
Why does scientific High 

Performance Computing (HPC) 

need FPGAs?

Dr Nick Brown, EPCC

n.brown@epcc.ed.ac.uk



An embarrassment of hardware riches for 

computation



And an FPGA testbed….

• Over 10 years ago had 
FPGA cluster in EPCC

• But immaturity of the 
hardware (struggling to 
match CPU performance) 
and software ecosystem 
(difficult to program and 
lack of tooling) ultimately 
meant that this was not 
adopted

• But a decade is a long time, 
and things change!

• Much more capable hardware

• Significantly enhanced software 
ecosystem

• Testbed funded by ExCALIBUR, details 
at fpga.epcc.ed.ac.uk



Moving from Von Neumann to dataflow

Temporal computing: Can be thought of like a flowchart, 

with the PE (e.g. CPU or GPU) executing one stage after 

another

Temporal 

computing

(CPU or GPU)

Reconfigurable 

architecture
(dataflow)

Spatial computing: Operations implemented 

electronically on chip, and acts as a pipeline, 

loop iterations flowing through

float sum=0;

for (unsigned int i=0;i<num_its;i++) {

float d=input[i] + add_val;

sum+=d;

}

*result=sum;



So where can FPGAs be helpful?

1. When the code is not compute bound

2. When we wish to exploit the 
high bandwidth connections of 
the FPGA
• Between FPGA and outside (e.g. HBM2 

or potentially QSFP28 networking ports)

3. For performance predictability



But the devil is in the detail….



Example: AX kernel of Nekbone
• Nek5000 is used for high fidelity simulation of rotating 

components, such as turbines

• Nekbone is a proxy-app capturing basic structure of Nek5000

On 24 CPU cores: 65.74 GFLOPs

➢ Only 11.7 times faster than one 

CPU core 

On a Xeon Platinum Cascade Lake with N=16, 800 

elements

• All double precision floating point

• AX kernel applies the Poisson operator 

of the CG solver accounts for approx. 

75% of overall runtime of Nekbone

• 800 elements, and a size of N, with the 

number of grid points equal to N3

• For instance with N=16 then there 

are 831488 double precision 

floating point operations per 

element

Use FPGA to ameliorate overhead of memory access and keep compute fed 

with data



Overview of single kernel performance

8

Detailed information available at https://arxiv.org/pdf/2011.04981.pdf



Bottom up optimisations

Loop pipelining Loop unrolling

Conflict on external port to 

HBM2/DDR memory
Conflict on (dual-ported) 

on-chip BRAM memory

Spatial dependency



Working top down: Adopting a dataflow 

design

• Each stage is an independent function 
running concurrently and connected via 
streams

• Idea is to keep each part continually fed with 
data and processing

• Golden rule: Keep the data flowing, each 
cycle generating a result



Buffering data between stages

• Adopt ping-pong (double) buffering

• Works in three phases, loading data for 

the next element, processing the first 

three MM for the current element, and the 

last three MM for the previous element

• Keeps all parts running concurrently

• Is also possible to accurately predict the realistic theoretical best 
performance our algorithm can deliver

• Each MM is 31 FLOP/cycle and accumulation is 17/cycle, equals 203 FLOP/cycle. Multiply this by 
clock frequency for theoretical FLOPS

• If not achieving this then not keeping data flowing!



H
ig

h
e

r 
is

 b
e

tt
e

r

Performance against CPU and GPU

• FPGA an Alveo U280

• 4 FPGA kernels for 

double precision

• 7 FPGA kernels for 

single & half precision

• CPU a 24-core 

Cascade Lake Xeon 

Platinum (8260M)

• GPU a NVIDIA V100 



Power efficiency against CPU and GPU

H
ig

h
e

r 
is

 b
e

tt
e

r

• FPGA an Alveo U280

• 4 FPGA kernels for 

double precision

• 7 FPGA kernels for 

single & half precision

• CPU a 24-core 

Cascade Lake Xeon 

Platinum (8260M)

• GPU a NVIDIA V100 



Another example: Atmospheric advection
• Part of Met Office NERC Cloud 

(MONC) model

• Accounts for around 40% of the model 

runtime

• Stencil code working on three fields (U, 

V, W which is wind in x, y, z dimensions)



Tailoring caching of data via shift buffer

Cell -1 Cell 0
Cell 

+1

Read value 

from external 

memory

• But need to provide 27 
values per cycle to the 
advect routine in order to 
achieve a result for each 
field for each clock cycle

• Use a shift buffer - 1D 
example Each cycle shift values down by 

one, throwing away cell-1

• Want to read only one new value 

from external memory for each 

field per cycle as otherwise get 

conflicts on the memory port

• 3D domain, where stencil computations 
require up to 27-points to calculate value for 
each grid cell



Tailoring caching of data via shift buffer

• Have these windows running 
across the 3D domain

• Generates 27-point stencil 
each cycle 

• Memory on FPGA limits size 
in Y dimension so work in 
chunks

• The golden rule of keeping the data flowing 
and generating a result per cycle necessitated 
this shift buffer, which then impacted how the 
code is running and having to chunk in Y 

Detailed information available at 

https://arxiv.org/pdf/2107.13500.pdf



Performance comparison

• FPGAs outperform the CPU by 
a long way, but GPU is a tough 
test!

• The Xilinx Alveo U280 tends to 
outperform the Intel Stratix 10

• At largest problem sizes Alveo
must use DDR-DRAM rather 
than 8GB HBM2 resulting in 
performance decrease

• Alveo U280 has excellent power 

efficiency until switch from HBM2 to 

DDR-DRAM

• Higher power draw of Stratix 10 

means it is worse, but still competitive 

against the GPU, especially for 

smaller problem sizes



Leveraging Versal AI engines

• 400 AIEs which run at 

1.2GHz and each can 

handle 8 (single 

precision) FP arithmetic 

operations per cycle. 

• Therefore can we use the PL for data loading/reordering and 

the AI engines for compute?
• Shows promise, but 

currently limited by number 
of connections between PL 
and AIEs



STAC-A2 financial benchmark
• STAC research are the industry standard body for financial benchmarks

• Many companies such as technology vendors and fintech are members and 

use the benchmarks as a basis for performance data

• STAC-A2 focuses on the computation 

of market risk sensitivities

• This describes price movements in a 

market and their impact on the value of 

an investor’s position in holding a 

financial instrument.

• Involves simulation using the Heston 

stochastic volatility and the Longstaff 

and Schwartz models.

• In the reference code around 50% of cycles are 

stalled due to memory access or other issues.



STAC-A2 financial benchmark
• Whilst Alveo shells are DMA only, we can 

provide a streaming-like approach by 

decomposing the data into batches

• Keeps the different parts running concurrently

• Especially useful here where we need to undertake 

data reordering of input data and results

Problem 

size

Data type Runtime (ms) – Lower is better Total Energy Usage (J) – Lower is better

CPU GPU Alveo U280 Stratix-10 CPU GPU Alveo U280 Stratix-10

Tiny float 372.15 1119.88 77.81 93.65 92.72 62.43 2.55 3.71

double 369.07 1148.14 67.33 79.13 94.35 64.12 2.51 4.25

Small float 629.18 1195.73 98.46 102.99 151.50 67.12 3.20 5.21

double 638.67 1258.58 97.64 110.55 153.85 70.57 3.76 6.35

Medium float 1545.94 1656.99 221.71 254.30 397.48 100.71 7.40 14.56

double 1551.90 1932.30 286.90 301.52 393.34 123.88 10.92 18.73

Large float 4574.41 2850.95 544.48 618.79 1277.14 187.99 18.46 42.58

double 4558.11 3718.64 714.96 772.63 1266.59 246.14 27.15 61.03

Huge float 15825.42 - 1928.11 - 5011.16 - 54.68 -

double 15561.09 - 2301.29 - 4900.16 - 92.89 -

The experiments conducted have not been designed to comply with official STAC benchmarking rules and regulations. Therefore, the experimental results 

that we present are of a research nature and are not representative of official STAC audits.

“CPU” is running on two, 24-core Cascade Lake Xeon Platinum CPUs, “GPU” is running on Nvidia V100



Conclusions & keen to collaborate!
• Really exciting time for FPGAs based on the advances 

being made by vendors around hardware and software 

ecosystems

• Many of our HPC codes are not compute bound, so worth exploring 

whether the flexibility offered by FPGAs can be beneficial

• FPGA tooling is mature enough to 

consider these from a dataflow 

algorithmic perspective

- Golden rule of keeping the data flowing!

- Can get good performance on the 

FPGA, but expertise is still needed

• Same as GPUs and CPUs, more 

challenges to overcome.

Keen to collaborate exploring computational 

workloads on FPGAs


