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Multi-class vs Multi-label
Classification
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Multi-class Classification

https://bit.ly/2X0xMbz

Multi-class classification; the most popular ML task, i.e.
finding the corresponding class to a given sample, among
different classes of objects.

Has been usually learned supervised or semi-supervised.

It can be cast as nearest neighbour search in a feature space. 3
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Multi-label Classification

https://bit.ly/2WYKIif

Multi-label classification: secondary classes are not mutually
exclusive, i.e. each given sample may have multiple associated
primary classes.

The number of secondary classes can become huge. Solving the
problem is computationally intractable, i.e. NP-hard .

Under some dissimilarity criterion between classes, the
multi-label classification becomes a polynomial time . 4
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Exemplar Applications
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Raman Spectroscopy

Raman Spectrometers measure the spectral shifts of the
transmitted laser beam.

Identifying chemical components of samples from spectral data.

Low computational power and high accuracy in hand-help
spectrometers. 6
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Raman Spectral Decomposition
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Hyperspectral Imagery

(Push broom) Hyperspectral Imagers measure the spectral
features of the reflected lights.

Big data problem; how to classify the materials for real-time
clustering and object detection. 8
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Hyperspectral Image Analysis

Decomposing the spectral images or strips to the constituent spectra
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Capacitive Touch Sensors

Measuring the changes in the electrical field.

The most popular multitouch interface for smart devices.

Low computational power and real-time.

10
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Multitouch Sensing
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Non-Negative Sparse Model for
Multi-label Classification
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Non-negative Sparse Decomposition

linear model noise effect

y is generated by weighted superposition of a few columns of
Φ, i.e. atoms. Φ is called a dictionary. x holds the positive
weights and n is an additive noise.

Sparse decomposition is generally an NP-hard problem.
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Multi-label Classification with a Linear Mixing Model

linear model noise effect

y can represent the convoluted sample, with labels Sy .

Sy is associated with the support of x, i.e. non-negative
element indices.

Columns of Φ, φ, represent classes centre of masses.

”Non-negative sparse decomposition” then becomes a
multi-label classification problem.
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Sparse Approximation Algorithms

Approximately solving the
problem, using greedy or iterative
algorithms, or problem
relaxations, e.g. `1 relaxation.

Non-negative MP (NNMP) is a
simple greedy algorithm based on
iteratively selecting maximally
correlated to the residual signal.

1: initialisation: s = ∅, k = 0 and
r0 = y

2: while k < K max(ΦT rk) > 0 do
3: sk = 0
4: (ζ, ι)← max(ΦT rk)
5: sk [ι] = ζ
6: rk+1 ← P{rk − ζφι}
7: k ← k + 1
8: end while
9: x←

∑
k sk
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Deep Neural Networks
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Input to Representation Model
" !
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(Modified) LeCun5 CNN

An end to end deep neural network for multi-label classification.

The conventional Softmax output layer is replaced with
Sigmoid.

Supervised training should be done with many multi-label data.
Data is generally augmented.
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Robust Raman Spectral Decomposition Result
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NNMP: From Greedy to Deep Neural Networks
(ζ, ι)← max(ΦT rk) rk+1 ← P{rk − ζφι}

-

+
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Block Diagram and Update Rules
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gf is hard-max and gb is ReLU nonlinear operators.

Back-propagation algorithm has been used with the smoothed
activation functions for training the weights.
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Multi-label Classification: Synthetic Data Experiments
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Conclusion and Future Work

Conclusion:
Some defence classification tasks are multi-label classifications
Conventional sparse decompositions can be used. Lack of
robustness to the model mismatch
Deep neural networks can be good data-adaptive alternatives
Non-negative Matching Pursuit algorithm can be reformulated
as a DNN and trained to better fit to the task

Future work:
More real data experiments
Sample complexity and accuracy analysis of DeepMP
Robustness verification of the DNNs in multi-label
classifications
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