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Deep Learning in Safety-Critical Systems 4

Figure: Driverless Car [6], Autonomous Underwater Vehicles [7],
Drone for inspection [5], Smart Grid [2], Net-zero buildling [1], etc.
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Can We Trust its Decisions? 5

—

Question: Can we really trust the decisions made by deep
learning models, especially on safety-critical applications?

This question can be broken down into a number of more
concrete questions, such as

» How does a deep learning model make a decision?
» Does deep learning always make a correct decision?

» Under what circumstances a deep learning model will make
a wrong/correct decision?
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Vulnerability 6
—

» Robustness — local (input-level) safety
» wrt input perturbation, weight perturbation, etc

» Generalisation — global (model-level) safety
» wrt different operational environment

> Security
» wrt data corruption & poisoning, data privacy, etc

» Explainability
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Robustness Error

—

Adversarial
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DL model’s
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Example
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Human: should remain the same
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Model Improvement for Robustness

—
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Verification
—

Do not find adversarial examples:
assure no adversarial examples with
guarantee — Robust or Safe

N,

hY ————
-~ \\
’ A
P N
i Pt N
PV D
( ]
(B ]
T 9 ¥
oSN

DL model’s
Decision Boundary

Find adversarial examples:
assure the existence of adversarial
examples — Not Robust or Unsafe

e

Decision Boundary by
Human Perception

(Robustness) Verification: verify if a certain input area can
exclude misclasssification with guarantees
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Generalisation Error 10

—

How about these unseen datapoints which are far away from known data?
4 \ \\
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Research Dealing with Al Safety 11
—

» Direction 1: identify the errors
» adversarial attack, security attack, etc
» Direction 2: determine if it is without error
» verification
» Direction 3: reduce errors by improving models
» adversarial training, adversarial defence, etc
» Direction 4: quantify the errors
P statistical evaluation, software testing, etc
» Direction 5: demonstrate the safety for development cycle
» safety assurance, reliability estimation, etc
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Trend of relevant research 12

—
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Figure: https:
//nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
Comprehensive one: A Survey of Safety and Trustworthiness of Deep
Neural Networks: Verification, Testing, Adversarial Attack and Defence,
and Interpretability, Computer Science Review. 37 (2020): 100270.@‘?7
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What is Verification? 14

Input layer Hidden layers Output layer
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Counterexamples

Verification
Algorithms

1. robustness,
2. fairness,
3. interpretability,

4. privacy,
etc.
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Robustness Verification

15
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Robustness Verification for Neural Network 16

—

| g Veriﬁcation Methods inputlayer  layer1 .. layerk output layer

™

» Constraint Solving ﬁ

» Over-approximation %a o Right

» Global optimisation

Go Straight

» What is the difficulty?

» Scalability
» Only deal with
robustness
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Statistical Evaluation
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State-of-the-art 18
—

» Sampling-based methods
» Software testing methods
» Deep learning theory based methods

May work with both robustness and generalisation.
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Sampling-based Methods 19

» Sampling & fitting distributions

» Guarantee from some theories e.g., minimum adversarial
distortion follows extreme value distributions [9].

» Enhanced Monte Carlo sampling [8]

» Guarantee from statistics theory
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Software Testing Methods 20
—

» Well established in many industrial standard for software
used in safety critical systems, such as IS026262 for
automotive systems and DO 178B/C for avionic systems.

» Coverage Metrics

» structural coverage
P scenario coverage

» Test Case Generation Methods
> fuzzing
» symbolic execution, etc

» to determine if the generated test cases include bugs.
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Software Testing Methods 21
—

» Industrial standards need to be upgraded

> A few Coverage Metrics

» DeepXplore: Automated Whitebox Testing of Deep
Learning Systems. SOSP 2017

» Structural Test Coverage Criteria for Deep Neural
Networks. EMSOFT 2019

» A few Test Case Generation Methods
» Concolic Testing for Deep Neural Networks. ASE 2018

> Use a set of generated test cases to either finding bugs or
evaluating the performance of a neural network
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Deep learning theory based methods 22

» How to statistically predict the generalisation capability of
a network, according to some structural information such
as weights, architectures, etc?

Methods Generation of input | Utilisation of structural
samples? information?
Sampling Yes No
Software testing Yes Maybe
DL theory No Yes

Table: Comparison between statistical evaluation methods
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Deep Learning theory 23

Which DL theory?

» PAC Bayesian Theory, to upper bound the gap between
expected loss on input space and expected loss on training
samples, by taking into consideration the change of weights
before and after the training.

» Vapnik—Chervonenkis (VC) dimension, to measure of the
capacity (complexity, expressive power, richness, or
flexibility) of a set of functions that can be learned by a
statistical binary classification algorithm.

> etc.
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PAC Bayes + Weight Correlation [4] 24

Relax the i.i.d. assumption on the posterior distribution, and
define quantities such as weight correlation (WC) based on
structural information
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Figure: (FCN) The WC of any two neurons is the cosine similarity of
the associated weight vectors. (CNN) The WC of any two filters is
the cosine similarity of the reshaped filter matrices.
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PAC Bayes + Weight Correlation

Table 1: Complexity Measures (Measured Quanti:

ties)

Generalisation Error (GE) Lp(for) — Ls(for)
Product of Frobenius Norms (PEN)  T,/|0F || r
Product of Spectral Norms (PSN) TL16F 2

Number of Parameters (NoP) Total number of parameters in the network
Sum of Spectral Norms (SoSP) Total number of parameters x 3_(|6f — 6F|»
Weight Correlation (WC) 7> plwr)

PAC Bayes (PB) >lop - 9{“%;/‘—’"?

PAC Bayes & Correlation (PBC) S (160 —6F ||3, /207 + g

Table 2: Complexity measures for CIFAR-10

Network PFN PSN NoP  SoSP PB PBC wC GE
FCNI1 8.1e7 1.4e4 3.7¢7  1.6e9 I.1e4 | 1.14e5|| 0.297 | 2.056
FCN2 3.3e7 8.5e3 4.2¢7 1.61e9 | 8.8e3 | 1.24e5]| 0.296 | 2.354

VGGI11 8.5¢10 1.4e5 9.7¢6  2.4e8 | 2.0e3 |3.4led| 0.273 | 0.929
VGGI16 5.1el5 1.3e7 1.5¢7 5.2e8 | 2.6e3 |3.73e4|| 0.275 | 0.553
VGGI19 I.1e19 2.9e8 2.1e7  8.1e8 | 3.3e3 |4.26e4 |l 0.274 | 0.678

ResNet18 2.5e22 I.1el2 | 1.1e7 8.4e8 | 4.7¢3 | 1.34e5|| 0.732 | 2.681

ResNet34 9.9e34  49el6 | 2.1e7  3.1e9 | 1.0e4 | 1.30e5| 0.733 | 2.552

ResNet50 1.4e76 7.5e46 | 2.3¢7  6.1e9 | 1.6e7 | 1.62e7|| 0.278 | 2.807

DenseNet121 59e176  1.4el51 | 6.8¢6 1.5¢10 | 1.0e9 | 1.04e9|| 0.357 | 1.437
Concordant Pairs 21 21 22 26 24 29 24 -
Discordant Pairs 15 15 14 10 12 7 12 -

Kendall’s 7 0.16 0.16 0.22 0.44 0.33 | 0.61 )| 0.33 -

25

New measure
(wr))
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Safety Assurance




Safety Assurance 27

—

Play video demo :
https://www.youtube.com/watch?v=akY8f5sSFpY&t=1s
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Conclusions 29

—

» Most efforts are taken on finding errors on pre-trained
models;

» Adversarial examples are inherent to deep learning, i.e.,
errors cannot be eliminated;

What shall we do?
» focus on acceptable level of safety;
» consider how the deep learning models are used;

» consider safety assurance on not only the pre-trained
models but also the development cycle.
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