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Outline

• Distributed learning Gaussian process tracking

• Case study: Tracking over wireless sensor networks

• Multi-class Gaussian process classification based on 

acoustic-seismic classification identification data set  

• Summary
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Background Knowledge

• Model-free tracking approach: Learning the model 

dynamics directly from data assuming temporal correlation 

in the target trajectory

• At time step t, the Gaussian process (GP)-based motion 

tracker is written as:
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Gaussian Process Regression

• The GP regression equations (predicted mean and 
variance) at an input location 𝑡𝑡∗ can be written as

• Scalability issue: High computational complexity 𝑂𝑂 𝑁𝑁3

due to kernel matrix inversion
• Distributed GP : Divide-and-conquer and product of 

expert
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Distributed Gaussian Process-
based Tracking (DGPT)
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• Multiple local GPs instead of a single 
global GP

Prediction aggregation method:
– Product of experts (PoE)

– Bayesian committee machine (BCM)



Hyperparameter Online Learning
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• GP hyperparameters online update

• Sliding window-based measurements
• Maximum likelihood estimation with consistent initial 

values of hyperparameters



Numerical Results
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• Tracking performances under 4 trajectories and 3 noise 
levels

• Schemes: 
– DGPT-RBCM (𝑂𝑂 𝑁𝑁𝑁𝑁2 )
– DGPT-GPoE (𝑂𝑂 𝑁𝑁𝑁𝑁2 )
– Standard GP (𝑂𝑂 𝑁𝑁3 )
– Sparse GP 𝑂𝑂 𝑁𝑁𝑁𝑁2

• Performance metric: Normalized root mean squared 
error (NRMSE), standard deviation of RMSEs over 100 
MC runs



Numerical Results
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• Testing scenarios



Numerical Results
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• Superior performance is observed when the measurement 
noise level is relatively low (noise level 1 & 2), competitive 
performance is observed at high noise level



Numerical Results
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• Impact of uncertainties on tracking
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Distributed Point Tracking 
in Clutter



Numerical Results
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• Superior performance is 
observed when the clutter 
rate is relatively low (0.0001 
& 0.0003), competitive 
performance is observed at 
high clutter rate



Multi-Target Tracking in Clutter
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Acoustic and Seismic
Classification Identification Data Set

• Traveling at constant 
speeds (5km/h-40 km/h) 
with two directions

• Closest point of 
approach (CPA) varies 
from 25m-100m

• 9 different vehicle types
• 4 different test sites
• 2 different sensor 

systems
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Fundamental Frequency 
Estimation[1],[2]
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Multi-Class GP Classification 
with Noisy Inputs

• Labeling rule (for data (label) 𝑖𝑖, 𝐶𝐶 classes in total)

Likelihood of latent 
function 𝑝𝑝(𝑦𝑦𝑖𝑖|𝑓𝑓𝑖𝑖)

Likelihood of the 
noiseless input 𝑝𝑝(�𝑥𝑥𝑖𝑖|𝑥𝑥𝑖𝑖)

Predictive distribution of 
a sparse GP 𝑝𝑝(𝑓𝑓𝑐𝑐|𝑢𝑢𝑐𝑐)

Posterior distribution 
𝑝𝑝 𝑋𝑋,𝐹𝐹,𝑈𝑈 𝑦𝑦, �𝑋𝑋 (non-Gaussian)

Approximated Posterior 
distribution 

for predictions (Gaussian)

Variational inference



Distributed Classification 
based on DGP

• Distributed classification
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Likelihood of 
latent function

Likelihood of the 
noiseless input

Predictive distribution 
of a sparse GP

Posterior distribution
Approximated 

posterior distribution 
for predictions

Sensor 1

Sensor n
Likelihood of 
latent function

Likelihood of the 
noiseless input

Predictive distribution 
of a sparse GP

Posterior distribution
Approximated 

posterior distribution 
for predictions

Aggregated 
Prediction



Summary
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• Model free tracking approach for distributed system
– Computational complexity
– Communication cost

• Hyperparameter online learning
• Probabilistic distributed machine learning approach 

for ground vehicle classification



Thank you !
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