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About Me: Prof. Tim Hospedales
• Background
• BA Computer Science, University of Cambridge
• Professor @ University of Edinburgh
• Funded by EPSRC, DSTL, EU Horizon 2020 
• Alan Turing Institute Fellow

• Program Director, Machine Learning @ Samsung AI Cambridge
• Research Area:
• Deep Learning. Meta-Learning. Data-Efficient & Robust Learning.

• Track record:
• Over 70 papers in Tier 1 venues of AI, ML, Vision.
• => CVPR, ICCV, ECCV, ICLR, AAAI, IJCAI, ICML, NeurIPS, T-PAMI, IJCV.
• Five best paper prizes.
• Five patents



Outline

• Part I: Data-Efficient Deep Learning
• Common Regularizers
• Beyond Regularization

• Part II: Intro to Robust and Explainable Deep Learning
• Adversarially Robust Learning
• Uncertainty in Deep Learning

• Part III: Intro to Meta-learning
• Concept
• Some examples



Deep Learning Success

Autonomous Vehicles

)ie

Superhuman Pictionary

Pixelor: Siggraph Asia 2020
Live Demo: http://surrey.ac:9999/



Success Story of Deep Learning Era

• Gather and annotate bigger datasets.
• Train bigger models.

[ Sun et al, Revisiting Unreasonable Effectiveness of Data in Deep Learning Era, ICCV’17 ]

No saturation so far! 
Performance grows with log of train data.

JFT-300M => MS-COCO                     JFT-300M => PASCAL 



Mechanism of Deep Learning Era Success?

• Gather and annotate bigger datasets.
• Train bigger models.



Do we need another paradigm?

Do we need another paradigm?
• Humans have one shot learning 
• Learn 5 objects per day for first 18 years. 

• Long tail of object categories?
• Emerging categories

• Long tail of domains
• Underwater, Radar, Sonar, LIDAR, Medical, Satellite, etc

• Defense applications often interested in detecting rarely observed 
objects/events..



Why is Low-data Learning Hard? 
Overfitting
• Underfitting vs Overfitting.  Linear regression example.

EG: 2nd order polynomial.EG: 20th order polynomial. EG: 0th order polynomial.

Train Points Test Points



Why is Low-data Learning Hard? 
Overfitting
• Underfitting vs Overfitting.  Linear regression example.

Question: How to diagnose 
over- vs under-fitting?

Overfitting?
• Low train error
• High test error

Underfitting?
• High train error
• High test error



Why is Low-data Learning Hard? 
Overfitting
• Underfitting vs Overfitting.  Linear regression example.

Classic Solution?
• Try several model 

complexities
• Evaluate validation set 

performance of each
• Pick the model with best 

validation performance

Issue for deep learning?
• Too many complexity 

parameters in DL (depth, 
width, non-linearity, etc)

• Few-Shot: Would pick a 
simple model that doesn’t 
provide deep learning level 
performance. EG: 0th order polynomial.EG: 20th order polynomial.



Common Regularisation
Techniques



Reducing Data Dependence

Common techniques for overfitting reduction
•Weight decay / L2 regularization
• Early Stopping
• Label Smoothing
• Data Augmentation
•Mixup



Weight Decay & L2 Regularization

Weight decay. L2 regularisation.
• Other things being equal, prefer weights near zero.

min𝒘 ℒ 𝐷;𝒘 + 𝜆 𝒘 "
"

Supervised loss surface

Regulariser loss surface

Linear combination minima



Early Stopping
•With gradient descent, the model gradually improves its fit to 

the data. 
• It takes “time” (iterations of gradient descent) for overfitting to happen. 
• => Try to stop early, before overfitting happens

• Early Stopping
• Observe validation set error during training (proxy for 

testing/generalisation error).
• Stop when validation set error starts to increase.



Label Smoothing

• Conventional Cross-Entropy Learning Objective

• Label Smoothing

𝐿 "𝒑, 𝒚 = −(
!

𝒚!log"𝒑!

"𝒑 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ 𝒙 )

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0]

[0.1, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0]

𝐿 "𝒑, 𝒚 = −(
!

𝒚!log"𝒑!

[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.91, 0.01, 0.01]

[0.1, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0]

𝒚!"# = 1, 𝒚!$# = 0

𝒚!"# = 1 − 𝜖 + 𝜖/𝐾, 𝒚!$# = 𝜖/𝐾

[ Muller, NeurIPS’19, When does label smoothing help? ] 



Data Augmentation

• Data Augmentation

• Key: Augmentation must preserve desired semantics.
• Class preserving augmentations are domain knowledge:
• => A route to implicitly providing expert prior knowledge.

𝐿 𝒙, 𝒚 = −(
!

𝒚!log"𝒑!(𝐴%(𝑥)))𝐿 𝒙, 𝒚 = −(
!

𝒚!log"𝒑!(𝑥)

ü Dog ü Dog

Crop Rotate Scale

EG: SpecAugment

[ Park, InterSpeech, 19]



Mixup Augmentation

• Conventional Supervised Learning

•Mixup

min𝒘 𝐸#,%∼'𝐿(𝑦, 𝑓( 𝑥 )

min𝒘 𝐸#?,%?,#@,%@∼',)∈ +,, 𝐿(𝜆𝑦, + 1 − 𝜆 𝑦", 𝑓( 𝜆𝑥, + (1 − 𝜆 𝑥"))

Y=[1.0, 0.0, 0.0]

Y=[0.0, 1.0, 0.0]

[ Zhang, ICLR’18, mixup: Beyond Empirical Risk Minimization ]



Beyond Regularisation: Other Data Sources

• You can only get so far using regularization and cross-
validation in a closed world and tabula-rasa learning.
• Luckily there are often diverse data sources available.

• Beyond Closed-World/Tabula-Rasa Assumption: 
• Transfer Learning, 
• Few-Shot learning, 
• Domain Adaptation, 
• Domain Generalisation, 
• Semi-Supervised Learning, 
• Self-supervised Learning, 
• Meta-Learning



Faces of Data Sparsity Annotated

Unannotated

Target: Solve dog vs monkey classification

Other CategoriesTransfer learning
(Meta learning)

Same Categories/ Domain Shift

Domain Adaptation

Domain Generalisation

Inaccurate labels

Label Noise Robust Learning

No Labels

Few Labels

Extra Data:

Transfer learning

Same Categories/Unlabeled

Semi - supervised
learning

Other Categories/Unlabeled

Self-supervisedlearning



Some Typical Problem 
Settings/Algorithms
Situation Target*

(During training)
Auxiliary Assumption

(Supervised)
Transfer Learning

𝑋! , 𝑌! 𝑋" , 𝑌" 𝑝 𝑋" ≠ 𝑝 𝑋!
Or 𝑝 𝑌"|𝑋" ≠ 𝑝 𝑌!|𝑋!
Or 𝒴" ≠ 𝒴!

Semi-supervised
learning

𝑋! , 𝑌! 𝑋" 𝒴" = 𝒴!
𝑝 𝑌"|𝑋" = 𝑝 𝑌!|𝑋!

Self-supervised
learning

𝑋! , 𝑌! 𝑋" 𝒴" ≠ 𝒴!

Domain Adaptation 𝑋! 𝑋" , 𝑌" 𝑝 𝑋" ≠ 𝑝 𝑋!
Usually 𝑝 𝑌"|𝑋" = 𝑝 𝑌!|𝑋! , 
𝒴" = 𝒴!

Domain 
Generalisation

𝑋" , 𝑌" 𝑝 𝑋" ≠ 𝑝 𝑋!
Usually 𝑝 𝑌"|𝑋" = 𝑝 𝑌!|𝑋! , 
𝒴" = 𝒴!

Noisy Labels 𝑋! , 𝑌! 𝑋" , 4𝑌" 4𝑌" = 𝑌" + 𝜖

Task-Shift:
𝑝 𝑌!|𝑋! ≠ 𝑝 𝑌"|𝑋"

Or 𝒴! ≠ 𝒴"

Domain-Shift:
𝑝 𝑋! ≠ 𝑝 𝑋"



Faces of Data Sparsity Annotated

Unannotated

Target: Solve dog vs monkey classification

Other CategoriesTransfer learning
(Meta learning)

Same Categories/ Domain Shift

Domain Adaptation

Domain Generalisation

Inaccurate labels

Label Noise Robust Learning

No Labels

Few Labels

Extra Data:

Transfer learning

Same Categories/Unlabeled

Semi - supervised
learning

Other Categories/Unlabeled

Self-supervisedlearning



Reducing Data Dependence

Transfer Learning
• Transfer Learning: “The application of skills, knowledge, and/or attitudes 

that were learned in one situation to another learning situation” (Perkins, 
1992).
• Note:
• Transfer Learning ≠ “Fine-Tuning”
• Fine Tuning⊂ Transfer Learning



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Application:
• Across Task:
• Change of label-space.

• Across Domain
• Change of data statistics.

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Cross
Task𝑝 𝑋! ≠ 𝑝(𝑋")

𝑝 𝑌!|𝑋! ≠ 𝑝 𝑌" 𝑋"
𝑌! ≠ 𝑌"

RGB => IR



Reducing Data Dependence: Transfer

Transfer Learning: Linear Readout
• Fix target feature extractor using source, and training classifier 

layer

Source: 
Data+Labels

Conv 2

Conv 1

Conv 3

FC 1

FC 2

Softmax

Loss

Target: Data+Labels

Conv 2

Conv 1

Conv 3

FC 1

FC 2

Softmax

Loss

Copy

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Initialise target parameters using source, and continue training

Source: 
Data+Labels

Conv 2

Conv 1

Conv 3

FC 1

FC 2

Softmax

Loss

Target: Data+Labels

Conv 2

Conv 1

Conv 3

FC 1

FC 2

Softmax

Loss

Initialisation

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?

Train

Test

MRN

Sketch classifier (dog) Photo classifier (dog)

Trained MRN

Sketch classifier (cat)

?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Why does fine-tuning work?
• Neural network optimisation is non-convex.
• With small learning rate, target task parameters do not change much.
• Transfer  initialization effectively regularizes target weights towards 

source weights, rather than towards zero. 
• Assume source task is relevant to target task.
• => Better chance of good minima.

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Initialisation

Loss

Weights Weights



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Very similar to explicit source→target regularisation.
• Used in many classic learning methods(*).

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Initialisation

min𝒘A ℒ 𝐷7; 𝒘7 + 𝜆 𝒘7 −𝒘8 "
"

[ Improving SVM Accuracy by Training on Auxiliary Data Sources, ICML’04 ]
[ Cross-domain video concept detection using adaptive svms, ACM MM’07 ] 

Compare:
min𝒘 ℒ̅ = ℒ 𝐷;𝒘 + 𝜆 𝒘 $

$

min𝒘 ℒ̅ = ℒ 𝐷;𝒘 + 𝜆 𝒘 − 𝟎 $
$



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Assumption:
• Source task relevant to target. 

• Practical Considerations. Questions:
• How to control relevance degree?
• Which layers to transfer?
• What learning rate to use?

• Typical:
• Relearn top while freeze bottom.
• Then tune all w/ LR proportional to 

depth

min𝒘 ℒ 𝐷7; 𝒘7 + 𝜆 𝒘7 −𝒘8 "
"

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Initialisation

Question: 
Always good practice?

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

NEW	FC	2

Softmax

Loss

Transfer

[How transferable are features in deep neural networks?, NIPS’14 ]



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Assumption:
• Source task relevant to target. 

• Practical Considerations. Questions:
• How to control relevance degree?
• Which layers to transfer?
• What learning rate to use?

• Typical:
• Relearn top while freeze bottom.
• Then tune all w/ LR proportional to 

depth

min𝒘 ℒ 𝐷7; 𝒘7 + 𝜆 𝒘7 −𝒘8 "
"

Source:Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

FC	2

Softmax

Loss

Target:	Data+Labels

Conv	2

Conv	1

Conv	3

FC	1

NEW	FC	2

Softmax

Loss

Transfer

Assumption:
• Relevance proportional to depth. [How transferable are features in deep neural networks?, NIPS’14 ]

Only for cross-task. 



A State of the Art Solution: UDRC work

• Enables a generalization bound: 

min𝒘 ℒ 𝐷7; 𝒘7 + 𝜆 𝒘7 −𝒘8 "
"

Classic Transfer Learning: Penalty Regularized

min𝒘 ℒ 𝐷7; 𝒘7
s. t. 𝒘7 −𝒘8 9 < 𝜆

Transfer Learning: Constraint Reguarized (Euclidean)

min𝒘 ℒ 𝐷7; 𝒘7
s. t. 𝒘7 −𝒘8 : < 𝜆

Transfer Learning: Constraint Reguarized (MARS)

Test Error Train Error Bound

Max Distance Moved

Layers Max Weight NormInput dim

Num Train Examples

Max
Distance
Moved
During
Fine
tuning

[ Gouk et al, ICLR’2021, Distance-Based Regularisation of Deep Networks for Fine-Tuning ]  * UDRC invention!



Transfer: Challengens

•What if the inputs are heterogeneous 
• (EG: Task 1: RGB, Task 2: Infra Red)?

• How to know if a source task is relevant?
• How to prevent negative transfer if source is irrelevant? 

• How to select the relevant source among many?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Issues: What if the inputs are heterogeneous?

• Should learning rate always be proportional to depth?
• EG: Perceptual arithmetic network

“Ten” “Two”

=  5

Perception

Perception

Arithmetic

[ EG: HOUDINI: Lifelong Learning as Program Synthesis, NIPS’18 ]

=  2.33

RGB => IR



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
• Issues:
• How to select the relevant source among many?

• For linear models….
• Optimising target model    , assuming a set of potentially relevant 

sources           :

• …. not so straightforward with deep models
• => Often resort to cross-validation

min𝒘 𝒚 − 𝒘𝑋 +min; 𝒘−𝒘;

𝒘;

𝒘

E.g., Evgeniou et al, JMLR, 2005
E.g., Kang et al, ICML, 2011



Faces of Data Sparsity Annotated

Unannotated

Target: Solve dog vs monkey classification

Other CategoriesTransfer learning
(Meta learning)

Same Categories/ Domain Shift

Domain Adaptation

Domain Generalisation

Inaccurate labels

Label Noise Robust Learning

No Labels

Few Labels

Extra Data:

Transfer learning

Same Categories/Unlabeled

Semi - supervised
learning

Other Categories/Unlabeled

Self-supervisedlearning



Semi-Supervised: Problem

• Problem:
• Learn from mix of labeled & unlabeled 

data (of same label-space).
•When annotation bottleneck rather than 

raw data bottleneck.

• Typical supervised learning with 𝑋:, 𝑌: : 
•What to do with 𝑋; ?

Semi-supervised
learning

𝑋! , 𝑌! 𝑋" 𝒴" = 𝒴!

min𝒘<
<

𝐿(𝑦7< , 𝑝( 𝑦|𝑥7< )



Semi-Supervised: A Classic Solution

• Entropy Regularisation:

min𝒘<
<

𝐿(𝑦7< , 𝑝( 𝑦|𝑥7< ) +<
=

𝐻(𝑝( 𝑦 𝑥8
= )

<
=,;

𝑝( 𝑦; 𝑥8
= 𝑙𝑜𝑔 𝑝( 𝑦; 𝑥8

=

Posterior Entropy of Source Data 

Example Problem Supervised Semi-Supervised

Target/Labeled Source/Unlabeled

[ Grandvalet, NIPS’04, Semi-supervised Learning by Entropy Minimization ]



Semi-Supervised: State of the Art

• Lots of Sophisticated Solutions Recently
•Mean Teacher - https://arxiv.org/abs/1703.01780
•Mix Match - https://arxiv.org/abs/1905.02249
• Noisy Student
• Audio - https://arxiv.org/abs/2005.09629
• Images - https://arxiv.org/abs/1911.04252

https://arxiv.org/abs/2005.09629
https://arxiv.org/abs/1911.04252


Faces of Data Sparsity Annotated

Unannotated

Target: Solve dog vs monkey classification

Other CategoriesTransfer learning
(Meta learning)

Same Categories/ Domain Shift

Domain Adaptation

Domain Generalisation

Inaccurate labels

Label Noise Robust Learning

No Labels

Few Labels

Extra Data:

Transfer learning

Same Categories/Unlabeled

Semi - supervised
learning

Other Categories/Unlabeled

Self-supervisedlearning



Self-Supervision: Problem Other Categories/Unlabeled

Self-supervised
learning

𝑋! , 𝑌! 𝑋" 𝒴" ≠ 𝒴!

• Problem:
• How to exploit unlabelled task-irrelevant data?

• Typical supervised learning with 𝑋:, 𝑌: : 
•What to do with 𝑋; ?

min𝒘<
<

𝐿(𝑦7< , 𝑓( 𝑥7< )



Self-Supervision: Idea

• Pretext-tasks: Programmatic generation of tasks for the 
unlabeled data.

• Some parameters 𝜃 shared between pretext and real task 
•Multi-task or transfer.

<

min>,? 𝐸#B[𝐿 𝑃 𝑥8 , 𝑓>,? 𝑥8 ] min>,@ 𝐸#A[𝐿 𝑦7 , 𝑓>,@ 𝑥7 ]



Self-Supervision: Pretexts

<

min>,? 𝐸#B[𝐿 𝑃 𝑥8 , 𝑓>,? 𝑥8 ]



Self-Supervision: Pretexts

<

min>,? 𝐸#B[𝐿 𝑃 𝑥8 , 𝑓>,? 𝑥8 ]



Self-Supervision: Results

• Self-supervision outperforms supervised transfer learning 
even without exploiting labels! 

[ Ericsson, Gouk, Hospedales, CVPR2021, How Well Do Self-Supervised Models Transfer? ]  *UDRC work!



Domain Adaptation: Problem

• Problem:
• Learn from mix of labelled & unlabelled data 

(same label-space, different domain).
• Often some domains are easier to 

collect/annotate than others. 

• Typical supervised learning: 
•What to do with 𝑋: ? min𝒘<

<

𝐿(𝑦8< , 𝑝( 𝑦|𝑥8< )

Domain Adaptation 𝑋! 𝑋" , 𝑌" 𝑝 𝑋" ≠ 𝑝 𝑋!
Usually 𝑝 𝑌"|𝑋" = 𝑝 𝑌!|𝑋! , 
𝒴" = 𝒴!



Domain Adaptation:
Standard Solutions

Encoder, f Classifier, g

Source (Labeled)

𝑓(𝑥!)
+𝑦!

𝑦!

𝑥!

Target (Unlabeled) 𝑓(𝑥") +𝑦"𝑥"

Supervised

Align

Alignment Loss

𝑦!

ℒ!

ℒ#

ℒ"$"#% = ℒ! +ℒ# +ℒ&
𝑓(𝑥!)𝑓(𝑥") Align

Unsupervised Loss
EG: Entropy

ℒ&

Domain Classifier, h

{s,t}

ℒ#: argmin',)𝐸*&,+ 𝐿(
1
2 ,
<ℎ 𝑓 𝑥+ +𝐿(𝑑, ℎ ̅𝑓 𝑥+ )

ℒ!: argmin',,𝐸*' 𝐿(𝑦!, 𝑔 𝑓 𝑥! )

ℒ&: argmin',,𝐸*( 𝐻(𝑔(𝑓 𝑥" ))

[ EG: Tzeng, CVPR’17, Adversarial Discriminative Domain Adaptation ]



Domain Generalisation: Problem

• Problem:
• Deployment/target domain is shifted wrt train domain(s).
• No target data available for training (e.g., future).
• => Need to build a robust model. 

Train Test

Domain 
Generalisation

None 𝑋" , 𝑌" 𝑝 𝑋" ≠ 𝑝 𝑋!
Usually 𝑝 𝑌"|𝑋" = 𝑝 𝑌!|𝑋! , 
𝒴" = 𝒴!



Domain Generalisation: A Solution

•Many complicated and controversial solutions.
• Simple => Extend Mixup. 

• Domain Mixup. 

min𝒘 𝐸#,%∼'𝐿(𝑦, 𝑓( 𝑥 )
min𝒘 𝐸#?,%?,#@,%@∼',)∈ +,, 𝐿(𝜆𝑦, + 1 − 𝜆 𝑦", 𝑓( 𝜆𝑥, + (1 − 𝜆 𝑥"))

min𝒘 𝐸'𝐸#,%∼'𝐿(𝑦, 𝑓( 𝑥 )

min𝒘 𝐸'?'@~'𝐸#?,%?∼'?
#@,%@∼'@

𝐿(𝜆𝑦, + 1 − 𝜆 𝑦", 𝑓( 𝜆𝑥, + (1 − 𝜆 𝑥"))

[ Wang et al, ICASSP’20, Heterogeneous domain generalization via domain mixup ]



Label Noise: Problem

• Situation:
• Some subset of your data has flawed annotation.
• Context: When annotation is automated, or hard to verify.

• Issue:
•With this additional noise source, overfitting issues can be much 

worse. (Overfit to label errors => V.Poor test performance)

Inaccurate labels



Label Noise: Some Solutions

• Simple Solutions: 
• Cross-entropy loss is highly vulnerable to label-noise.
• Simple more robust alternatives: Absolute error, focal loss, 

symmetric cross entropy.

𝐿BC =<
;

𝑦;log 𝑝((𝑦;|𝑥)
𝐿DEC = 𝑦 − 𝑝( 𝑦; 𝑥 ,

𝐿FBC =𝐿BC 𝑦, 𝑝 𝑦 𝑥 + 𝐿BC(𝑝 𝑦 𝑥 , 𝑦)

[ Wang, CVPR’19, Symmetric cross entropy for robust learning with noisy labels; 
Ghosh, AAAI’17, Robust Loss Functions under Label Noise for Deep Neural Networks ]



Outline

• Part I: Data-Efficient Deep Learning
• Common Regularizers
• Beyond Regularization

• Part II: Intro to Robust and Explainable Deep Learning
• Adversarially Robust Learning
• Uncertainty in Deep Learning

• Part III: Intro to Meta-learning
• Concept
• Some examples



Adversarial Attacks and Defense



Adversarial Examples
• “Adversarial examples are inputs to machine learning models 

that an attacker has intentionally designed to cause the model 
to make a mistake” – Goodfellow, 2017
• Interesting: In many cases one can perturb an input in a way that fools an 

AI system but would not fool (or indeed by invisible to) a human!

[ Szegedy, ICLR’14, Intriguing properties of neural networks ] 



Finding Adversarial Examples:
• Given a loss function 𝐿(𝑥, 𝑦, 𝜃) of image, label, parameters.
• Contrast:

• Conventional Training: 𝜃′ = 𝜃 − 𝛼∇%𝐿(𝑥, 𝑦, 𝜃)
• Adversarial Example Search: 𝑥′ = 𝑥 + 𝛼∇&𝐿(𝑥, 𝑦, 𝜃)

• Imperceptible: Add constraint: 𝛿 = 𝑥# − 𝑥 < 𝜖
• Untargeted: Ask for any mistake. Targeted: Ask for a specific mistake.

• Here: `White-box’ assumes attacker has access to your network 𝜃
• If you are attacking a web API, you probably don’t have access to ∇!𝐿(𝑥, 𝑦, 𝜃)
• But `Black-box’ transfer attacks also work…. 



Maximizing p(airplane|x)

[ Goodfellow, 2017 ]



Not only a deep learning phenomenon

http://karpathy.github.io/2015/03/30/breaking-convnets/

Linear classifiers and many 
others can also be fooled.

http://karpathy.github.io/2015/03/30/breaking-convnets/


Visual Question Answering

Does this person have 20:20 
vision? 

No

Strongest “Yes” Beliefs

Majority of strongest beliefs are wrong! 

[ Liu, CVPR’18; Liu TPAMI’18 - iVQA: Inverse Visual Question Answering ]

Adversarial (Question) Examples for VQA



Defending Against Adversarial Examples

• A Standard Solution: Adversarial Training

Reasonably effective
But slow! => Attack 
model at each training 
Iteration.

[ Madry et al, ICLR’18, Towards Deep Learning Models Resistant to Adversarial Attacks ]



State of the Art: UDRC’s WCA-Net

Encoder
𝑝(𝑧|𝑥) 𝑧 ∼ 𝑝(𝑧|𝑥)

Classifier
𝑝(𝑦|𝑧)

Monkey

Key Contribution: 
1. A bound for adversarial robustness of stochastic NNs:
2. A algorithm based on this bound => SotA performance.

Model:

Bound:
Adversarial vs 
Clean Gap

Is Less Than… “Weight Covariance Alignment”

Þ Aligning decoder weights to noise
minimises the bound.

ℎ �⃗� = 𝑤-𝑧,+𝑏,
𝑧 = 𝑓 �⃗� + 𝜖, 𝜖 ∼ 𝒩 0, Σ

Empirical performance

Attack Strength

Worst Case Guarantee

[Eustratiadis, ICML’21, Weight Covariance Alignment ] UDRC invention! 

𝑝 𝑧 𝑥 ~𝒩(𝑓 �⃗� , Σ)



Explainable Deep Learning
Uncertainty in Deep Learning



Uncertainty in Deep Learning

• Decision Functions

• Uncertainty Estimates

Banana

30 yrs

(Banana, 40%), (Moustache, 30%), (Person, 30%)

30 yrs

Start by using a softmax output.

Output a mean and variance



Why Is Uncertainty Important?

• Abstaining / Pass Decision to Human
• Outlier Detection
• Information Fusion
• Decision Theory
• Active Learning (Data Collection, Model Improvement)

(Banana, 40%), (Moustache, 30%), (Person, 30%)

30 yrs



Typical Uncertainty Failure Cases

• Overconfidence
• EG: Model gets 95% accuracy, but also has 100% 

confidence on the 5% it gets wrong.

• Out-of-distribution:
90% male penguin

88% female penguin

99% male penguin

99% female penguin



How to Measure Uncertainty Calibration?

• For all inputs to which your model assigns x% confidence, 
does it get x% of them correct?
• ECE:
• Bin by confidence, then compare confidence and accuracy 

bin-wise. 

[ Guo, ICML’17, On Calibration of Modern Neural Networks ]



How to Improve Uncertainty Calibration

• Regularization:
• L2 regularization, weight-decay.
• Label-smoothing, network size.

• Change of Loss Function
• Cross-entropy => Focal Loss, Brier

• Ensembles: 
• Train a whole set of models: {𝑝JL 𝑦 𝑥 }
• Average their prediction: 𝑝 𝑦 𝑥 = K

L
∑M 𝑝JL 𝑦 𝑥

𝐿BC =−log 𝑝((𝑥) 𝐿DFC = 𝑦 − 𝑝((𝑥) "
"𝐿BC =− 1 − 𝑝( 𝑥 ?log 𝑝((𝑥)

[ Lakshminarayanan, NIPS’17, Simple and Scalable Uncertainty Estimation; Mukhoti, NIPS’20 Calibrating Deep Networks using focal Loss  ]



How to Improve Uncertainty Calibration

• Industry Standard: Temperature Scaling:
• After training, recalibrate on validation set. 
• Note: Doesn’t change any decisions.
• Note: Usually complementary to other methods
• Limitation: Requires a representative validation set.

𝑝( 𝑦; 𝑥 ∝
exp(𝑓((𝑦;|𝑥)/𝑇)
∑K exp(𝑓((𝑦K|𝑥)/𝑇)

𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐸𝐶𝐸(𝐷LMK , 𝑓()



How to Improve Uncertainty 
Calibration: Stochastic Neural Nets
• Stochastic Neural Networks:

• How to avoid noise collapse? Train with an entropy-boosting 
regularizer: 
• Ω Σ = H(𝑝 𝑧 𝑥 )

Encoder
𝑝(𝑧|𝑥) 𝑧 ∼ 𝑝(𝑧|𝑥)

Classifier
𝑝(𝑦|𝑧)

Monkey

ℎ �⃗� = 𝑤'𝑧, +𝑏,
𝑧 = 𝑓 �⃗� + 𝜖, 𝜖 ∼ 𝒩 0, Σ

𝑝 𝑧 𝑥 ~𝒩(𝑓 �⃗� , Σ)

[ Yu et al, AAAI’21, Simple and Effective Neural Networks ]

argmin(,*,+𝐿(ℎ* 𝑓 𝑥 , 𝑦)
Training

argmin(,*,+𝐿 ℎ* 𝑓 𝑥 , 𝑦 − Ω Σ



How to Improve Uncertainty 
Calibration: Bayesian Neural Nets
• Bayesian Neural Networks:

𝑝 𝑦 𝑥, 𝜙 = ∫ 𝑝 𝑦 𝑥, 𝜃 𝑝 𝜃 𝐷, 𝜙 𝑑𝜃

Training neural network: 𝑔>(⋅) with parameter 𝜃. Given dataset 𝐷 = 𝑥, 𝑦

𝑝 𝜃 𝐷 , 𝜙 ∝ 𝑝 𝐷 𝜃 𝑝 𝜃 𝜙

Prior over 
parameters

Learning by
Bayesian Inference

Recognize test set by integrating out parameters.

Training Set

Tr
ai

ni
ng

Te
st

in
g

[ Zhang et al, arXiv, Shallow Bayesian Meta-Learning ]
AAAI’21, Few-Shot Learning Competition: 3rd Prize Winner



Outline

• Part I: Data-Efficient Deep Learning
• Common Regularizers
• Beyond Regularization

• Part II: Intro to Robust and Explainable Deep Learning
• Adversarially Robust Learning
• Uncertainty in Deep Learning

• Part III: Intro to Meta-learning
• Concept
• Some examples



Meta Learning and Learning-to-Learn

Past: Shallow Learning Current: Deep Learning Future: Deep Meta Learning

Classifier Learned Learned Learned

Feature Hand-Crafted Learned Learned

Learning Algorithm
Incl. Architecture, 
Hyperparams, etc

Hand-crafted Hand-crafted Learned

[ Graphic from Yu et al, CORL’19 ] 



Defining Learning-to-Learn

•Machine Learning Definition [Mitchell, 1993]
• Given: Task T, experience E~T, performance measure P. 
• A program learns if performance at T wrt P improves with amount of 

experience E. 

• Learning to Learn Definition [Thrun, 1998]
• Given: Tasks T from a task distribution T~D, experience of each task 

E~T, performance measure P.
• A program learns-to-learn if performance at tasks T wrt P improves 

with amount of experience E and with number of tasks T.

ØPropose modification: Task episodes (single task meta-learning).



Meta-Learning: Building Blocks

• Formalizing meta-learning

min
"
𝔼#∼% # 𝐿(𝐷;𝜔)

𝜔∗ = argmin
"
5
'

𝐿 𝐷'()*; 𝜃'∗, 𝜔

s.t. 𝜃'∗ = argmin
+
𝐿(𝐷','-.; 𝜃', 𝜔)

Few-Shot
Validation Loss

Initial
Condition

SGD

Few-Shot 
Validation Loss

MAML
[Finn, ICML’17]

Meta-
Representation

“What?”

Meta-Objective
“Why?”

Meta-Optimizer
“How?”

Meta Learning
Algorithm

Meta-Learning: Minimise loss over a task 
distribution wrt meta-representation 𝜔.

Meta-Training, Bi-level optimization view:
Outer: Train the algorithm 𝜔
Inner: Train the model 𝜃 conditional on algorithm

Meta-Testing: Deploy on a new task
𝜃∗ = argmin

+
𝐿(𝐷./(0*; 𝜃, 𝜔)



Meta-Learning Opportunities



Meta Domain Generalisation

Auxiliary Loss 
Function

(Sub-symbolic)

Domain-Shifted
Validation Loss

(Single task, Online)

SGD

Feature Critic
[ Li, ICML’19 ]

Train Test

Multi-Task
Few-Shot Meta Learning

Multi-Domain
Meta Learning

Auxiliary 
Loss 𝜔

Supervised 
Learning

Validation
Performance

Meta-learning by backprop to train loss

Train Domain Validation Domain

[ Li et al, Feature Critic Networks, ICML’19 ]



Meta Domain Adaptation

•Many popular DA algorithms are initialization dependent.
• => Can we meta-learn a good initialization?

DA Learning Initialization Solution

MSDA [ICCV-19]
MCD   [CVPR-18]
DANN [JMLR-16]
MME  [ICCV-19]
CCSA  [ICCV-17]
JiGen [CVPR-19]

DA Algorithm Loss Surface

[ Li & Hospedales, Meta Learning for Domain Adaptation, ECCV-20 ]

Labeled Unlabeled

Unlabeled



Meta Domain Adaptation

Initialization

Loss After Domain 
Adaptation

(Single task, Online)

SGD

MetaDA
[ Li, ECCV’20 ]

Train Test

Unlabeled

Initial 
Condition

Domain
Adaptive
Learning

Validation
Performance

Backprop: Meta-learning

CNN Dataset Base
Method

MetaDA
Benefit

Multi-
Source

ResNet-18 PACS MCD +2.5%
ResNet-18 PACS DANN +2.0%
ResNet-18 PACS JiGen +3.4%
ResNet-50 Office-

Home
DANN +0.7%

Digit-Five M3SDA +1.2%

Semi-
Supervised

ResNet-34 DomainNe
t

MCD +0.3%

ResNet-34 Office-
Home

MME +0.7%

ResNet-34 DomainNe
t

MME +1.2%

[ Li et al, Meta-Learning for Domain Adaptation, ECCV’20 ]



Meta Learning Data Augmentation

Data 
Augmentation

Policy

Validation Loss
(Single task, Online)

SGD

DADA
[ Li, ECCV’20 ]

Augmentation
Policy

Supervised
Learning

Validation
Performance

Backprop: Meta-learning
Offline => Online

5 orders of magnitude!

[ Li et al, Differentiable Automatic Data Augmentation, ECCV’20 ]



Meta Learning Label Noise Robustness

Robust Loss 
(Symbolic Taylor 

Polynomial)

Validation Loss
(Multitask, Offline)

Evolutionary
Search

Searching for 
Robustness

[ Gao, arXiv’20 ]

Dog            Sailboat

Supervised
Learning

Validation
Performance

[ Gao et al, Searching for Robustness, arXiv’20…. ]

Cross EntSymbolic Loss:

Multi-task Offline ES
Meta-Learning

Learned

Softer
Minima

Softer
Penalties

Noisy Label Dataset
Symbolic Loss:
=> Meta-Learn once. 
Then Transferable to Novel Benchmarks

Conventional Online 
Transductive Meta-Learning



Meta-Learning

• For more details: 
• Hospedales et al, Meta-Learning in Neural Networks: A 

Survey, IEEE Trans PAMI, 2021.

Few-Shot
Validation Loss

Initial
Condition

SGD

Novel Task 
Few-Shot 

Validation Loss

MAML
[Finn, ICML’17]

• Components of a meta-learning algorithm:

Meta-
Representation

“What?”

Meta-Objective
“Why?”

Meta-Optimizer
“How?”

Meta Learning
Algorithm

Neural
Architecture

Many-Shot
Valid. Loss

Evolutionary
Search

Reg- Evolution 
(AmoebaNet)

[ Real, AAAI’19 ]

CNN+Attention

Low-Sample
Net Reward

Reinforcement
Learning

SNAIL
[Mishra, ICLR’18]

Search
 Space

Search
 Algorith

m

Search
 Objectiv

e


