UDRC Summer School Programme – 2022

	Monday 27th June -Statistical Signal Processing	Tuesday 28 th June – Tracking and Sensing	Wednesday 29 th June - Machine Learning	Thursday 30 th June - Source Separation and Beamforming
08:30	Coffee	Coffee	Coffee	Coffee
09:00	Introduction: Introducing exemplar application areas that use statistical signal processing concepts, such as target localization, blind source separation, and other timely topics. Probability and Random Variables: Axioms of probability and classic paradoxes; scalar and vector random variables; probability transformations and applications; statistical descriptors; central limit theorem. Classical Estimation Theory: Basic concepts; properties of	State estimation and multi-target tracking: introduction: Mathematical foundations of tracking and state estimation – transition models, sensor models; Recursive state estimation (Bayes filtering). Single target tracking; the Kalman filter, extended Kalman filter (EKF), unscented Kalman filter (UKF) and particle filter (PF). Jordi Barr, Dstl	Introduction to Machine Learning: Basic concepts; problem formulation: data, labels, objective function, constraints, regularization; examples in pattern classification; kernel PCA and KDA, support vector machines, neural networks (NN). Deep Neural Networks I: Introduction; simple feed forward neural network architecture; how to	Introduction to Array Processing: Discussion of applications, signal model, and assumptions. Narrowband array processing: steering vectors, angle or arrival (AoA) estimation, and beamforming. broadband processing via tap delay lines: broadband AoA estimation via coherent signal subspace methods; formulation of constraints for broadband beamforming and beamforming solutions. Stephan Weiss, University of Strathclyde
10.00	estimators; maximum likelihood; least squares. The theory will be linked to a "breakdown" of the localization problem. James Hopgood, University of Edinburgh	Single target tracking: Introduction to Stone Soup Practicals on Kalman filter, EKF, UKF and PF Steve Hiscocks, Dstl	train neural network; backpropagation theory; introduction to convolutional neural networks. <i>Sotirios Tsaftaris, University of Edinburgh</i>	
10:30	Refreshments / Informal Networking	Refreshments / Informal Networking	Refreshments / Informal Networking	Refreshments / Informal Networking
11:00	Further Estimation Theory and Examples: Cramér–Rao lower bounds and Examples; Generative modelling, physical modelling, and Bayesian Estimation Theory. Overview of Monte-Carlo Methods: Applications for integration and optimization, generating random variables, accept-reject and importance sampling, MCMC techniques. James Hopgood	Multiple targets, clutter and data association: The issues introduced by ambiguous association, combinatorics; Absolute assignment schemes (nearest neighbour); Probabilistic assignment schemes. Jordi Barr Multiple target tracking: practical session. Data association, multiple targets, PDA and JPDA. Steve Hiscocks	Deep neural networks II: Deep learning architectures; key factors behind deep learning; residual neural networks; latest developments in neural network architectures. Some applications as examples of deep learning. Sen Wang, Heriot-Watt University	Source Separation and Beamforming Background: Application of linear algebra to array problems, including subspace decompositions, and robust beamforming. Adaptive signal processing for beamforming, with application to minimum variance distortion less response beamformer. Ian Proudler, University of Strathclyde
12:30	Lunch / Informal Networking	Lunch / Informal Networking	Lunch / Informal Networking	Lunch / Informal Networking
13:30 14:00	Random Processes: Ensembles, statistical descriptors; input- output system statistics; spectral representations. Short talks on Advanced topics: Including: Bayesian Recursions and Particle Filtering Methods; Introduction to Hypothesis Testing and Detection Theory. James Hopgood and João Mota, Heriot-Watt University	Practical aspects and simulation – Initiators/Deleters Metrics. Bringing all components together. Practical sessions on initiation/deletion/metrics and complete simulations. Steve Hiscocks	Deep Neural Networks III: Deep learning on sparse data using meta-learning and self- supervised learning. Robust deep learning for adversarial defense and domain-shift. Some practical examples in vision, language and control. <i>Tim Hospedales, University of Edinburgh</i>	Introduction to Polynomial Matrix Algebra and Applications: Formulation of broadband array problems using polynomial matrix notation; polynomial matrix factorisations; broadband AoA estimation via polynomial matrix techniques; broadband MVDR adaptive beamforming. <i>Stephan Weiss and Ian Proudler</i>
15:00	Refreshments / Informal Networking	Refreshments / Informal Networking	Refreshments / Informal Networking	Refreshments / Informal Networking
15:30	Advanced topics: Sparsity in Signal Processing; Lasso, generalisations, and applications João Mota, Heriot-Watt University Summary and Conclusions of Key Points from the Day. João Mota and James Hopgood.	Demonstrations and Advanced Topics –Tracking in video, AIS-based tracking. Lyudmil Vladimirov, University of Liverpool; David Cormack, Leonardo; Steve Hiscocks	Resource Constrained Embedded Deep Learning: deployment complexities, optimised models, quantised DNNs, hardware accelerator architectures, real-word examples and demos. Mehrdad Yaghoobi, University of Edinburgh	Exploring the Underwater Environment : applications of beamforming and Bayesian inference to sonar array processing. Jason Ralph, University of Liverpool