

Online 3D imaging in highbackground scenarios

Yoann Altmann

School of Engineering and Physical Sciences, Heriot-Watt University Joint work with: Julian Tachella, Quentin Legros, Aurora Maccarone, Rachael Tobin, Aongus McCarthy, Gerald Buller, Stephen McLaughlin, Mike Davies

> UDRC Themed Meeting: Imaging through obscure media July, 22nd 2020

Single-photon detector(s)

- Pulsed laser (20 MHz), low power ($\approx \mu W$)
- Detector(s): single-photon avalanche diode (SPAD)

High sensitivity and high temporal/ranging resolution

1. Few detected photons $s_t = r_0 g_0 (t - t_0) \ll 1$

2. High background $b \gg s_t$

3. No target $s_t = 0$

- Not only difficult inference problems (noise, convexity,...)
- Fast acquisition
- Large data volume/array size
- Optimization ⇒ fast
 - Dimensionality of the data/unknowns
 - Convergence speed
- Need to redesign the inference process
 - Scalability
 - Robustness

• Graph-based representation

Significant gain using:

- Fast denoisers (e.g. parallel architectures)
- Application/variable-specific denoisers

J. Tachella et al. "Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers", Nature Comms., Nov 2019.

J. Tachella et al. "Real-time 3D reconstruction from single-photon lidar data using plug-and-play point cloud denoisers", Nature Comms., Nov 2019.

Real-time 3D reconstruction (50 fps) from 32x32 pixels (offline). Princeton Lightwave camera, 1550 nm Distance: 300 m

HERIOT WATT RT3D: real-time implementation

Real-time 3D reconstruction (20 fps) from 192x128 pixels (online). QuantiCAM, imaging through murky water Distance: 1 m

- Algorithmic structure enabling video frame rates for complex scenes
 - New opportunities
 - Adaptive processing and sensing
 - Fusion
 - Remaining challenges
 - Scalability (still)
 - Robustness/reliability

Here: regularization via temporal information + robust statistics

Bayesian filtering

- Spatio-temporal model for prediction
- Detection for dimensionality reduction
- Particle filtering \rightarrow variational approximation (ADF)
- Robustness?

J. Tachella et al., "Fast surface detection in single-photon Lidar waveforms", Proc. European Signal Processing Conf. (EUSIPCO), A coruna, Spain, Sept. 2019.

Y. Altmann et al., "Fast online 3D reconstruction of dynamic scenes from individual single-photon detection events", IEEE Trans. Image processing, vol. 29, 2019.

Bespoke denoisers, classifiers,...

$f(\mathbf{x}|\mathbf{y}) \propto f(\mathbf{y}|\mathbf{x})f(\mathbf{x})$

- Fast/efficient denoiser
- PnP approach possible in several blocks
 - PnP prior
 - PnP likelihood
- How to replace f(y|x)?

Q. Legros et al., "Robust depth imaging in adverse scenarios using single-photon Lidar and beta-divergences", to appear in Proc. SSPD 2020.

Q. Legros et al., "Robust 3D reconstruction of dynamic scenes from single-photon lidar using Beta-divergence", arxiv pre-print, 2020.

- Although not "optimal", matched filtering (MF) works well in practice with large background
 - Fast, not iterative
 - Simple: does not require background estimation
- Here MF can be reinterpreted as a robust estimator

• Matched filter: $\{t_n\}_{n=1,...N}$: set of photon ToAs

$$\max_{t_0} \left(\frac{1}{N} \sum_n g_0(t_n - t_0) \right)$$

- MLE (background-free) / LMF: $\max_{t_0} \left(\frac{1}{N}\sum_n \log(g_0(t_n - t_0))\right) \Leftrightarrow \min_{t_0} \left(D_{KL}(\hat{f}||f_{t_0})\right)$ minimum KL-divergence estimator
- Robust estimator based on β -divergence $\max_{t_0} \frac{1}{N} \sum_n g_0(t_n - t_0)^{\beta} \iff \min_{t_0} \left(D_{\beta}(\hat{f} | | f_{t_0}) \right)$

 $Pseudo-likelihood \rightarrow pseudo-posterior \ distribution$

Comparison of estimators

Robust estimation close to oracle for $\beta \in [0.5,1]$

MSC: mean signal counts

SBR: signal-to-background ratio

Detection threshold (> 85%) for different robust methods

Robust online 3D reconstruction

• 3D reconstruction (5000 fps) from 32x32 pixels.

Q. Legros et al. "Robust 3D reconstruction of dynamic scenes from singlephoton lidar using Beta-divergences", Arxiv pre-print, 2020

Robust online reconstruction

Online reconstruction with moderate solar illumination (MSC=55, SBR=1.6)

Robust online reconstruction

Online reconstruction with high solar illumination (MSC=55, SBR=7.10⁻³)

Robust online reconstruction

Frame: 21 Time: 0.02 s

324.5

Points per pixel

Red curve: depth posterior mean

Blue region: credible interval

Bayesian methods for online and robust 3D reconstruction

- Modular approach using approximate message passing for UQ
- PnP updates
 - Fast/scalable denoisers
 - Fast/robust "likelihood" terms
- Application-specific blocks
 - Peak-broadening, highly-scattering media

Q. Legros et al. "Robust depth imaging in adverse scenarios using single-photon Lidar and beta-divergences", Sensor Signal Processing for Defence (SSPD) Conference 2020, to appear.

Thanks for your attention!

Contact: Y.Altmann@hw.ac.uk

