

Distributed Learning Gaussian Process Tracking with Uncertainty Quantification (Part of SIGNeTs Project)

SIGNetS

Xingchi Liu, Chenyi Lyu, and Lyudmila Mihaylova Department of Automatic Control and Systems Engineering, The University of Sheffield Email: xingchi.liu@sheffield.ac.uk, clyu5@sheffield.ac.uk, I.s.mihaylova@sheffield.ac.uk

Outline

- Distributed learning Gaussian process tracking
- Case study: Tracking over wireless sensor networks
- Multi-class Gaussian process classification based on acoustic-seismic classification identification data set
- Summary

Background Knowledge

 Model-free tracking approach: Learning the model dynamics directly from data assuming temporal correlation in the target trajectory

 At time step t, the Gaussian process (GP)-based motion tracker is written as:

$$\begin{aligned} x &= f^x(t), \ f^x(t) \sim \mathrm{GP}^x(m^x(t), k^x(t, t')), \\ z^x &= x + \epsilon^x, \ \epsilon^x \sim \mathcal{N}(0, \sigma_x^2), \end{aligned}$$

Gaussian Process Regression

 The GP regression equations (predicted mean and variance) at an input location t_{*} can be written as

$$\mu_* = m(t_*) + K_*^{\mathsf{T}} \Sigma^{-1} (\mathbf{z} - m(t_*)),$$

$$\sigma_*^2 = k(t_*, t_*) - K_*^{\mathsf{T}} \Sigma^{-1} K_*,$$

- Scalability issue: High computational complexity $O(N^3)$ due to kernel matrix inversion
- Distributed GP : Divide-and-conquer and product of expert

Distributed Gaussian Processbased Tracking (DGPT)

Prediction aggregation method:

- Product of experts (PoE)

$$p(f_*^x \mid t_*, \mathcal{D}) = \prod_{i=1}^M p_i(f_*^x \mid t_*, \mathcal{D}^{(i)})$$

University Of Sheffield. GP_1 /sensor₁ GP_2 /sensor₂ ••• GP_M/sensor_M $\mu_*^{\text{PoE}} = (\sigma_*^{\text{PoE}})^2 \sum_{i=1}^{n} \sigma_i^{-2}(t_*) \mu_i(t_*),$ $(\sigma_*^{\text{PoE}})^{-2} = \sum_{i=1}^{M} \sigma_i^{-2}(t_*).$

M

- Bayesian committee machine (BCM)

$$p(f_*^x \mid t_*, \mathcal{D}) = \frac{\prod_{i=1}^M p_i(f_*^x \mid t_*, \mathcal{D}^{(i)})}{p^{M-1}(f_*^x \mid t_*)} \qquad \mu_*^{\text{BCM}} = (\sigma_*^{\text{BCM}})^2 \sum_{i=1}^M \sigma_i^{-2}(t_*) \mu_i(t_*),$$
$$(\sigma_*^{\text{BCM}})^{-2} = \sum_{i=1}^M \sigma_i^{-2}(t_*) + (1-M)\sigma_{**}^{-2}.$$

The

Hyperparameter Online Learning

Fig. 1: A distributed point tracking system with 4 sensors. The length of sliding window in this example is 5 time steps

• GP hyperparameters online update

$$\log p(\mathbf{z}|X,\theta) = -\frac{1}{2}\mathbf{z}^{\mathsf{T}}\Sigma^{-1}\mathbf{z} - \frac{1}{2}\log|\Sigma| - \frac{n}{2}\log 2\pi,$$

- Sliding window-based measurements
- Maximum likelihood estimation with consistent initial values of hyperparameters

- Tracking performances under 4 trajectories and 3 noise levels
- Schemes:
 - DGPT-RBCM $(O(Nn^2))$
 - DGPT-GPoE $(O(Nn^2))$
 - Standard GP ($O(N^3)$)
 - Sparse GP $(O(NM^2))$
- Performance metric: Normalized root mean squared error (NRMSE), standard deviation of RMSEs over 100 MC runs

Testing scenarios

• Superior performance is observed when the measurement noise level is relatively low (noise level 1 & 2), competitive performance is observed at high noise level

		Noise Level 1				Noise Level 2				Noise Level 3			
Scenario	Approach	Predicted NRMSE Updated NR		I NRMSE	Predicted NRMSE		Updated NRMSE		Predicted NRMSE		Updated NRMSE		
		X	Y	Х	Y	Х	Y	Х	Y	Х	Y	Х	Y
	Standard GP	1.74%	1.71%	1.20%	1.14%	1.83%	2.19%	1.36%	1.55%	2.73%	3.50%	2.09%	2.65%
S1	Sparse GP	2.79%	1.95%	2.25%	1.18%	1.94%	2.00%	1.55%	1.31%	2.43%	2.54%	2.02%	1.91%
	DGPT-RBCM	1.20%	1.37%	0.78%	0.84%	1.79%	1.92%	1.27%	1.30%	3.06%	3.57%	2.45%	2.75%
	DGPT-GPoE	1.22%	1.76%	1.03%	1.04%	1.99%	1.99%	1.82%	1.72%	3.69%	3.52%	3.56%	3.68%
	Standard GP	6.36%	4.87%	4.61%	3.72%	5.67%	5.12%	4.01%	3.96%	6.78%	5.50%	5.04%	4.31%
S 2	Sparse GP	4.82%	6.28%	2.70%	5.25%	5.05%	6.03%	3.88%	4.92%	5.50%	5.54%	4.25%	4.41%
	DGPT-RBCM	2.70%	3.58%	1.83%	2.50%	2.93%	7.29%	1.98%	5.82%	3.86%	10.01%	2.89%	8.19%
	DGPT-GPoE	2.40%	5.05%	1.86%	4.15%	2.47%	7.74%	2.23%	7.26%	3.60%	10.01%	3.55%	9.63%
	Standard GP	4.75%	5.89%	2.71%	3.81%	5.53%	6.25%	3.19%	4.02%	7.05%	7.24%	4.23%	4.63%
S 3	Sparse GP	5.75%	5.85%	3.48%	4.25%	5.87%	5.87%	3.64%	4.34%	6.31%	6.13%	4.16%	4.67%
	DGPT-RBCM	6.62%	6.44%	3.24%	4.18%	6.69%	6.78%	3.48%	4.29%	7.45%	7.48%	4.07%	4.74%
	DGPT-GPoE	5.41%	5.99%	3.18%	4.47%	5.56%	6.06%	3.41%	4.57%	6.05%	6.40%	3.99%	4.98%
	Standard GP	2.21%	1.30%	1.59%	0.90%	3.30%	1.52%	2.58%	1.09%	4.54%	2.17%	3.61%	1.68%
S 4	Sparse GP	3.89%	2.21%	3.59%	2.00%	3.49%	2.27%	3.26%	2.13%	3.52%	2.25%	3.33%	2.21%
	DGPT-RBCM	2.71%	1.82%	1.85%	1.07%	3.73%	2.42%	2.72%	1.49%	5.64%	4.10%	4.58%	2.98%
	DGPT-GPoE	3.33%	1.55%	3.06%	1.31%	4.88%	2.67%	4.61%	2.37%	8.16%	5.03%	7.86%	4.72%

• Impact of uncertainties on tracking

Fig. 3: Tracking uncertainty in both coordinates. The results are collected in S1 under noise level three.

Fig. 4: Standard deviation of RMSE in both coordinates. The results are collected under noise level one.

Distributed Point Tracking in Clutter

* Object location * Predicted location \triangleleft Updated location \Rightarrow Clutter

Y coordinate, [m] X coordinate, [m]

Table I: Updated NRMSEs for S1

	Clutter rate	Approach								
Noise level		Standa	urd GP	DGPT-	RBCM	DGPT-GPoE				
		X	Y	Х	Y	Х	Y			
	0.0001	1.82%	2.46%	0.78%	0.98%	0.95%	1.13%			
1	0.0003	2.93%	3.16%	1.46%	1.48%	1.72%	1.64%			
	0.0006	4.71%	5.03%	4.76%	3.82%	5.08%	4.05%			
	0.0001	1.79%	2.64%	0.94%	1.05%	1.17%	1.21%			
2	0.0003	2.76%	3.63%	1.69%	1.63%	2.00%	1.80%			
	0.0006	4.74%	5.31%	5.96%	4.27%	6.29%	4.58%			
	0.0001	1.78%	2.63%	1.14%	1.17%	1.46 %	1.39%			
3	0.0003	2.74%	3.47%	1.90%	1.83%	2.29%	2.04%			
	0.0006	4.80%	5.30%	6.19%	4.68%	6.53%	5.05%			

Superior performance is observed when the clutter rate is relatively low (0.0001 & 0.0003), competitive performance is observed at high clutter rate

Table II: Updated NRMSEs for S2

		Approach								
Noise level	Clutter rate	Standa	urd GP	DGPT	-RBCM	DGPT-GPoE				
		Х	Y	Х	Y	Х	Y			
	0.0001	5.44%	3.19%	2.46%	2.39%	2.61%	3.55%			
1	0.0003	6.76%	3.77%	3.28%	3.89%	3.55%	5.13%			
	0.0006	8.58%	4.42%	7.00%	10.79%	7.30%	11.31%			
	0.0001	5.44%	3.18%	2.42%	2.70%	2.56%	4.07%			
2	0.0003	6.83%	3.80%	3.21%	4.20%	3.49%	5.54%			
	0.0006	8.58%	4.47%	7.05%	10.59%	7.34%	11.13%			
	0.0001	5.58%	3.24%	2.42%	3.39%	2.61%	4.97%			
3	0.0003	7.02%	3.90%	3.26%	5.07%	3.55%	6.51%			
	0.0006	8.76%	4.49%	7.12%	10.92%	7.42%	11.47%			

Multi-Target Tracking in Clutter

Object 1
Object 2 * Object 3
Updated estimation
Clutter

Acoustic and Seismic Classification Identification Data Set

- Traveling at constant speeds (5km/h-40 km/h) with two directions
- **Closest** point of approach (CPA) varies from 25m-100m
- 9 different vehicle types
- 4 different test sites
- 2 different sensor systems

Fundamental Frequency Estimation^{[1],[2]}

Gv1c1019

Gv1c1085

[1]. Nielsen, J. K., Jensen, T. L., Jensen, J. R., Christensen, M. G., & Jensen, S. H. (2017). Fast Fundamental Frequency Estimation: Making a Statistically Efficient Estimator Computationally Efficient. *Signal Processing*, 135, 2017, pp. 188-197.

[2]. J. K. Nielsen, M. G. Christensen, A. T. Cemgil, S. J. Godsill, and S. J. Jensen, "Bayesian Interpolation and Parameter Estimation in a Dynamic Sinusoidal Model," *IEEE Trans. Audio, Speech, Lang. Process.*, vol. 19, no. 7, pp. 1986–1998, 2011.

Multi-Class GP Classification with Noisy Inputs

• Labeling rule (for data (label) *i*, *C* classes in total)

Distributed Classification based on DGP

• Distributed classification

Summary

- Model free tracking approach for distributed system
 - Computational complexity
 - Communication cost
- Hyperparameter online learning
- Probabilistic distributed machine learning approach for ground vehicle classification

Thank you !