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Source Separation and Beamforming Background: “s"{",;‘;'.;‘c[f%

Overview —
1. Overview
2. Signal Separation
3. Non-adaptive beamforming
4. Adaptive signal processing for beamforming
5. Application of linear algebra to array problems
6. More adaptive signal processing for beamforming
7. Blind source separation
8. Summary
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Signal Separation Strathel

)
de
Engineering y

» Signal separation requires two components:

» A parametrised
mechanism to separate
the signals (a “filter")

Input Signals Output Signal

Filter

> A means to select the
parameters

Calculate
Parameters » Performance limited by

‘optimum’ filter

» Conventionally we have two “filter” mechanisms:
» Temporal filter — separate by frequency
» Spatial filter (aka beamformer) — separate by AOA

» Could use a nonlinear filter (if you can think of one!)
» We will focus on narrowband beamforming in this talk
» Broadband beamforming requires a space-time filter
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Signal Separation Strathclyde

Engineering

» Performance limited by ‘optimum’ filter

» Narrowband beamforming — signals must have sufficiently
different angles of arrival (AOA)

P> Parameter selection — the interesting part

» Three cases:

» Non-adaptive — we know everything about the scenario
> “Adaptive” — we don't know everything
> “Blind" — we don't know anything (sort of)

» Important parameters:

> AOA of signals
» Array calibration
» Noise statistics
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Non-Adaptive Source Separation Strathelyde
Englneering
» Covered in talk by Prof. Weiss

‘ . » Beamformer weights via

A : oL
ol I/ '\ constrained optimisation

( I\ (offline)
%% 4 » Gain towards wanted

signals = 0

» Noise gain as small as
Bearing angle (degrees) pOSSi ble

> Lots of good optimisation algorithms
(DSP text books e.g. Rabiner & Gold - Temporal filters but
basically the same for beamforming)

» Only (N —1) nulls

» Spatially distributed noise can't be removed only suppressed

\M‘p{) r\\ﬂ{(\l \/ \'\“(\{f\vﬁ > S‘Gii‘:'t;;lrds other
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Adaptive Source Separation Strathclyde

>

>

)

Engineering

Usually called Adaptive Beamforming
Assume the known parameters are:

> AOA of the wanted signal(s)
> Array calibration

Beamformer weights via constrained optimisation but online this
time

Gain towards wanted signal = 1
Minimise energy of output

NB. Could use an AOA algorithm here and fixed beamforming but
computationally costly
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Adaptive Source Separation S e

Engineering

» Nomenclature:

P Steering vectors A relate array data to signals
(see Prof. Weiss' talk)
X =AS

» Beamformer weights: w

> Sensor data at time n: x(n)

» Output at time n: y(n) = wix(n)

» Energy in output: J = Z |y( )2 = [[wi XX w]||3
> Data matrix: X = [x(0),x(1),...,x(N —1)]

» Constraint: wia(f) =1

> Sample covariance matrix: R = XX
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Minimum Variance Distortionless Response
(MVDR)

» Minimum Variance := Minimise energy of output

» Distortionless Response := Gain towards wanted signal = 1

R 'a(9)

YT AH ()R 1a(0)

Adapted beam - 1 sidelobe jammer

» Gain towards wanted signal = 1

» Small gain (null) towards other
signal

 Gain (dB)

» Noise gain not controlled
In fact adapted to that particular
noise realization
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Adaptive

Minimum Variance Distortionless Response

(MVDR)

» Multiple noise realizations (blocks of data)

| Constraint

Bearing (°)
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Minimum Variance Distortionless Response g";“,;‘;ﬁ’cl;dl
Engineering
(MVDR)
> Stabilisation procedures: there are many different ways of
reducing the effects of adapting to the noise realizations.
> All effectively try to ‘remove’ influence of noise
» Diagonal loading
w = Arg Min (HWH (R+ pl) ng) st.wla(9) =1
» Penalty Function Method
w = Arg Min (HWHRWH% + K||lw — WOH%)
“Soft" constraint makes the adapted beam pattern lie close to the
desired pattern.
>

“Noise” subspace manipulation: Average noise subspace
eigenvalues — need some Linear Algebra
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Linear Algebra Strathclyde

Engineering

» MVDR weight vector depends on covariance matrix R
» This matrix has structure that can be exploited

» We can use linear algebra to study / manipulate the covariance
matrix

> Topics:

» Eigenvalue decomposition of Hermitian matrix
Eigenvectors are not steering vectors
Eigenvalue spectrum
Signal and Noise Subspaces
Rotation Matrices
Singular Value Decomposition

vvvyyvyy
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Eigenvalue Decomposition ??&Fﬁc{%

Engineering

» The covariance matrix is Hermitian (symmetric)

)T =xx" =R

RY = (Xx*
» Eigenvalue decomposition of Hermitian matrix
R =UAU"
» Eigenvectors: U is a unitary matrix (a rotation in n-D space)
vfu=1

> Eigenvalues: A is diagonal, all elements are real and > 0

» Rank of R is number of non-zero eigenvalues
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Eigenvalue Decomposition Strathclyde
. . ineer:
P> Note the eigenvectors are not steering vectors s
» Data and Covariance Matrices

X =AS R = XX" = ASSHAH
» For independent signals D = SS* is diagonal with > 0 entries.
» Consider the eigenvalue Decomposition
R = UAU" = ADA"
» Tempting to assume that
UA'/? = AD'/?

which would mean that the eigenvectors are proportional to the
steering vectors
» But there is an implied ‘hidden’ unitary matrix (SVD)
X = UA?VT = R = UAY2AEVAY2UH
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Eigenvalue Decomposition ”s"{".-Z‘i'ﬁ‘c[[;?e

Engineering

» Eigenvectors are not steering vectors

Beam Pattems
Beam Patiems N

Signal 1
signal 1

o
. o Y signal 2
Signal 2

5 . 2 signals with power ratio
equal power signals
10:1
> Scatter plot
> Eigenvectors of covariance matrix point in direction of maximum
energy whilst being orthogonal to each other
» Eigenvectors approximately steering vectors when powers are
dissimilar
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Eigenvalue Decomposition Strathclyde
» The EVD can, however, separate 'signals’ from ‘noise’ e
if SNR is high enough. Consider two signals

X = a(@l)S? + 3(92)55 +N
» Covariance matrix

R = XX7 = ADAY + 521

A=[a() a) ] D_[Pg)l 122]

» ADAZX is rank two. EVD:

ADAH:U[AA O}UH

0 0
» Covariance matrix EVD (add noise)
o AA 0 H 27 AA—|—O'2I 0 H
R—U[ o O}U —i—aI—U[ . | U
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Universityof T

Eigenvalue Spectrum Strathclyde

Engineering

» Eigenvalue spectrum
A + o2
o’I

Eigen-spectrum

'Signal' Eigenvalues

» Two large eigenvalues

» Five noise realizations

'Noise' Eigenvalues . .
9 > Noise eigenvalues not the same

h and not equal what theory
L suggests — finite data

Eigenvalue amplitude (logarithmic)
5

Index
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Signal and Noise Subspaces Strathclyde

Engineering

» Consider the covariance matrix EVD
(replace ‘theoretical’ 02 by AN)

AAa+AN1 O

H
0 ANz v

R=U

> Partition eigenvectors (assuming Aa + An1 > AN2)
U=[U; U]
» Orthogonal subspaces: ‘Signal and Noise’ and ‘Noise’
U, U, =1 U0, =0

» Then the covariance matrix EVD becomes

R =U; (Aa + An1) Ur" + Uz (An2) Un”

Signal plus Noise Noise only
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Signal and Noise Subspaces e

Engineering

» Noise reduction: The covariance matrix EVD is

R=0U;, (AA+AN1) U1 +U2 (ANZ) U2

Signal plus Noise N0|se only

» But the ‘Signal plus Noise' and ‘Noise only’ subspaces are

orthogonal
U Uy =1 U, U, =
» So that Projection Operator
- ——
R= U,U/"RUU;" =U;(Aa+AnN1) Ur”
v [ Ana 0 ] U

» Thus R is a covariance matrix for the signals but with less noise

18/42



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation S

. - )
Rotation Matrices g";“r;‘;ﬁ'ﬁ%
» Eigenvectors: U is a unitary matrix U7U =1 pinewing

» Often calculated by multiple applications of Givens rotations:

» U can be build up by embedding Givens rotation in N-D space

1 0 0 0 0
0 cos(f) 0 sin(f) 0
U=1Je]..| 0 0 I 0 0 |..[e]
0 —sin(f)* 0 cos(d) 0O
0 0 0 1
» Hence U be considered as a rotation in N-dimensional space

— useful for blind signal separation theory
19/42
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. . . A
> Not all matrices of interest are Hermitian
» Singular value decomposition of a matrix X:
X =UxVH#
fXisNxM: UisNxXxN,XisNxM,and Vis M x M
» Singular vectors: U and V are unitary matrices
» Singular values: X is diagonal, all elements are > 0
» Rank of X is number of non-zero singular values
» Relation to EVD
R = XX = Uxv#vzUu? = us?u¥
Eigenvalues are the square of the singular values
» Recall we used the SVD to show that eigenvalues are not steering

vectors
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Stabilized MVDR Beamformer s{“m‘{ﬁ’c{%

Engineering

» Back to beamforming ....
» Recall basic MVDR beamformer suffers from weight jitter

» Covariance matrix EVD

H
RZ[Ul Uz] Ar+ ANy 0 :||:U1 :|

0 Ano UH

» Idea 1: Subspace Projection: remove noise
Orthogonal subspaces: U U =1, U1 U, =0

Projection Operator
X=U,U” X

GG H AA+An1 O U, A
0 Axz 0

> Issues with rank deficient R since it is not invertible
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Stabilized MVDR Beamformer

P Idea 2: Average noise eigenvalues

P> Project data onto noise subspace to estimate

N = U, U X
» Calculate a o2 over several snapshots
S AA+An1 O
R=U 0 o2l

» Need to decide how to partition U into U;
and Us.

> Look at eigenvalues

» Can use simple thresholding or more com-
plicated information theory.

noise power o

Eigenvalue amplitude (logarithmic)
3

2

Eigen-spectrum

'Signal' Eigenvalues

‘Noise' Eigenvalues |

Index
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Adaptive2

Minimum Variance Distortionless Response

(MVDR)

» Recall multiple noise realizations (blocks of data) caused jitter

| Constraint

Bearing (°)




Adaptive2

Stabilized MVDR Beamformer

> Average noise eigenvalues

| Constraint

Bearing (°)
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Array Calibration Errors Strathclyde

Engineering

» MVDR minimises power in output signal.

» w = 0 would do this but also removes wanted signal

P> ‘Look direction’ constraint protects the wanted signal
wila(f) =1

» What if a(f) is incorrect?

> Wanted signal looks like an unwanted one!

» Add extra constraints

» More that one ‘Look direction’ constraint
» Flatten main lobe — gradient constraint

» Incorporate calibration into problem and solve ...
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Linearly Constrained Minimum Variance
(LCMV)

» MVDR has only one constraint; can we do better?
» LCMV algorithm
» Minimum Variance = Minimise energy of output
» Linearly Constrained = More than one constraint
(e.g. could have fixed null)
whC = gT
» Solution: w=R"I1C (CHR_IC)_1 g

Adapted beam - 9 sidelobe jammers

» Gain in wanted direction = 1

 Gain (dB)

» Gain towards other directions = 0
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Linearly Constrained Minimum Variance Strathelyde
Engineering
(LCMV)

» LCMV is a constrained minimisation problem
w = Arg Min (||WHRW||§) stwiC =g’
» If there are M constraints, M components of w are effectively
fixed

» Thus only N — M ‘degrees of freedom’ in the choice of w
i.e. can only null out N — M signals

» Thus have to have N — M >0

» Sometimes the constraints can be linearly dependent or nearly so
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Linearly Constrained Minimum Variance “s";‘;;:i';‘cﬁ
Engineering

(LCMV)

» Consider

WHC _ gT
> or
H T H C
(w'C—g'| =[w", —1] [gT]:O
» Take SVD

[ %]::UEVH
g
» Note V is full rank so we have

[wH, —1] Uz =0
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Linearly Constrained Minimum Variance g"{';;‘;'.;‘c[f%
(LCMV) _

» Say (M — R) singular values (X2) are small

p)
UsS=[U; Ug][ o 2?2]
0

~ [ Uy U2]|: 0 0

]:[Ulzl 0]

» Then an approximation to our problem is

(Wi, —1] U131 =0

P Alternatively, writing U133, = [ gf; } the approximate problems
is
WHC — gT
> Note C only has R < M columns
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2

Linearly Constrained Minimum Variance Strathelyde

(LCMV)

Beam Patterns
1
08
06+

02+

[— o constraints |
6 constraints

0
AOA (degrees)

Singular Value Spectrum

100

vVvyVvYyVvYyy

Engineering

Beam patterns

16 sensors

blue - 9 Constraints
red - 6 Constraints

Beam patterns similar
at constraint points

Constraint matrix
singular value spectrum

3 small singular values
6 constraints nearly as
good as 9 constraints
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Linearly Constrained Minimum Variance “s";‘;;‘;;';‘c[?ﬁ
(LCMV) _

Beam Patterns

—— 9 constraints.
—— 6 constraints

> Beam patterns
» blue - 9 Constraints
» red - 6 Constraints

-20 -10 0 10 20 30 40
AOA (degrees)

» Constraints not strictly achieved due to non-zero singular values

» Threshold on singular values should be set by acceptable ‘null’
gain
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Blind Source Separation Strathel

)
de
Engineering y

» For adaptive beamforming, we assumed we know:
> AOA of the wanted signal(s)
> Array calibration
> What if we don’t know this information?
= Blind Source Separation or Independent Component Analysis
> Assume
» The source signals are statistically independent
» No more than one Gaussian signal
(higher order moments of Gaussian signal are zero)
» Not interested in absolute amplitude of the signals
P> Recall that
X=AS+N

» Define SVD of A
A =UxVH

» If we can calculate U, ¥ and V we can calculate A
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Blind Source Separation ??5‘?&’;{%

Engineering

» The covariance matrix is
R = XX" = ADAY + %]

> Assume that the source signals are statistically independent and
have unit power i.e. D = 1.

» (If not, redefine array manifold A so that A « AD%)

» So the covariance matrix is
R =XX" = AA" 1 5?1
» Using the SVD of A we find
XX = U ZVVE|UY + 0% =U 22+ 0% U
which is the covariance matrix EVD
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Blind Source Separation Strathclyde

Engineering

» For simplicity assume £2 4+ ¢2] ~ 32 i.e. high SNR then
XX = ux?u#

» So the covariance matrix gives us U and 3, and all we have to do
is to find a way to calculate V.

» Now note that
X =AS+N =USVH S+ N
» Thus, assuming > 1 exists,
Y =2"'"UX =VHS+ N

where N = S 1UH N is a noise term
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Blind Source Separation S
Engineering
» We have _
Y = VIS + N
» so S could be extracted from Y if we knew VH

» Then
S= (v lufh)x
» cf. bank of beamformers

WlH

D
Il

: X
WNH

» Blind signal separation is limited by what a bank of beamformers
can do e.g. N sensors — N — 1 nulls
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Blind Source Separation Strathclyde

Engineering

» How to estimate V7?
NB
YYH? = vHESSHY 4 52%72
but SS¥ =T so
YY? =T +02°%272
i.e. not dependent on VH so the second order statistics of Y will
not help us estimate V7
» Can however use higher order statistics
» Can also use nonlinear cost function

P At this point we have stop manipulating matrices and deal with
actual time series data
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Blind Source Separation “s"{':.;‘;'.;‘c[i%

Engineering

> E.g. ‘FastlCA’ - iteration to minimise ‘negentropy’
J(Y)=H (Ygauss) — H(Y)

» Y Ggauss 1S Gaussian data with same covariance matrix as Y,
H (Y) is the entropy of Y

H(Y)= - / py () log(py (1)) dy
» lteration
H H ’ H H
Vi =G (VEY)'Y - & (VEY)" v,

G (v) = tanh(aw), v exp(—v?/2), or v?
where 1 < a <2
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Blind Source Separation Strathclyde

Engineering

» Can exploit higher order statistics
> Statistical independence P(z,y) = P(z)P(y)
» Scatter diagram

Dependent Signals Independent Signals.

Signal2
Signal2

0z 04 0s 08

o o
signal 1 signal 1

» Calculate rotation (i.e. unitary matrix V) to align scatter plot
with axes
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Blind Source Separation Strathclyde

Engineering

» Estimating the ‘hidden’ rotation matrix
Y =VAS+ N

» Loop through all pairs of signals

v

Rotate (with Q; say) to align with axes
» Repeat until rotation angle is below a threshold

QuQn-1.-Q1Y =S

» Can show that S is S up to scaling and permutation of the signal
order
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Blind Source Separation e d;,ﬁ,

signal 1 signal 2 signal 3

1.5 3 3
» 1 2 2
< 0.5 1 1
s 0
2 05 o 0
@» 03 1 1

-1.5 -2 -2

0O 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Mooy

"0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Sensor Data
6 o =
=gqou-=u
o o =
aocoo-=0
20 o =
=Qou=u

=)

0

Recovered Signals
NLoanw
O o -
—=Qqoun-=
bhso=n

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 1

= 15 3 3
IS 2 2

» 03 1 1

% 05 0 0

=] A -1

2 4

£ 15 -2 2

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Time Time Hime

» 3 signals,3 sensors, SNR = 20dB
» MVDR as benchmark (recall: has access to more information)

40/ 42



Overview Signal Separation Non-Adaptive Adaptive Linear Algebra Adaptive2 Blind Source Separation

Universityof @

Blind Source Separation Strathclyde

Engineering

> Need more data to calculate higher-order statistics

signal 1 signal 2 signal 3
1.5 3 3
w1 2 2
< 0.5 1 1
S 9 o o
@ 'D;? -1 -1
1.5 -2 2
0 20 40 60 80 100 0 20 40 60 80 100 0O 20 40 60 80 100
g 15 1.5 1.§
1 1
a
= 05 0.5 o2
S 4]
2 o o -0.5
@ -0.5 -0.5 -1
@ -1 -1.5
0O 20 40 60 80 100 0O 20 40 60 80 100 0 20 40 60 80 100

o
«
L 8 1
o
0.5 .
o 0 2
g '0:15 -3
8 - -1.5 -4
& 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
~§ 18 3 3
2 2
3 o.g 1 1
T .05 o o
273 -1 -1
S s -2 2
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Time Time Time

» Previous plot: 1000 data samples, This plot: 100 data samples
» NB. MVDR largely unaffected
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S ummary gl';ﬂr;m’clyde

Engineering

» Signal Separation: need a ‘filter’ and to estimate parameters
Performance limited by ‘optimum’ filter

» Non-adaptive beamforming
Good optimisation algorithms

» Adaptive signal processing for beamforming
Constrain direction of main beam, reduce everything else
Weight jitter, calibration errors
Lots of linear algebra

» Blind source separation Higher-order statistics or nonlinear
optimisation
Needed more data to get good result

» Acknowledgment: John Mather, QinetiQ.
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