS) algorithm may be used to approximate the MMSE solution.

1.9 Beamforming and MIMO Processing

 Assume a transmission scenario with an *M*-element transmit (Tx) antenna array and an *N*-element receive (Rx) array;



- in the absence of scatterers and any attenuation, the farfield transmission from the transmit antenna is characterised by a steering vector s^H_{Tx};
- \blacktriangleright the incoming waveform at the Rx device is described by another steering vector \mathbf{s}_{Rx} ;
- ▶ the overall MIMO system between a Tx vector $\mathbf{x} \in \mathbb{C}^M$ and an Rx vector $\mathbf{y} \in \mathbb{C}^N$ is described as

$$\mathbf{y} = \mathbf{s}_{\mathrm{Rx}} \cdot \mathbf{s}_{\mathrm{Tx}}^{\mathrm{H}} \cdot \mathbf{x} = \mathbf{Hx}$$

 \blacktriangleright the MIMO system matrix $\mathbf{H}=\mathbf{s}_{Rx}\cdot\mathbf{s}_{Tx}^{H}$ is rank one only.

MIMO Requirements

- The farfield assumption is convenient for beamforming, but leads to a rank one MIMO system matrix which is incompatible with the desire to extract multiple independent subchannels or with to achieve diversity;
- rich scattering in connection with MIMO usually implies multiple reflections of signals;
- together with a sufficiently large antenna spacing means that the farfield assumption is invalid and the MIMO system matrix is not rank deficient;
- ► some suggestions of "sufficiently large spacing" imply an antenna element distance of d > 10λ;
- ▶ recall spatial sampling requires $d < \frac{1}{2}\lambda$!

Beamforming with Spatial Aliasing

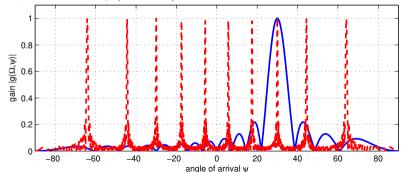
For a flexible spatial sampling with d = αλ, 0 < α ∈ ℝ, the steering vector for a waveform with normalised angular frequency Ω and DoA ϑ is

$$\mathbf{y} = e^{j\Omega n} \begin{bmatrix} 1\\ e^{j2\alpha\Omega\sin(\vartheta)}\\ \vdots\\ e^{j2\alpha(M-1)\Omega\sin(\vartheta)} \end{bmatrix} = \mathbf{s}_{2\alpha\Omega,\vartheta} \cdot e^{j\Omega}$$

- inspecting $\mathbf{s}_{2\alpha\Omega,\vartheta}$ the steering vector is aliased to a different frequency $2\alpha\Omega$;
- although the correct frequency can be retrieved unambigiously from temporal sampling of any array element, at Ω various different angles could provide the same steering vector s_{2αΩ,ϑ};
- the array performs spatial undersampling, resuling in spatial aliasing.

Spatial Undersampling Example

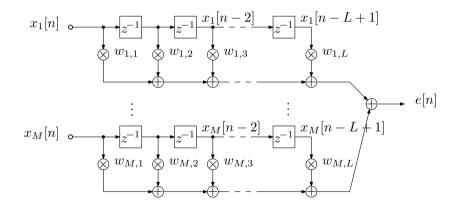
- Beamforming parameters: signal of interest with $\Omega = \frac{\pi}{2}$, direction of arrival $\vartheta = 30^{\circ}$, M = 32 array elements;
- data independent beamformer design with correct spatial sampling $(d = \lambda/2)$ and incorrect spatial sampling $(d = 10\lambda)$:



MIMO systems perform beamforming, but may dissipate energy into aliased directions.

1.10 Broadband MVDR Beamformer

• Each sensor is followed by a tap delay line of dimension L, giving a total of ML coefficients in a vector $\mathbf{v} \in \mathbb{C}^{ML}$



Broadband MVDR Beamformer Constraints

- ▶ A larger input vector $\mathbf{x}_n \in \mathbb{C}^{ML}$ is generated, also including lags;
- ► the general approach is similar to the narrowband system, minimising the power of e[n] = v^Hx_n;
- ▶ however, we require several constraint equations to protect the signal of interest, e.g.

$$\mathbf{C} = [\mathbf{s}(\vartheta_{s}, \Omega_{0}), \ \mathbf{s}(\vartheta_{s}, \Omega_{1}) \ \dots \ \mathbf{s}(\vartheta_{s}, \Omega_{L-1})]$$
(1)

these L constraints pin down the response to unit gain at L separate points in frequency:

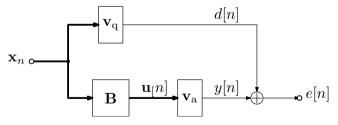
$$\mathbf{C}^{\mathrm{H}}\mathbf{v} = \mathbf{1} ; \qquad (2)$$

• generally $\mathbf{C} \in \mathbb{C}^{ML \times L}$, but simplifications can be applied if the look direction is towards broadside.

Broadband Generalised Sidelobe Canceller

• A quiescent beamformer $\mathbf{v}_{q} = \left(\mathbf{C}^{H}\right)^{\dagger} \mathbf{1} \in \mathbb{C}^{ML}$ picks the signal of interest;

- the quiescent beamformer is optimal for AWGN but generally passes structured interference;
- ► the output of the blocking matrix B contains interference only, which requires [BC] to be unitary; hence B ∈ C^{ML×(M-1)L};
- ▶ an adaptive noise canceller $\mathbf{v}_{a} \in \mathbb{C}^{(M-1)L}$ aims to remove the residual interference:

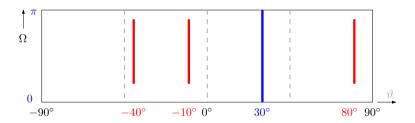


• note: all dimensions are determined by $\{M, L\}$.

Broadband Beamformer Example

• We assume a signal of interest from $\vartheta = 30^{\circ}$;

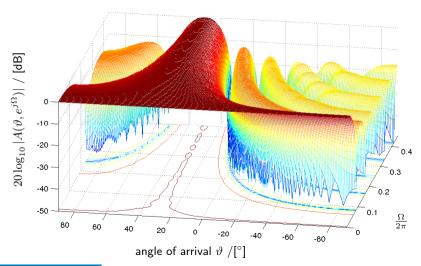
▶ three interferers with angles $\vartheta_i \in \{-40^\circ, -10^\circ, 80^\circ\}$ active over the frequency range $\Omega = 2\pi \cdot [0.1; 0.45]$ at signal to interference ratio of -40 dB;



- M = 8 element linear uniform array is also corrupted by spatially and temporally white additive Gaussian noise at 20 dB SNR;
- tap-delay-line length: L = 150;
- cost per iteration: approx. 2 MMACs (standard), can be reduced to 10 kMACs when efficiently implemented.

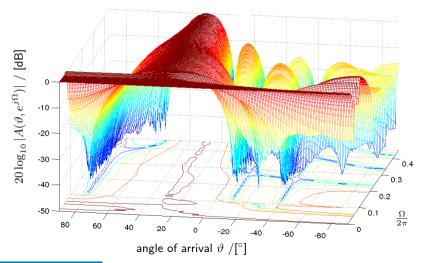
Broadband Quiescent Beamformer

Directivity pattern of quiescent standard broadband beamformer:



Optimised Broadband Beamformer

Directivity pattern of the broadband beamformer:



1.11 Summary

- Spatial sampling by an array of sensors (e.g. antenna elements) has been explored;
- ▶ the spatial data window of a narrowband source is characterised by the steering vector;
- appropriate data independent beamformers can be designed based on the steering vectors of desired sources and interferers;
- statistically optimum beamformers are based on the signal statistics;
- a specific statistically optimum beamformer, the generalised sidelobe canceller, has been reviewed — it uses signal statistics to improve the performance of a data independent beamformer derived from the constraint equations;
- some similarities and differences between beamforming and MIMO systems have been highlighted;
- broadband beamforming requires the inclusion of tap delay lines.

