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Signal Separation
◮ Signal separation requires two components:

◮ A parametrised
mechanism to separate
the signals (a “filter”)

◮ A means to select the
parameters

◮ Performance limited by
‘optimum’ filter

◮ Conventionally we have two “filter” mechanisms:
◮ Temporal filter – separate by frequency
◮ Spatial filter (aka beamformer) – separate by AOA

◮ Could use a nonlinear filter (if you can think of one!)

◮ We will focus on narrowband beamforming in this talk

◮ Broadband beamforming requires a space-time filter
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Signal Separation

◮ Performance limited by ‘optimum’ filter

◮ Narrowband beamforming → signals must have sufficiently
different angles of arrival (AOA)

◮ Parameter selection – the interesting part

◮ Three cases:
◮ Non-adaptive – we know everything about the scenario
◮ “Adaptive” – we don’t know everything
◮ “Blind” – we don’t know anything (sort of)

◮ Important parameters:
◮ AOA of signals
◮ Array calibration
◮ Noise statistics
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Non-Adaptive Source Separation
◮ Covered in talk by Prof. Weiss

◮ Beamformer weights via
constrained optimisation
(offline)

◮ Gain towards wanted
signal = 1

◮ Gain towards other
signals = 0

◮ Noise gain as small as
possible

◮ Lots of good optimisation algorithms
(DSP text books e.g. Rabiner & Gold - Temporal filters but
basically the same for beamforming)

◮ Only (N − 1) nulls

◮ Spatially distributed noise can’t be removed only suppressed
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Adaptive Source Separation

◮ Usually called Adaptive Beamforming

◮ Assume the known parameters are:
◮ AOA of the wanted signal(s)
◮ Array calibration

◮ Beamformer weights via constrained optimisation but online this
time

◮ Gain towards wanted signal = 1

◮ Minimise energy of output

◮ NB. Could use an AOA algorithm here and fixed beamforming but
computationally costly
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Adaptive Source Separation

◮ Nomenclature:
◮ Steering vectors A relate array data to signals

(see Prof. Weiss’ talk)
X = AS

◮ Beamformer weights: w

◮ Sensor data at time n: x(n)

◮ Output at time n: y(n) = wHx(n)

◮ Energy in output: J =
∑

N−1

n=0
|y(n)|2 = ||wHXXHw||2

2

◮ Data matrix: X = [x(0),x(1), ...,x(N − 1)]

◮ Constraint: wHa(θ) = 1

◮ Sample covariance matrix: R = XXH
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Minimum Variance Distortionless Response
(MVDR)

◮ Minimum Variance := Minimise energy of output

◮ Distortionless Response := Gain towards wanted signal = 1

w =
R−1a(θ)

aH(θ)R−1a(θ)

◮ Gain towards wanted signal = 1

◮ Small gain (null) towards other
signal

◮ Noise gain not controlled
In fact adapted to that particular
noise realization
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Minimum Variance Distortionless Response
(MVDR)
◮ Multiple noise realizations (blocks of data)
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Minimum Variance Distortionless Response
(MVDR)
◮ Stabilisation procedures: there are many different ways of

reducing the effects of adapting to the noise realizations.

◮ All effectively try to ‘remove’ influence of noise

◮ Diagonal loading

w = Arg Min
(
||wH (R+ µI)w||22

)
st.wHa(θ) = 1

◮ Penalty Function Method

w = Arg Min
(
||wHRw||22 + κ||w −w0||

2
2

)

“Soft” constraint makes the adapted beam pattern lie close to the
desired pattern.

◮ “Noise” subspace manipulation: Average noise subspace
eigenvalues – need some Linear Algebra
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Linear Algebra

◮ MVDR weight vector depends on covariance matrix R

◮ This matrix has structure that can be exploited

◮ We can use linear algebra to study / manipulate the covariance
matrix

◮ Topics:
◮ Eigenvalue decomposition of Hermitian matrix
◮ Eigenvectors are not steering vectors
◮ Eigenvalue spectrum
◮ Signal and Noise Subspaces
◮ Rotation Matrices
◮ Singular Value Decomposition
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Eigenvalue Decomposition

◮ The covariance matrix is Hermitian (symmetric)

RH =
(
XXH

)H
= XXH = R

◮ Eigenvalue decomposition of Hermitian matrix

R = UΛUH

◮ Eigenvectors: U is a unitary matrix (a rotation in n-D space)

UHU = I

◮ Eigenvalues: Λ is diagonal, all elements are real and ≥ 0

◮ Rank of R is number of non-zero eigenvalues
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Eigenvalue Decomposition
◮ Note the eigenvectors are not steering vectors
◮ Data and Covariance Matrices

X = AS R = XXH = ASSHAH

◮ For independent signals D ≡ SSH is diagonal with ≥ 0 entries.
◮ Consider the eigenvalue Decomposition

R = UΛUH = ADAH

◮ Tempting to assume that

UΛ1/2 = AD1/2

which would mean that the eigenvectors are proportional to the
steering vectors

◮ But there is an implied ‘hidden’ unitary matrix (SVD)

X = UΛ1/2VH ⇒ R = UΛ1/2
✘✘✘
VHVΛ1/2UH
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Eigenvalue Decomposition
◮ Eigenvectors are not steering vectors

2 equal power signals
2 signals with power ratio
10:1

◮ Scatter plot
◮ Eigenvectors of covariance matrix point in direction of maximum

energy whilst being orthogonal to each other
◮ Eigenvectors approximately steering vectors when powers are

dissimilar
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Eigenvalue Decomposition
◮ The EVD can, however, separate ‘signals’ from ‘noise’

if SNR is high enough. Consider two signals

X = a(θ1)s
T
1 + a(θ2)s

T
2 +N

◮ Covariance matrix

R = XXH = ADAH + σ2I

A =
[
a(θ1) a(θ2)

]
D =

[
P1 0
0 P2

]

◮ ADAH is rank two. EVD:

ADAH = U

[
ΛA 0
0 0

]

UH

◮ Covariance matrix EVD (add noise)

R = U

[
ΛA 0
0 0

]

UH + σ2I = U

[
ΛA + σ2I 0

0 σ2I

]

UH
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Eigenvalue Spectrum

◮ Eigenvalue spectrum
[
ΛA + σ2

σ2I

]

◮ Two large eigenvalues

◮ Five noise realizations

◮ Noise eigenvalues not the same
and not equal what theory
suggests – finite data
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Signal and Noise Subspaces
◮ Consider the covariance matrix EVD

(replace ‘theoretical’ σ2 by ΛN)

R = U

[
ΛA +ΛN1 0

0 ΛN2

]

UH

◮ Partition eigenvectors (assuming ΛA +ΛN1 > ΛN2)

U =
[
U1 U2

]

◮ Orthogonal subspaces: ‘Signal and Noise’ and ‘Noise’

U1
HU1 = I U1

HU2 = 0

◮ Then the covariance matrix EVD becomes

R = U1 (ΛA +ΛN1)U1
H

︸ ︷︷ ︸

Signal plus Noise

+U2 (ΛN2)U2
H

︸ ︷︷ ︸

Noise only
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Signal and Noise Subspaces

◮ Noise reduction: The covariance matrix EVD is

R = U1 (ΛA +ΛN1)U1
H

︸ ︷︷ ︸

Signal plus Noise

+U2 (ΛN2)U2
H

︸ ︷︷ ︸

Noise only

◮ But the ‘Signal plus Noise’ and ‘Noise only’ subspaces are
orthogonal

U1
HU1 = I U1

HU2 = 0

◮ So that

R̃ = U1U1
HR

Projection Operator
︷ ︸︸ ︷

U1U1
H = U1 (ΛA +ΛN1)U1

H

= U

[
ΛA +ΛN1 0

0 0

]

UH

◮ Thus R̃ is a covariance matrix for the signals but with less noise
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Rotation Matrices
◮ Eigenvectors: U is a unitary matrix UHU = I
◮ Often calculated by multiple applications of Givens rotations:

[
cos(θ) sin(θ)
− sin(θ)∗ cos(θ)

] [
x1
y1

]

=

[
x′2
y′2

]

◮ U can be build up by embedding Givens rotation in N-D space

U = [•] ...









I 0 0 0 0
0 cos(θ) 0 sin(θ) 0
0 0 I 0 0
0 − sin(θ)∗ 0 cos(θ) 0
0 0 0 I









... [•]

◮ Hence U be considered as a rotation in N-dimensional space
– useful for blind signal separation theory
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Singular Value Decomposition
◮ Not all matrices of interest are Hermitian

◮ Singular value decomposition of a matrix X:

X = UΣVH

If X is N ×M : U is N ×N , Σ is N ×M , and V is M ×M

◮ Singular vectors: U and V are unitary matrices

◮ Singular values: Σ is diagonal, all elements are ≥ 0

◮ Rank of X is number of non-zero singular values

◮ Relation to EVD

R = XXH = UΣVHVΣUH = UΣ2UH

Eigenvalues are the square of the singular values

◮ Recall we used the SVD to show that eigenvalues are not steering
vectors
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Stabilized MVDR Beamformer
◮ Back to beamforming ....

◮ Recall basic MVDR beamformer suffers from weight jitter

◮ Covariance matrix EVD

R =
[
U1 U2

]
[
ΛA + ΛN1 0

0 ΛN2

] [
U1

H

U2
H

]

◮ Idea 1: Subspace Projection: remove noise
Orthogonal subspaces: U1

HU1 = I, U1
HU2 = 0

X̂ =

Projection Operator
︷ ︸︸ ︷

U1U1
H X

R̂ = X̂X̂H =
[
U1 0

]
[
ΛA + ΛN1 0

0 ✟
✟✟ΛN2

] [
U1

H

0

]

◮ Issues with rank deficient R̂ since it is not invertible
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Stabilized MVDR Beamformer
◮ Idea 2: Average noise eigenvalues

◮ Project data onto noise subspace to estimate noise power σ2

N = U2U2
HX

◮ Calculate a σ2 over several snapshots

R̂ = U

[
ΛA + ΛN1 0

0 σ2I

]

UH

◮ Need to decide how to partition U into U1

and U2.

◮ Look at eigenvalues

◮ Can use simple thresholding or more com-
plicated information theory.
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Minimum Variance Distortionless Response
(MVDR)
◮ Recall multiple noise realizations (blocks of data) caused jitter
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Stabilized MVDR Beamformer

◮ Average noise eigenvalues
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Array Calibration Errors

◮ MVDR minimises power in output signal.

◮ w = 0 would do this but also removes wanted signal

◮ ‘Look direction’ constraint protects the wanted signal

wHa(θ) = 1

◮ What if a(θ) is incorrect?

◮ Wanted signal looks like an unwanted one!

◮ Add extra constraints
◮ More that one ‘Look direction’ constraint
◮ Flatten main lobe – gradient constraint

◮ Incorporate calibration into problem and solve ...
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Linearly Constrained Minimum Variance
(LCMV)
◮ MVDR has only one constraint; can we do better?
◮ LCMV algorithm

◮ Minimum Variance = Minimise energy of output
◮ Linearly Constrained = More than one constraint

(e.g. could have fixed null)

wHC = gT

◮ Solution: w = R−1C
(
CHR−1C

)
−1

g

◮ Gain in wanted direction = 1

◮ Gain towards other directions = 0
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Linearly Constrained Minimum Variance
(LCMV)

◮ LCMV is a constrained minimisation problem

w = Arg Min
(
||wHRw||22

)
st.wHC = gT

◮ If there are M constraints, M components of w are effectively
fixed

◮ Thus only N −M ‘degrees of freedom’ in the choice of w
i.e. can only null out N −M signals

◮ Thus have to have N −M > 0

◮ Sometimes the constraints can be linearly dependent or nearly so
.....
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Linearly Constrained Minimum Variance
(LCMV)

◮ Consider
wHC = gT

◮ or
[
wHC− gT

]
=

[
wH ,−1

]
[

C

gT

]

= 0

◮ Take SVD [
C

gT

]

= UΣVH

◮ Note V is full rank so we have

[
wH ,−1

]
UΣ = 0
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Linearly Constrained Minimum Variance
(LCMV)
◮ Say (M −R) singular values (Σ2) are small

UΣ =
[
U1 U2

]
[
Σ1 0
0 Σ2

]

≈
[
U1 U2

]
[
Σ1 0
0 0

]

=
[
U1Σ1 0

]

◮ Then an approximation to our problem is
[
wH ,−1

]
U1Σ1 = 0

◮ Alternatively, writing U1Σ1 =

[
C̃

g̃T

]

the approximate problems

is
wHC̃ = g̃T

◮ Note C̃ only has R < M columns
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Linearly Constrained Minimum Variance
(LCMV)

◮ Beam patterns

◮ 16 sensors

◮ blue - 9 Constraints

◮ red - 6 Constraints

◮ Beam patterns similar
at constraint points

◮ Constraint matrix
singular value spectrum

◮ 3 small singular values

◮ 6 constraints nearly as
good as 9 constraints
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Linearly Constrained Minimum Variance
(LCMV)

◮ Beam patterns

◮ blue - 9 Constraints

◮ red - 6 Constraints

◮ Constraints not strictly achieved due to non-zero singular values

◮ Threshold on singular values should be set by acceptable ‘null’
gain
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Blind Source Separation
◮ For adaptive beamforming, we assumed we know:

◮ AOA of the wanted signal(s)
◮ Array calibration

◮ What if we don’t know this information?
⇒ Blind Source Separation or Independent Component Analysis

◮ Assume
◮ The source signals are statistically independent
◮ No more than one Gaussian signal

(higher order moments of Gaussian signal are zero)
◮ Not interested in absolute amplitude of the signals

◮ Recall that
X = AS+N

◮ Define SVD of A
A = UΣVH

◮ If we can calculate U, Σ and V we can calculate A
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Blind Source Separation

◮ The covariance matrix is

R = XXH = ADAH + σ2I

◮ Assume that the source signals are statistically independent and
have unit power i.e. D = I.

◮ (If not, redefine array manifold A so that A← AD
1

2 )

◮ So the covariance matrix is

R = XXH = AAH + σ2I

◮ Using the SVD of A we find

XXH = U [Σ✘✘✘
VHVΣ]UH + σ2I = U

[
Σ2 + σ2I

]
UH

which is the covariance matrix EVD
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Blind Source Separation

◮ For simplicity assume Σ2 + σ2I ≈ Σ2 i.e. high SNR then

XXH = UΣ2UH

◮ So the covariance matrix gives us U and Σ, and all we have to do
is to find a way to calculate V.

◮ Now note that

X = AS+N = UΣVHS+N

◮ Thus, assuming Σ−1 exists,

Y ≡ Σ−1UHX = VHS+ Ñ

where Ñ = Σ−1UHN is a noise term
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Blind Source Separation

◮ We have
Y = VHS+ Ñ

◮ so S could be extracted from Y if we knew VH

◮ Then
Ŝ =

(
VΣ−1UH

)
X

◮ cf. bank of beamformers

Ŝ =





w1
H

:
wN

H



X

◮ Blind signal separation is limited by what a bank of beamformers
can do e.g. N sensors → N − 1 nulls
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Blind Source Separation

◮ How to estimate VH?
NB

YYH = VHSSHV + σ2Σ−2

but SSH = I so
YYH = I + σ2Σ−2

i.e. not dependent on VH so the second order statistics of Y will
not help us estimate VH

◮ Can however use higher order statistics

◮ Can also use nonlinear cost function

◮ At this point we have stop manipulating matrices and deal with
actual time series data
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Blind Source Separation

◮ E.g. ‘FastICA’ - iteration to minimise ‘negentropy’

J (Y ) = H (YGauss)−H (Y)

◮ YGauss is Gaussian data with same covariance matrix as Y,
H (Y) is the entropy of Y

H (Y ) = −

∫

pY (y) log(pY (y))dy

◮ Iteration

Vk+1 = G
(
VH

k Y
)H

Y −G
′ (
VH

k Y
)H

Vk

G (v) = tanh(αv), v exp(−v2/2), or v3

where 1 ≤ α ≤ 2
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Blind Source Separation

◮ Can exploit higher order statistics

◮ Statistical independence P (x, y) = P (x)P (y)

◮ Scatter diagram

◮ Calculate rotation (i.e. unitary matrix V) to align scatter plot
with axes
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Blind Source Separation

◮ Estimating the ‘hidden’ rotation matrix

Y = VHS+ Ñ

◮ Loop through all pairs of signals

◮ Rotate (with Qi say) to align with axes

◮ Repeat until rotation angle is below a threshold

QnQn−1...Q1Y = Ŝ

◮ Can show that Ŝ is S up to scaling and permutation of the signal
order
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Blind Source Separation

◮ 3 signals,3 sensors, SNR = 20dB

◮ MVDR as benchmark (recall: has access to more information)
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Blind Source Separation
◮ Need more data to calculate higher-order statistics

◮ Previous plot: 1000 data samples, This plot: 100 data samples

◮ NB. MVDR largely unaffected
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Summary

◮ Signal Separation: need a ‘filter’ and to estimate parameters
Performance limited by ‘optimum’ filter

◮ Non-adaptive beamforming
Good optimisation algorithms

◮ Adaptive signal processing for beamforming
Constrain direction of main beam, reduce everything else
Weight jitter, calibration errors
Lots of linear algebra

◮ Blind source separation Higher-order statistics or nonlinear
optimisation
Needed more data to get good result

◮ Acknowledgment: John Mather, QinetiQ.
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