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Side Information

Medical imaging

MRI PET

Consumer electronics Robotics

multi-modal

prior information

heterogeneous

Signal processing tasks

Denoising

Reconstruction

Demixing (source separation)

Compression

Inpainting, super-resolution, …

Recommender systems 

How to represent multi-modal or heterogeneous data ?

How to process it ?



3/16

 Compressed Sensing with Prior Information

 Towards Heterogeneous Data Processing

 Single-Image Super-Resolution

 Compressed Sensing with Prior Information

 Towards Heterogeneous Data Processing

 Single-Image Super-Resolution
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Compressed Sensing (CS)

How to integrate       in the problem?

Reconstruction guarantees?

Compressed Sensing
Sucess rate  (50 trials)

number of measurements

What if we know                  ?      prior information

CS boundOur bound

CS performanceL1-L1

sparse

iid Gaussian

Basis pursuit



5/16

parameter-freeTheorem  (L1-L1 minimization)    [Mota et al, 17’]

i.i.d.

L1-L1 minimization

Theorem  (CS)    [Chandrasekaran et al, 12’]

sparse

support overestimation
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Heterogeneous Data Processing
How to perform reconstruction, inpainting, classification w/  heterogeneous data?

different representations
Conceptual example

Known database:  images +  annotation (or description)

Platypus   (side information)
+

Platypus Airplane
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Heterogeneous Data Processing
Our Approach

Recall L1-L1 minimization

homogeneous side info

learn
training data

allowable mapsplatypus

heterogeneous side info Warning: we minimize     , not full bound

Proof of concept
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A Classification Problem ?

0-1 loss in a classification problemn independent
problems

classifier class

Problems: 0-1 loss minimization

 NP-Hard

 Does not generalize well

Our solution: set of affine functions &  0-1 loss           hinge loss
support vector machine
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Performance Guarantees

Learn each      :

Theorem [Mota et al., 17’]

Assume                              are iid realizations of                 w/ unknown joint pdf

Each       is learned as above       (+ technical assumptions)

Then, with high probability,
#  training data points
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X-Ray Super-Resolution aided by RGB

fully sampled
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Preliminary Results
Single modality super-resolution

Learning-based method
(CNN)

LR

HR

HR

[Vella  &  Mota 19’,  BMVC]
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Preliminary Results

*C. Dong,  C. C. Loy,  K. He,  X. Tang 
Learning a deep convolutional neural network for image super-resolution
ECCV,  2014

PSNR (SSIM)
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*C. Dong,  C. C. Loy,  X. Tang
Accelerating the super-resolution convolutional neural network
ECCV,  2016

**W.-S. Lai,  J.-B. Huang,  N. Ahuja,  M.-H. Yang
Deep Laplacian pyramid networks for fast and accurate super-resolution
CVPR,  2017
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*K. Zhang,  W. Zuo,  L. Zhang
Learning a single convolutional super-resolution network for multiple degradations
CVPR,  2018

**X. Wang,  K. Yu,  S. Wu,  J. Gu,  Y. Liu,  C. Dong,  Y. Qiao,  C. C. Loy,
ESRGAN: Enhanced super-resolution generative adversarial networks
ECCV workshops,  2018
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Conclusions

 Multimodal data processing:  from prior information to heterogeneous data

 Theory informs practice

 Models still have a role and can complement data-driven methods

 More theory needed
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J. F. C. Mota,  E. Tsiligianni,  N. Deligiannis
A framework of learning affine transformations for multimodal sparse reconstruction
Wavelets and Sparsity XVII,  SPIE Optical Engineering + Applications, 2017
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Experimental Results

Sucess rate  (50 trials)

number of measurements

L1-L1 L1-L2

CS CS bound

Mod-CS Mod-CS

[Vaswani and Lu, 2010]

Gaussian
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Intuition
measurements

Tangent cone of      at          

solutions of

Our approach
prior information (PI)
model for PI small

random orientation
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Good components

Bad components
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Improving Prior Information?

Improve       by Warning:

# bad components
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CS Geometry  &  Known Results
Theorem   (Chandrasekaran et al  “The Convex Geometry of Linear Inverse Problems”  2012)

convex

Gaussian width

sparse

minimization

minimization
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Theorem: L1-L1 

measurements

Theorem: L1-L2 

measurements (+ some realistic assumptions)

standard CS:
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