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About Me: Prof. Tim Hospedales

» Background
* BA Computer Science, University of Cambridge
» Professor @ University of Edinburgh
* Funded by EPSRC, DSTL, EU Horizon 2020
* Alan Turing Institute Fellow
* Program Director, Machine Learning @ Samsung Al Cambridge
* Research Area:
* Deep Learning. Meta-Learning. Data-Efficient & Robust Learning.
* Track record:
e Over 70 papers in Tier 1 venues of Al, ML, Vision.
« => CVPR, ICCV, ECCV, ICLR, AAAI, IJCAI, ICML, NeurlPS, T-PAMI, 1JCV.
* Five best paper prizes.
* Five patents



Outline

e Part I: Data-Efficient Deep Learning
« Common Regularizers
e Beyond Regularization

 Part Il: Intro to Robust and Explainable Deep Learning
» Adversarially Robust Learning
* Uncertainty in Deep Learning

e Part Ill: Intro to Meta-learning
e Concept
e Some examples



Deep Learning Success
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Success Story of Deep Learning Era

e Gather and annotate bigger datasets.
e Train b|gger models. No saturation so far!

Performance grows with log of train data.
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[ Sun et al, Revisiting Unreasonable Effectiveness of Data in Deep Learning Era, ICCV’17 ]



Mechanism of Deep Learning Era Success?

e Gather and annotate bigger datasets.
* Train bigger models.

>

el Performance

Viedium NN
Traditional ML algorithms /
Statistical Learning
>
Data Size



Do we need another paradigm? |To

Do we need another paradigm?

 Humans have one shot learning
e Learn 5 objects per day for first 18 years.

* Long tail of object categories?
* Emerging categories

e Long tail of domains *| ¥
« Underwater, Radar, Sonar, LIDAR, Medical._S:
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* Defense applications
objects/events..



Why is Low-data Learning Hard?
Overfitting

e Underfitting vs Overfitting. Linear regression example.

Train Points  Test Points

A [ OvERFITTING A [ opTivMum A UNDERFITTING

Xz Xz Xz v

error

X

EG: 20" order polynomial. EG: 24 order polynomial. EG: Oth order polynomial.



Why is Low-data Learning Hard?

Overfitting

e Underfitting vs Overfitting. Linear regression example.

X2

OVERFITTING

error

X

Question: How to diagnose
over- vs under-fitting?

Overfitting?

Low train error
High test error

Underfitting?

High train error
High test error
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error ®
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Why is Low-data Learning Hard?

Overfitting

e Underfitting vs Overfitting. Linear regression example.

A OVERFITTING

Xz

error

X

EG: 20t order polynomial.

Classic Solution?

Try several model
complexities

Evaluate validation set
performance of each
Pick the model with best
validation performance

Issue for deep learning?

Too many complexity
parameters in DL (depth,
width, non-linearity, etc)
Few-Shot: Would pick a
simple model that doesn’t
provide deep learning level
performance.
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EG: 0% order polynomial.



Common Regularisation
Techniques



Reducing Data Dependence

Common techniques for overfitting reduction
* Weight decay / L2 regularization

e Early Stopping

* Label Smoothing

e Data Augmentation

* Mixup



Weight Decay & L2 Regularization

Weight decay. L2 regularisation.

* Other things being equal, prefer weights near zero.

min,, L(D; w) + A||w||3

Test Set

Optimum Model Complexity

Model Complexity

/ Supervised loss surface

Linear combination minima

§
P
N

J WI
\ Regulariser loss surface



Early Stopping

« With gradient descent, the model gradually improves its fit to
the data.
* It takes “time” (iterations of gradient descent) for overfitting to happen.
e =>Try to stop early, before overfitting happens

* Early Stopping
» Observe validation set error during training (proxy for
testing/generalisation error).
» Stop when validation set error starts to increase.

Error

+

rainin

| -
¥ Ll
0 Desirexd Stop Epochs



Label Smoothing

* Conventional Cross-Entropy Learning Objective
[0.0, 0.0, 0.0, 0.0,0.0,0.0,0.0, 1.0, 0.0, 0.0]

Yi=y =1, Yizy =0 \b

Lp,y) = — Z Yilogpy
[0.1,0.2,0.0,0.0,0.0,0.0,0.0,0.7,0.0, 0.0] .

* Label Smoothing

[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.91, 0.01, 0.01]

yk:y:1_€+€/K; ykiyze/K\

LP,Y) = = ) yilogh
k

/

[0.1,0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7, 0.0, 0.0]

[ Muller, NeurlPS’19, When does label smoothing help? ]

P = softmax(Wh(x))




EG: SpecAugment

Data Augmentation

e Data Augmentation

Figure 1: Augmentations applied to the base input, given at the
top. From top to bottom, the figures depict the log mel spectro-
gram of the base input with no augmentation, time warp, fre-
quency masking and time masking applied.

L(x,y) = — logp L(x,y) = — logPy (Ae
(x,y) zk:yk oghr(x) mmp L(xy) Zk:yk 0gPi (Ac(x))) [ Park, InterSpeech, 19]

Crop Scale

* Key: Augmentation must preserve desired semantics.

* Class preserving augmentations are domain knowledge:
* => A route to implicitly providing expert prior knowledge.



Mixup Augmentation +10,00,00

e Conventional Supervised Learning ¥=[0.0, 1.0, 0.0]

miny, Ey pL(y, fw (X))

* Mixup

rrlirlw Exl,yl,xz,y2~D,/’lE[0,1]L(A)ﬁ + (1 - /1))’2; fw (Axl + (1 - A)xz))

Image

Label [1.0, 0.0] [0.0, 1.0] [0.7, 0.3]

cat dog cat dog cat dog

[ Zhang, ICLR’18, mixup: Beyond Empirical Risk Minimization ]



Beyond Regularisation: Other Data Sources

e You can only get so far using regularization and cross-
validation in a closed world and tabula-rasa learning.

 Luckily there are often diverse data sources available.

* Beyond Closed-World/Tabula-Rasa Assumption:
* Transfer Learning,

Few-Shot learning,

 Domain Adaptation,

 Domain Generalisation,

* Semi-Supervised Learning,

Self-supervised Learning,
Meta-Learning



Annotated

Faces of Data Sparsity

Target: Solve dog vs monkey classification Extra Data:

Unannotated

Same Categories/ Domain Shift

. A .
pomaif " oralisatiol

dap &

No Labels (ation ()

Inaccurate labels

il Transfer learning
(Meta learning)




Some Typical Problem
Settings/Algorithms

Target* Auxiliary
(During training)

Task-Shift:

(Supervised) {X., Y} {Xs, Y5} p(X;) # p(X) p(Ys|Xs) # p(Ye|X,)
Transfer Learning Or p(Ys|Xs) # p(Ye|Xy) Or ys ; Y ct

orYs # Y, s
Semi-supervised {X,, Y} {Xs} Ys =T, a\
learning p(Ys|Xs) = p(YelX,) )

»

Self-supervised {X., Y} {X,} Ys # Y,
learning
Domain Adaptation {X.} {X;,Y.} p(Xs) # p(Xy)

Usually p(Ys|Xs) = p(Ye|X,), —

Y, =Y, Doma(l)r;-ﬁhlift. "
Domain {Xs, Y5} p(Xs) # p(X,) Pits it
Generalisation Usually p(Ys|X,) = p(Y:|X,),

Ys =Y,

Noisy Labels {X,, Y} {X, 7} Y.=Y. +¢€




Annotated

Faces of Data Sparsity

Target: Solve dog vs monkey classification Extra Data:

Unannotated

Same Categories/ Domain Shift

. A .
pomaif " oralisatiol

dap &

No Labels (ation ()

Inaccurate labels

-« Transfer learning
(Meta learning)




Reducing Data Dependence

Transfer Learning

 Transfer Learning: “The application of skills, knowledge, and/or attitudes

that were learned in one situation to another learning situation” (Perkins,
1992).

* Note:
* Transfer Learning # “Fine-Tuning”

e Fine TuningC Transfer Learning



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning '@
 Application: __"‘ﬂ
e Across Task: p(Ys|Xs) # p(YelX,) “

* Change of label-space. Y, =Y,

* Across Domain
» Change of data statistics. P&Xs) # p(Xy)

RGB => IR

ht- :
\‘I‘ L[ v

?'///




Reducing Data Dependence: Transfer

Transfer Learning: Linear Readout

e Fix target feature extractor using source, and training classifier
layer .

Source:

[ Data+Labels I |




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning
e [nitialise target parameters using source, and continue training

[ Source: ’ |
Data+Labels




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

e Why does fine-tuning work?
* Neural network optimisation is :
* With small learning rate, target task parameters do not change much.

» Transfer initialization effectively
, rather than towards zero.

e Assume source task is to target task.
e => Better chance of good minima.

Loss
Convex .. Non-convex | R | I |
/ % / : Loss ha— : Loss —
' N\ 7 o, - M 1 — ‘
VN | | |
\ / \ | |
/ | | |
| \ ¥ | | |
. - | | |
Weights Weights




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

 Very similar to explicit source—>target regularisation.
* Used in many classic learning methods(*).

minwt L(Dt; Wt) + }{llwt - wS”%

|
|
|
|
|
|

Compare:

min,, £ = L(D; w) + A|lw]|3
min,, £ = L(D; w) + Allw — 0|3

|
|
|
|
|
|

Source:Data+Labels Target: Data+Labels

[ Improving SVM Accuracy by Training on Auxiliary Data Sources, ICML'04 ]
[ Cross-domain video concept detection using adaptive svms, ACM MM’07 ]




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

" Assumption: min,, L(Dg; we) + 2w, = will3
» Source task relevant to target.
* Practical Considerations. Questions:
* How to control relevance degree?
* Which layers to transfer?
* What learning rate to use?
* Typical: X——-| H—-—-

» Relearn top while freeze bottom.

* Then tune all w/ LR proportional to
depth

Transfer

Initialisation

\/
Target: Data+Labels

Target: Data+Labels Ji

[How transferable are features in deep neural networks?, NIPS’14 ]

Source:Data+Labels

—

Question:

l Source:Data+Labels
Always good practice?




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

e Assumption:
 Source task relevant to target.

min,, L(Dg; wy) + A|lw; — wgll5

* Practical Considerations. Questions:
* How to control relevance degree?
» Which layers to transfer?

* What learning rate to use?
. Typical: I _

~ B | |
Relearn top while freeze bottom. m

/: Then tune all W/ LR proportiona| to
depth “ “
Only for cross-task. [Source:Data+LabeIs ]7 [Target:Data+LabeIs ]7

Assumption:
* Relevance proportional to depth. [How transferable are features in deep neural networks?, NIPS'14 ]




A State of the Art Solution: UDRC work

: : _ 2
Classic Transfer Learning: Penalty Regularized miny, L(Dg; we) + Allwy — wil[3

Transfer Learning: Constraint Reguarized (Euclidean) min,, L(Dt; Wt) E’iftxance
s.t.lwy —wgllp <4 Moved
. During
Transfer Learning: Constraint Reguarized (MARS) min,, L(D¢; w) Fine
S.t.”Wt _ Ws”oo < ] tuning

e Enables a generalization bound:

Input dim  Layers Max Weight Norm

1 44/1og(2d)cpCoo D54 B°° HJ 12 +3 log(2/5)

Ezynll(f(@),y)] < — Zl(f(fi),yi)+

5y vm \

Test Error Train Error Bound

Num Train Examples

[ Gouk et al, ICLR’2021, Distance-Based Regularisation of Deep Networks for Fine-Tuning ] * UDRC invention!



Transfer: Challengens

* What if the inputs are heterogeneous
e (EG: Task 1: RGB, Task 2: Infra Red)?

e How to know if a source task is relevant?

 How to prevent negative transfer if source is irrelevant?

* How to select the relevant source among many?



Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

e [ssues: What if the inputs are heterogeneous?
» Should learning rate always be proportional to depth?
* EG: Perceptual arithmetic network

AR

Arithmetic

-
® o
= =
Q o
() 0]
= =l
5 (=
= S

2ARE

[ EG: HOUDINI: Lifelong Learning as Program Synthesis, NIPS’18 ]




Reducing Data Dependence: Transfer

Transfer Learning: Fine-Tuning

* |ssues:
* How to select the relevant source among many?

e For linear models....

e Optimising target model w; assuming a set of potentially relevant
sources {wy}:

min,, [||ly — wX|| + ming ||lw — wy]|]

e ....not so straightforward with deep models
e => Often resort to cross-validation

E.g., Evgeniou et al, JMLR, 2005
E.g., Kang et al, ICML, 2011



Annotated

Faces of Data Sparsity

Target: Solve dog vs monkey classification Extra Data:

Unannotated

Same Categories/ Domain Shift
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No Labels (ation ()

Inaccurate labels

-« Transfer learning
(Meta learning)




Semi-Supervised: Problem

* Problem:

* Learn from mix of labeled & unlabeled
data (of same label-space).

* When annotation bottleneck rather than
raw data bottleneck.

» Typical supervised learning with {X;, ¥;}: mianL(yti’pW(ylx’f))
 What to do with {Xs }? i

Semi-supervised {X.,Y:} {X.}
learning



Semi-Supervised: A Classic Solution

e Entropy Regularisation:

min, ) Lk b (y1x)))
L Target/Labeled Source/Unlabeled
J J
Z pw(yk |xs )log pw()’k |xs)
J,k
Example Problem Supervised e Semi-Supervised
O unlabeled data B sped ot st [
l :333:333 : ;1 | Epm% decision boundary ||
@80&3@%@% | qgj
Q) A
3 % g ¢
%@&;8

[ Grandvalet, NIPS'04, Semi-supervised Learning by Entropy Minimization ]



Semi-Supervised: State of the Art

* Lots of Sophisticated Solutions Recently
* Mean Teacher - https://arxiv.org/abs/1703.01780
* Mix Match - https://arxiv.org/abs/1905.02249
e Noisy Student
e Audio -
* Images -


https://arxiv.org/abs/2005.09629
https://arxiv.org/abs/1911.04252

Annotated

Faces of Data Sparsity

Target: Solve dog vs monkey classification Extra Data:

Unannotated

Same Categories/ Domain Shift

. A .
pomaif " oralisatiol

dap &

No Labels (ation ()

Inaccurate labels

-« Transfer learning
(Meta learning)




Other Categories/Unlabeled

Self-Supervision: Problem

* Problem:
 How to exploit unlabelled task-irrelevant data?

* Typical supervised learning with {X, Y;} :

* What to do with {X }? | |
T ming ) L0 fu ()

Self-supervised {X, Y} {X.}
learning




Self-Supervision: Idea

 Pretext-tasks: Programmatic generation of tasks for the
unlabeled data.

Setu > Pseudo-Label > Self-Supervised > Downstream
P Generation Process Pre-Training Task Adaptation
.x. = ! - . eee
Bcde S z ,
Unlabelled Source Dataset I
— Z
(0
a || P l ' - N - . .
Labelled Target Dataset Update Update ‘
X,y

e Some parameters 0 shared between pretext and real task
e Multi-task or transfer.

ming , Ey[L ( (x5), f@y(xs))] =) mingy E,,[L (Yter,(j)(xt))]



Self-Supervision: Pretexts

Pseudo-Label Generation Processes

=1 - VAR

Masked Prediction Instance Discrimination

Transformation Prediction
z
2 | | |
. < : : 3
A x o BT
| | | x
Contrastive Instance Discrimination
. Pull —
Together “ 1
® - L3 :
o . e A
J— " 2 z= O
X

ming,, ExglL (PCty), £ (x))]



Self-Supervision: Pretexts

Video

Text Audio

Graph

Transform

Masking

¥ -

8020

e ia s ked

L] B |
¥ &

There is some good in this world,

il — ‘}I“”HHIIHH'-!|HJH||I!*I'II-"-II~4

It’s worth fighting for, fand
— : A et |
there is some good in this world.

in this world,
There is some good| in this world,
< -
and it’s worth fighting for. There is some good
[ —
and it’s worth fighting for. L ”mmm

andit’s worth fighting for.

ming,, ExglL (PCty), £ (x))]




Self-Supervision: Results

Transfer Performance

Transfer Performance

Many-shot (Linear)

Few-shot (Kornblith)

Detection (Frozen)

Dense (SNE)

= 259, = *x  16dr= =
15 =093 r=0.83 r=0.79 0g4r=0.43 0‘.’
*
104 ) 42K — *
0.5 1 e
@ 1.8 '

Many-shot (Finetune)

20]r=0.86

T T T
65 70 75

T
60
ImageNet Top-1 Accuracy

Few-shot (CD-FSL)
r=0.61

60 65 70 75
ImageNet Top-1 Accuracy

'r_o33

Detection (Finetune)

-0.8+

Dense (Sem. Seg.)

60
ImageNet Top-1 Accuracy

%* r=‘0.19
® e
. L
+ /
104
\ﬁ,
T T T '11 T T T T
65 70 75 60 65 70 75

ImageNet Top-1 Accuracy

e | A®+ X

* 4 1>

InsDis
MoCo-v1
PCL-v1
PIRL
PCL-v2
SimCLR-v1
MoCo-v2
SimCLR-v2
SelLa-v2
InfoMin
BYOL
DeepCluster-v2
SwAV
Supervised

Figure 1. Transfer performance is highly correlated with ImageNet performance for many-shot recognition but increasingly less correlated
for few-shot recognition, object detection and dense prediction. On the x-axes we plot ImageNet top-1 accuracy and on the y-axes the
average transfer log-odds. The gradients of the regression lines describe the correlation, with confidence intervals in shaded areas. For
perfect correlation, the ideal line is a positive slope diagonal. Correlation coefficients (Pearson’s 1) are shown in the top left of each plot.

e Self-supervision outperforms supervised transfer learning
even without exploiting labels!

[ Ericsson, Gouk, Hospedales, CVPR2021, How Well Do Self-Supervised Models Transfer? ] *UDRC work!



Domain Adaptation: Problem

* Problem:

e Learn from mix of labelled & unlabelled data
(same label-space, different domain).

e Often some domains are easier to
collect/annotate than others.

e Typical supervised learning: | l_ l_
* What to do with {X; }? mmWZL(yS’pW(ylxs))

— - -



Domain Adaptation:
Standard Solutions

Source (Labeled)

{ t} Unsupervised Loss
> EG: Entropy L _
total —

+L,+L,

Lq:argming By 4 [L(%, f_z(f(xd)) + L(d,h (f(xd)))]

Ly: argminf,gExt [H (g<f(xt)))]

[ EG: Tzeng, CVPR’17, Adversarial Discriminative Domain Adaptation ]



Domain Generalisation: Problem

e Problem:
* Deployment/target domain is shifted wrt train domain(s).
* No target data available for training (e.g., future).
* => Need to build a robust model.

NIRRT
T IR |
;_‘-—M'*} y

Domain {X,,Y.}
Generalisation




Domain Generalisation: A Solution

: . . 1EI®
 Many complicated and controversial solutions. } .
* Simple => Extend Mixup. -

min,, Ex,y~DL(Y» fw(x)) 19814
Ly min, Exl,yl,xz,y2~D,Ae[0,1]L(/1)’1 + (1 =Dy, fu(Axy + (1 — Dxy))

* Domain Mixup.
rrlinw EDEx,y~DL(yr fw (x))
L min, Ep. p,~pEx;y;~D; L(Ay1 + (1 = Dyy, fu(Axg + (1 — Dx3))

X2,Y2~D>

[ Wang et al, ICASSP’20, Heterogeneous domain generalization via domain mixup ]



Inaccurate labels

Label Noise: Problem

* Situation:
e Some subset of your data has flawed annotation.
* Context: When annotation is automated, or hard to verify.

* |SSue:

« With this additional noise source, overfitting issues can be much
worse. (Overfit to label errors => V.Poor test performance)



Label Noise: Some Solutions

e Simple Solutions:
e Cross-entropy loss is highly vulnerable to label-noise.

e Simple more robust alternatives: Absolute error, focal loss,
symmetric cross entropy.

Lyar =y — Pw(yk|x)||1
Lcg =Zyklog Pw Yk |x) =
k

Lsce =Lce(y, (X)) + Lee(p(yx), )

[ Wang, CVPR’19, Symmetric cross entropy for robust learning with noisy labels;
Ghosh, AAAI'17, Robust Loss Functions under Label Noise for Deep Neural Networks ]



Outline

 Part |: Data-Efficient Deep Learning
« Common Regularizers
e Beyond Regularization

e Part Il: Intro to Robust and Explainable Deep Learning
e Adversarially Robust Learning
* Uncertainty in Deep Learning

e Part Ill: Intro to Meta-learning
e Concept
e Some examples



Adversarial Attacks and Defense



Adversarial Examples j—’j

classified as misclassified as

Stop Sign Max Speed 100

e “Adversarial examples are inputs to machine learning models
that an attacker has intentionally designed to cause the model
to make a mistake” — Goodfellow, 2017

* Interesting: In many cases one can perturb an input in a way that fools an
Al system but would not fool (or indeed by invisible to) a human!

“panda” “nematode” “gibbon”
’57.7% confidence ) 99.3 % confidence

[ Szegedy, ICLR’14, Intriguing properties of neural networks ]



Finding Adversarial Examples:

* Given a loss function L(x, y, 8) of image, label, parameters.
* Contrast:
 Conventional Training: 8" = 8 — aVyL(x,y,0)
* Adversarial Example Search: x' = x + aV, L(x,y, 0)
* Imperceptible: Add constraint: § = |x' — x| < €
» Untargeted: Ask for any mistake. Targeted: Ask for a specific mistake.

* Here: "White-box” assumes attacker has access to your network 6
e |f you are attacking a web API, you probably don’t have access to V,.L(x,y, 8)
e But Black-box’ transfer attacks also work....

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence @ <—>l.

v

+.007 x

ML B
Victim

A



Maximizing p(airplane|x)




Not only a deep learning phenomenon

Linear classifiers and many
others can also be fooled.

8.0% goldfish

1.0% kit fox

8.3% goldfish 12.5% daisy

Fooled linear classifier: The starting image (left) is classified as a kit fox. That's incorrect, but then what can you expect from a
linear classifier? However, if we add a small amount "goldfish* weights to the image (top row, middle), suddenly the classifier is
convinced that it's looking at one with high confidence. We can distort it with the school bus template instead if we wanted to.

http://karpathy.github.io/2015/03/30/breaking-convnets/



http://karpathy.github.io/2015/03/30/breaking-convnets/

Adversarial (Question) Examples for VQA

Strongest “Yes” Beliefs

Visual Question Answering

What color are her eyes?
What is the mustache made of?

Q: Is the landing gear down?

Is this person expecting company A: Yes.
What is just under the tree? e

[ Liu, CVPR’18; Liu TPAMI’18 - iVQA: Inverse Visual Question Answering ]



Defending Against Adversarial Examples

A Standard Solution: Adversarial Training

1
minimize — max £(hg(z + 6),y).
0 |5] s lell<e

Repeat:
1. Select minibatch B, initialize gradient vector g := 0
2. For each (z,y) in B:
a. Find an attack perturbation 6* by (approximately) optimizing
§* = argmax {(hg(z + 9),y)

16]|<e
b. Add gradient at 6*
g:= g+ Vel(hg(z + 6%),v) Reasonably effective
3. Update parameters But slow! => Attack
s s 2 model at each training
=7 1BY lteration.

[ Madry et al, ICLR’18, Towards Deep Learning Models Resistant to Adversarial Attacks ]



State of the Art: UDRC’s WCA-Net ..

Stop Slgn
100
z ~ p(z|x) Monkey

80
3 60
E —
S
. . 40
Key Contribution: e
1. A bound for adversarial robustness of stochastic NNs: 20

2. Aalgorithm based on this bound => SotA performance. —— WCA, Anisotropic
—— Lower Bound

0
N rs 0.0 0.1 0.2 0.3 0.4 0.5
Model: L, f(%xﬁ ef W Zétb\'N ©,5) p(z]x)~NV (f (%), Z) Attack Stfength
l Is Less Than “Weight Covariance Alignment”
c
Bound:

- WCA ;

= Aligning decoder weights to noise
minimises the bound.

ho(= .
G’p,e(m,y) = max P
&:(|8]|p<e

[Eustratiadis, ICML 21, Weight Covariance Alignment ] UDRC invention!



Explainable Deep Learning

Uncertainty in Deep Learning



Uncertainty in Deep Learning

e Decision Functions s

10 -\~q\
Banana ) , :
0 A A
-5 Aleatoric o~ k
-10 " o.
30 yrs -
7150 2 4 6 ) 8 o 10

* Uncertainty Estimates

. /\ Output a mean and variance

30 yrs

(Banana, 40%), (Moustache, 30%), (Person, 30%) Start by using a softmax output.



Why Is Uncertainty Important?
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* Outlier Detection -
* Information Fusion TIFegnt

e Decision Theory
 Active Learning (Data Collection, Model Improvement)
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Typical Uncertainty Failure Cases

 Overconfidence

e EG: Model gets 95% accuracy, but also has 100%
confidence on the 5% it gets wrong.

e Qut-of-distribution:

90% male penguin

88% female penguin

99% male penguin

99% female penguin

Training



How to Measure Uncertainty Calibration?

 For all inputs to which your model assigns x% confidence,
does it get x% of them correct?

e ECE:
 Bin by confidence, then compare confidence and accuracy

* LeNet (1998) ResNet (2016)
CIFAR-100 CIFAR-100
1} 1 1
w 0.8 z .§II§ §l §I
% ﬁll él éﬁ
. <%
wn %: o
5 04 g =
M ® 5 <n 1<
CE= )Y [Brm| B f(B ' . —
E E = —_ n ( ) 0.0
n acc( m) COo mj» 100.0 0.2 04 0.6 08 1.0 0.0 02 0.4 0.6 08 1.0
m=1 '
0.8
B
g 0.6
8 0.4
<
0.2 [E
Error=44.9
0.0

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 08 1.0

[ Guo, ICML'17, On Calibration of Modern Neural Networks ] Confidence



How to Improve Uncertainty Calibration

Varying Weight Decay
ResNet-110 - CIFAR-100

e Regularization: — o
|2 regularization, weight-decay. .

* Label-smoothing, network size. <

* Change of Loss Function 0 100 100 10
. Weight decay
 Cross-entropy => Focal Loss, Brier

Leg = —log py, (x) Leg =—(1—pw (@) logpu () Luse =1y = pw (I3

* Ensembles:
» Train a whole set of models: {p,, (y|x)}

* Average their prediction: p(y|x) = (%) 2k Pw, %)

[ Lakshminarayanan, NIPS’17, Simple and Scalable Uncertainty Estimation; Mukhoti, NIPS’20 Calibrating Deep Networks using focal Loss ]



How to Improve Uncertainty Calibration

 Industry Standard: Temperature Scaling:
 After training, recalibrate on validation set.
* Note: Doesn’t change any decisions.
e Note: Usually complementary to other methods
* Limitation: Requires a representative validation set.

b alx) o exp(fw Vi |x)/T)
Wk ¥, exp(fo 711%)/T)

T = argmin ECE(D,q, fi)



How to Improve Uncertainty
Calibration: Stochastic Neural Nets

e Stochastic Neural Networks:

Training

hE) = W77, +b, N3 |
Fm @ bl feny W PEROTNUOZD - argming, slh(f().7)

* How to avoid noise collapse? Train with an entropy-boosting

regularizer:

« Q(2) = H(p(z|x))
’ argmin f,W,zL(hw(f (x)), y) — Q)

[ Yu et al, AAAI'21, Simple and Effective Neural Networks ]



Training

Testing

How to Improve Uncertainty
Calibration: Bayesian Neural Nets

e Bayesian Neural Networks:

Training neural network: g, (+) with parameter (. Given dataset D = {x, y}

* -
..;-o‘t‘

Learning by Training Set Prior over
Bayesian Inference i parameters

e
p(01D, 6 o p(DI)P(01)

Recognize test set by integrating out parameters.

p(lx,d) = [ pylx, DpOID, $)d

[ Zhang et al, arXiv, Shallow Bayesian Meta-Learning ]
AAAI'21, Few-Shot Learning Competition: 37 Prize Winner




Outline

 Part |: Data-Efficient Deep Learning
« Common Regularizers
e Beyond Regularization

 Part Il: Intro to Robust and Explainable Deep Learning
» Adversarially Robust Learning
* Uncertainty in Deep Learning

 Part Ill: Intro to Meta-learning
* Concept
e Some examples



Meta Learning and Learning-to-Learn

Iearn to learn tasks

quickly learn

kl new task
'W — X

1‘ i
_ Past: Shallow Learning Current: Deep Learning Future: Deep Meta Learning

Classifier Learned Learned Learned
Feature Hand-Crafted Learned Learned
Learning Algorithm  Hand-cratied Hand-crafted Learned

Incl. Architecture,
Hyperparams, etc



Defining Learning-to-Learn

* Machine Learning Definition
* Given: Task T, experience E~T, performance measure P.

* A program if performance at T wrt P improves with amount of
experience E.

 Learning to Learn Definition

* Given: Tasks T from a task distribution T~D, experience of each task
E~T, performance measure P.

e A program if performance at tasks T wrt P improves
with amount of experience E and with number of tasks T.

» Propose modification: Task episodes (single task meta-learning).



Meta-Learning: Building Blocks

e Formalizing meta-learning

Meta- .
) Initial
Representation Condition
“What?”

Meta-Optimizer
“How?”

SGD

Meta-Learning: Minimise loss over a task
distribution wrt meta-representation

Ep~p)L(D; @)

Meta-Training, Bi-level optimization view:
Outer: Train the algorithm
Inner: Train the model 8 conditional on algorithm

Meta-Objective Few-Shot
“Why?” Validation Loss

3y 3

Meta Learning MAML
Algorithm

* = arg zL (D,}’al; o;, )
t

s.t. 0 = arg mein L(D{™; 6;, )

Meta-Testing: Deploy on a new task

0" = arg meinL(Dnovel; 0,w)




Meta-Learning Opportunities

~

l

Meta-Optimizer

Gradient

Reinforcement
Learning

Evolution

- Meta-Learning )

v

‘ Meta-Representation
Parameter ‘ ( Instance ‘ ‘
' Initialization ‘ Weights | | Curriculum
) Dataset/
Optimizer \Hyperparameters/‘ { Ervier e iy
Black-Box Model/| | ) ‘ Loss/
. Embeddings Architecture Reward
Modules/ ‘ " Augmentation/ | ‘, Exploration
Attention Noise Policy

J
J
J
\‘

Y

[ Meta-Objective }

Multi/Single:

Many/Few-Shot

Online/Offline

Net/Asymptotic
Performance

-Task

Few-Shot
Learning

Fast Learning

Continual
Learning

Compression

l

Application

Exploration

Bayesian
Meta-Learning

Unsupervised
Meta-Learning

Active Learning

Label Noise

Adversarial
Defense

Domain
Generalization

Architecture
Search



Meta Domain Generalisation

Auxiliary Loss

Function
(Sub-symbolic)

SGD

Domain-Shifted

Validation Loss
(Single task, Online)

Feature Critic
[ Li, ICML19 ]

learn to learn tasks

quickly learn
new task

Multi-Task
Few-Shot Meta Learning

Multi-Domain
Meta Learning

HUY 89¥ATuHUY. 28

M ¥

Train Domain Validation Domain

A 4 W

Supervised Validation
Learning Performance

D A

Meta-learning by backprop to train loss



Meta Domain Adaptation

* Many popular DA algorithms are initialization dependent.

e => Can we meta-learn a good initialization?

DA Algorithm Loss Surface Labeled

20
>y | ‘ T
\ g I . o
= S\ % i a3
. T Ny
i - B\
= . X .
° Bed Bike Unlabeled
14
12
76 Classifier Initialization . Feature Extractor Initialization
74
70
72
70 .
68
66 60
64
55
62
60 - - 3 3 _
Kaiming ¢ Xavier v Kaiming Xavier 50 No perturb +£€N(0,0.01) +£€A(0,0.02)  +e€N0,0.03)

—> DALlearning ® Initialization * Solution

Unlaeled

MSDA [ICCV-19]
MCD [CVPR-18]
DANN [JMLR-16]
MME [ICCV-19]
CCSA [ICCV-17]
JiGen [CVPR-19]




Meta Domain Adaptation

Initialization
SGD
. Initial /E d‘;mtai'v"e Vlidsitien
Condition P Performance

Loss After Domain Learning

Adaptation
(Single task, Online)

Backprop: Meta-learning

o S
[ Li, ECCV'20] Method Benefit

ResNet-18 PACS +2.5%
ResNet-18 PACS DANN +2.0%
ResNet-18 PACS JiGen +3.4%




Meta Learning Data Augmentation

5 orders of magnitude!

Data
Augmentation
Policy

SGD

Validation Loss
(Single task, Online)

DADA
[ Li, ECCV'20]

Batch 1 : . :
- -~ -
y P s i

Batch 2 -
= ~
=

Equalize, 0.4,4  Solarize, 0.6, 3
Rotate, 0.8, 8  Equalize, 0.6,7

e b

Augmentation Supervised
Policy Learning

=
Sl T

2’7 ompa rem ¥ ——
@ ~.~'-“‘--“.
£3.5 -
o
S
53.3
@ Reduced CIFAR-10
i)
3-1~1 * CIFAR-10
0.01 01 1 10 100 1000 10000
GPU Hours

Backprop: Meta-learning

Offlire => Online

Validation

Performance




Meta Learning Label Noise Robustness

Robust Loss
(Symbolic Taylor
Polynomial)

Evolutionary
Search

§ymbo|ic Loss: Cross Ent

o~ Learned

> S
o)

8|

6}

4|

pfter

cnaltie Multi-task Offline ES

Meta-Learning

L L n n n L
0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

0.2 0.4 0.6 0.8 10
predicted probability for g caFgory

Validation Loss
(Multitask, Offline)

Searching for
Robustness
[ Gao, arXiv’'20 ]

Noisy Label Dataset

e——— —— -

Dog Sailboat

Minima
Symbolic Loss:
=> Meta-Learn once.
Then Transferable to Novel Benchmarks

Validation
Performance

Supervised
Learning

Conventional Online
Transductive Meta-Learning



Meta-Learning

e For more details:

* Hospedales et al, Meta-Learning in Neura

Survey, IEEE Trans PAMI, 2021.

* Components of a meta-learning algorithm:

Meta- -
P
S Representation Initial

“What?”

Condition

Meta-Optimizer
”HOW?”

Novel Task
Few-Shot
Validation Loss

Meta-Objective
“Why?”

Meta Learning
Algorithm

Neural
Architecture

Evolutionary
Search

Many-Shot

Valid. Loss

Reg- Evolution
(AmoebaNet)

CNN+Attention

Reinforcement
Learning

Low-Sample
Net Reward

arXiv:submit/3456571 [cs.LG] 7 Nov 2020
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Meta-Learning in Neural Networks: A Survey

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, Amos Storkey

field of , or . has seena i ars. Contrary to

conventional apmoacnss to Al where task; ved from toimprove the

learning algorithm itself, giver i opportunity to tackle many
bottlenecks, as well “This survey describes
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such as transfer learning and
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few-shot learning ing. Finally,
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1 INTRODUCTION

Contemporary machine learning models are typically
trained from scratch for a specific task using a fixed learn-
ing algorithm designed by hand. Deep learning-based ap-
proaches specifically have seen great successes in a variety
of fields [1]-[3]. However there are clear limitations [4]. For
example, successes have largely been in areas where vast
quantities of data can be collected or simulated, and where
huge compute resources are available. This excludes many
applications where data is intrinsically rare or expensive [5],
or compute resources are unavailable [6).

Meta-learning provides an alternative paradigm where
a machine learning model gains experience over multiple
learning episodes - often covering a distribution of related
tasks — and uses this experience to improve its future
learning performance. This ‘learning-to-learn” [7] can lead
toa variety of benefits such as data and compute efficiency,
and it is better aligned with human and animal learning [8],
where leaming strategies improve both on a lifetime and
evolutionary timescales [8]-{10].

Historically, the success of machine learning was driven
by the choice of hand-engineered features [11], [12]. Deep
learning realised the promise of joint feature and model
learning [13], providing a huge improvement in perfor-
mance for many tasks [1], [3]. Meta-leaming in neural
networks can be seen as aiming to provide the next step
of integrating joint feature, model, and algorithm learning,

Neural network meta-learning has a long history [7],
[14], [15]. However, its potential as a driver to advance the
frontier of the contemporary deep learning industry has
led to an explosion of recent research. In particular meta-
learning has the potential to alleviate many of the main
criticisms of contemporary deep learning [4], for instance
by improving data efficiency, knowledge transfer and un-
supervised learning. Meta-learning has proven useful both
in multi-task scenarios where task-agnostic knowledge is

Al Centre, Cambridge and

Email: {thospedales.amtonio pal micaelli.storkey ) ed.ac.uk.

extracted from a family of tasks and used to improve learn-
ing of new tasks from that family [7], [16]; and single-task
scenarios where a single problem is solved repeatedly and
improved over multiple episodes [17}-[19]. Successful appli-
cations have been demonstrated in areas spanning few-shot
image recognition [16], [20], unsupervised leamning [21],
data efficient [22], [23] and self-directed [24] reinforcement
learning (RL), hyperparameter optimization [17], and neural
architeciure seatch (NASJ (18], (25, [26].

Many perspectives on meta-learning can be found in
the literature, in part because different communities use the
term differently. Thrun [7] operationally defines learning-to-
learn as occurring when a learner’s performance at solving
tasks drawn from a given task family improves with respect
to the number of tasks seen. (cf, conventional machine
learning performance improves as more data from a single
task is seen). This perspective [27]-[29] views meta-learning
as a tool to manage the ‘no free lunch' theorem [30] and im-

ve generalization by searching for the algorithm (induc-
tive bias) that is best suited to a given problem, or problem
family. However, this definition can include transfer, multi-
task, feature-selection, and model-ensemble learning, which
are not typically considered as meta-learning today. Another
usage of meta-learning [31] deals with algorithm selection
based on dataset features, and becomes hard to distinguish
from automated machine learning (AutoML) [32], [33].

In this paper, we focus on contemporary neural-network
meta-learning. We take this to mean algorithm learning as
per [27], [28], but focus specifically on where this is achieved
by end-to-end learning of an explicitly defined objective func-
tion (such as cross-entropy loss). Additionally we consider
single-task meta-learning, and discuss a wider variety of
(meta) objectives such as robustness and compute efficiency.

‘This paper thus provides a unique, timely, and up-to-
date survey of the rapidly growing area of neural network
meta-learning. In contrast, previous surveys are rather out
of date and/or focus on algorithm selection for data mining
[27), [31], [34], (35, AutoML (32], [33], or particular appli-
cations of meta-learning such as few-shot learning [36] or
neural architecture search [37].




