UDRC Summer School Programme – 2019

	Statistical Signal Processing Monday 24 th June	Tracking and Sensing Tuesday 25 th June	Machine Learning Wednesday 26 th June	Source Separation and Beamforming Thursday 27 th June
08:30	Coffee	Coffee	Coffee	Coffee
09:00	Introduction and Target Localisation: Discussion of active and passive target localisation as exemplar application for the day's material. Probability and Random Variables: Axioms of probability and classic paradoxes; scalar and vector random variables; probability transformations and applications; statistical descriptors; central limit theorem. Classical Estimation Theory: Basic concepts; properties of	Overview of Multi-Target Tracking (MTT): Examples of detection methods, including matched filter. Sensor bias and registration issues. Discussion of typical assumptions used in MTT, observation models, motion models, state-space formulations. Murat Uney, David Cormack, Heriot-Watt University, and James Hopgood	Introduction to Machine Learning: Basic concepts; problem formulation: data, labels, objective function, constraints, regularization; examples in pattern classification; kernel PCA and KDA, support vector machines, neural networks (NN). Deep Neural Networks I: Introduction; simple feed forward neural network architecture; how to train neural network; backpropagation theory; introduction to convolutional neural networks. Sotirios Tsaftaris, University of Edinburgh	Introduction to Array Processing: Discussion of applications, signal model, and assumptions. Narrowband array processing: steering vectors, angle or arrival (AoA0estimation, and beamforming. broadband processing via tap delay lines: broadband AoA estimation via coherent signal subspace methods; formulation of constraints for broadband beamforming and beamforming solutions. Stephan Weiss, University of Strathclyde
10.00	estimators; Cramér–Rao lower bounds; maximum likelihood; Bayes theorem; least squares. The theory will be linked to a "breakdown" of the localization problem. James Hopgood, University of Edinburgh	Single-Target Tracking: Introduction to the Chapman- Kolgomorov equation, Kalman filtering and its extensions (such as EKF, UKF), particle filtering. David Cormack, Murat Uney, James Hopgood		
10:30	Refreshments	Refreshments	Refreshments	Refreshments
11:00	Introduction to Random Processes: Ensembles, statistical descriptors; input-output system relationships; system identification; introduction to spectral representations. Monte-Carlo Methods: Applications for integration and optimization, generating random variables, accept-reject and importance sampling, MCMC techniques. Murat Uney (NATO) and James Hopgood	Single Target Tracking using Stone Soup: A Practical workshop for investigating and implementing single-target tracking using an open-source platform. Paul Thomas, Jordi Barr, Steve Hiscocks, DSTL Wrap-up Session on Single-Target Tracking Paul Thomas, James Hopgood	Deep neural networks II: Deep learning architectures; key factors behind deep learning; residual neural networks; latest developments in neural network architectures. Some applications as examples of deep learning. Sen Wang, Heriot-Watt University	Source Separation and Beamforming Background: Application of linear algebra to array problems, including subspace decompositions, and robust beamforming. Adaptive signal processing for beamforming, with application to minimum variance distortionless response beamformer. Ian Proudler, University of Strathclyde
12:30	Lunch	Lunch	Lunch	Lunch
13:30	Introduction to Hypothesis Testing and Detection Theory: Using the results from the first session, considers classic hypothesis testing, parameter detection. Optimal Detection of Signals: Application examples, Optimal tests in the white and colored (non-white) noise cases; detection in active sensing (coherence, long-time integration). Murat Uney and João Mota, Heriot-Watt University	Classic Data Association for Multi-Target Tracking: Overview of classic data association techniques, including PDA and JPDA. Stone Soup for Data Association A Practical workshop for investigating data association using an open-source platform. Paul Thomas, Jordi Barr, Steve Hiscocks	Deep Neural Networks III : Recurrent neural networks (RNN) and applications in vision and language processing; Deep learning on sparse data; Some practical examples using PyTorch. <i>Tim Hospedales, University of Edinburgh</i>	Introduction to Polynomial Matrices: Formulation of broadband array problems using polynomial matrix notation, and motivation of polynomial matrix factorisations; polynomial matrix eigenvalue decomposition algorithms their characteristics. John McWhirter, Cardiff University
15:00	Refreshments	Refreshments	Refreshments	Refreshments
15:30 - 17:00	Sparsity in Signal Processing: L1 optimisation problems, techniques for optimisation, including convexity, stochastic gradient descent. Applications of sparse signal processing. João Mota, Heriot-Watt University Summary and Conclusions of Key Points from the Day. João Mota and James Hopgood.	Random Finite Set and Vector Based Methods: A tour of modern multi-target tracking techniques, including recent advances in message passing methods, multi-scan techniques, and group tracking. Murat Uney and David Cormack	Deep Neural Networks: Machine Learning in Defence. Round-table discussion / Q&A. Sotirios Tsaftaris, Sen Wang, Tim Hospedales	Polynomial Matrix Applications: Broadband AoA estimation via polymomial matrix techniques; polynomial matrix-based broadband MVDR adaptive beamforming. Stephan Weiss and Ian Proudler