THALES

Industrial Use Case and Lessons Learned

UDRC – Deep Learning and Defence – 14th Nov 2019

Dr Christopher Dickson

Algorithms Engineer
Thales UK
Christopher.Dickson@uk.thalesgroup.com

Introduction

www.thalesgroup.com

OPEN

Watch this ...

Remember this ...

Cognitive overload

Multiple sensors with no spare capacity to observe and exploit

Desire to

- Automate the observation of sensors
- Look deeper into images
- Receive warnings and alerts of threats

Introduction - PhD/EngD

Introduction – Thales TrUE AI approach

TRansparent Al

> where users can see the data used to arrive at a conclusion.

Understandable Al

> that can explain and justify the results.

Ethical Al

that follows objective standards protocols, laws and human rights.

THALES

Al Across Thales UK

Al Across Thales UK – Impact on air to ground image analysis

Two highly trained human analysts

- > 30 minutes
- ≥ 31 identified objects

CNN algorithm

- > 0.5 seconds
- ➤ 36 identified objects
 - Including all 31 identified by analysts
 - Other 5 confirmed as misses by analysts

Al Across Thales UK – Environments

■ Tailored Machine Learning across many domains

- > Airborne reconnaissance
- Maritime
- > Thermal & Visible data
- Small targets in high resolution imagery

Al Across Thales UK – Digital Crew®

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2015 All rights reserved

Al Across Thales UK – Digital Crew®

Academia & Research

Development & Users

Government of Canada

Australian Government

COTS & MOTS hardware & software, open standards

- Free, permissive licences, readily available and huge community support
- CNN YoloV3, YoloV3-tiny, ResNETxx, ...

Adapted for the military domain, stand alone & no external links

Al Across Thales UK – Digital Crew®

Potential Use Case

> <Video>

Challenges

www.thalesgroup.com

OPEN

Challenges – Performance Metrics

Need confidence in performance

- Models need to generalise to the real world
- ➤ Implies larger test sets compared to training sets → Opposite of literature?

Metrics, metrics, metrics

- **>** Customer
- **>** Business
- ➤ Technical

- All that glistens is not gold
 - > Some published methods are very hard to re-create
 - Datasets may have unidentified bias
 - Papers do not always provide enough explanation to reproduce results

Lessons Learned

- Deep understanding of datasets, and pro-active identification of bias
- > Reproducible development environment
- Configuration control of experiments

- Open source doesn't mean the work is done!
 - Domain specific use cases
 - Constrained environments

- Re-implementation for deployment
 - ➤ Minimise Size, Weight, Power and Cost SWaP C
 - Reduce memory footprint
 - Enable use of higher resolution imagery
 - Increase frame-rate & reduce latency

Thank you

Dr Christopher Dickson

Algorithms Engineer
Thales UK
Christopher.Dickson@uk.thalesgroup.com

OPEN