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ABSTRACT 
 

Tracking multiple road users is playing a significant role in autonomous vehicles and advanced driver assistance systems. 

Different from Multiple Target Tracking (MTT) in aerospace, the motion of the ground vehicles is likely constrained by their 

operational environment such as  road and terrain. This information could be taken as additional domain knowledge and 

exploited in the development of tracking algorithms so as to enhance tracking quality and continuity.This paper proposes a new  

MTT strategy, Multiple Hypothesis Tracking using Moving Horizon Estimation approach (MHE-MHT), for tracking ground 

vehicles aided by road width constraints. In this strategy, tracking association ambiguity is handled by MHT algorithms which 

are proved as a preferred data association method for solving the data association problem arising in MTT. Unlike most of the 

MTT strategies, which solve target state estimation using Kalman filter (and its derivations), we propose a new solution using the 

moving horizon estimation (MHE) concept. By applying optimization based MHE, not only nonlinear dynamic systems but 

additional state constraints in target tracking problems such as road width can be naturally handled. The proposed MHE-MHT 

algorithm is demonstrated by a ground vehicle tracking scenario with an unknown and time varying number of targets observed 

in clutter environments. Using the optimal subpattern assignment metric, numerical results are presented to show the advantages 

of the constrained MHE-MHT structure by comparing it with the Kalman filter based MHT.  

 

Keywords: Multiple target tracking, Multiple hypothesis tracking, Moving horizon estimation, Inequality constraints, 

Autonomous vehicles 

 

INTRODUCTION 

Multiple target tracking (MTT) is an important research topic in automated vehicle field. Although a number of 

MTT algorithms have been developed, e.g. [1], it is still a quite challenging task to implement MTT in realistic 

situations, especially when suffering from low visibility of sensors, high clutter and high target density. One 

promising approach that has drawn a great deal of attention recently is to improve the performance of tracking 

algorithms by utilizing trajectory and other constraints/knowledge imposed from environments including available 

road maps. It has become a consensus that prior nonstandard information such as target speed constraints, road 

network and terrain information can be exploited in the tracker to reduce estimaiton error and provide better tracking 

accuracy [2]. For instance,  a vehicle travelling on a road is expected to move within the road boundaries and follow 

its speed limitation. In other words, the performance of tracking systems is often limited if ignoring or not taking use 

of this additional source of informaiton. Even for the cases of low signal quality with high clutter density, the 

incorporation fo such constaint information is sufficient enough to get a relatively good tracking performance [11].  

 

A. Constrained state estimation  

One effective approach of solving the road constrained MTT is to incorporate the constraint-related information into 

a standard filter algorithm (state estimation process) as state constraints. For most MTT structures, Kalman filtering 

and its variations are commonly used to estimate the state of a target based on its state process and measurement 

models. However, when the road state constraints cannot fit easily into the structure of a Kalman filter, they are 

often ignored or dealt with heuristically [3Although constrained Kalman filter methods are relatively easy in 

implementation, these methods have several disadvantages even for basic linear and equality constraints [3]. 

Recently, some other methods, for example, see [7], [8], [9], [10], are also developed based on optimization and 

truncation approaches. The majority of filters proposed to solve the constrained estimation problems focus on linear 

(in)equality or nonlinear equality constraints. A little research has been conducted on nonlinear inequality 
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constraints so far. However, (non)linear inequality constraints have played an important role for most tracking 

scenarios in ground vehicle tracking problems,, e.g. roundabout boundary.  

More specifically, Rao et al. [10] have proposed a constrained state estimation for nonlinear discrete-time systems. It 

is based on a moving horizon concept based state estimation known as moving horizon estimation (MHE). The basic 

strategy of MHE in determining the optimal state estimation is to reformulate the estimation problem as an 

optimisation problem using a fixed-size estimation window. This method has been widely used in chemical 

engineering. Other applications include hybrid system, distributed, network system, large-scale system and so on. 

However, the implementation of moving horizon approach based estimation method in target tracking is still 

relatively an uncharted area. Advantages for using MHE to solve target tracking state estimation could be 

significant. Since the method is optimization based, road constraints or similar in target tracking problems can be 

naturally handled by MHE as additional (non)linear and/or (in)equality constraints  on linear or nonlinear systems 

under consideration. In addition to state constraints, MHE is also able to incorporate constraints on the state process 

and/or observation noises. In vehicle tracking, such constraints are typically used to model bounded disturbance or 

truncated distribution/density representing the influence of the operation environment on vehicle movement such as 

vehicle acceleration and deceleration. 

Another advantage of using MHE as a state estimation method in target tracking is that it always considers a 

window of N latest measurements. Such feature is very meaningful in target tracking problems especially when 

targets are occluded by each other/static obstacles which leads to no reliable measurement at specific time step/steps. 

MHE utilizes the measurements in a receding horizon window could reduce the effect of unreliable measurements 

such as in the above situation in state estimation. Simulation results in [4] show that MHE  achieves the smallest 

estimation error for nonlinear systems and nonlinear constraints. Theoretically, for a linear system without 

constraints and with a quadratic cost, MHE reduces to Kalman filtering algorithms when an infinite horizon window 

is considered.  

 

B. Multiple target tracking problem 

The problem of estimating the position of moving targets, also known as MTT, has become an important part in 

autonomous vehicles and advanced driver assistance systems. Knowledge about the state of moving objects can 

be taken as powerful information to improve the level of autonomy for vehicles. MTT techniques are required in a 

number of automotive applications including Advanced Driver Assistance Systems (ADAS), Collision Avoidance 

Systems, and Vehicle-automation Systems. Such systems can incorporate functions such as adaptive cruise control, 

lane keeping, precise manoeuvring, pedestrian detection and so on [12] aiming for achieving an improved collision 

avoidance behaviour and safe road driving even in populated environments. By using state-of-the-art on-board 

sensors such like radar, lidar, GPS and camera vision systems together with accurate global and local maps, different 

levels of automation could be achieved in automotive applications, from individual autonomous functionalities to 

fully automated vehicles.  

Several approaches for MTT have been developed over the last decades, overviews can be found in Pulford [13] and 

Christophe [14]. Basically, these methods can be divided into two categories – the data association based ‘classic’ 

methods and the more recent finite set statistics (FISST) based approaches. The data association based methods are 

largely based on probability, stochastic processes and estimation theory. Existing methods include Nearest 

Neighbour Standard Filter (NNSF) [15], Global Nearest Neighbour (GNN) approach [16], Joint Probabilistic Data 

Association (JPDA) [17] and Multiple Hypothesis tracking (MHT) algorithm [18]. Among them, MHE is a more 

complex approach that considers data association across multiple scans and multiple hypotheses. In other words, 

MHT algorithm attempts to keep all possible association hypotheses over multiple frames of data. This results in an 

exponentially growing number of hypotheses and thus a NP-hard problem. Cox [19] in 1997 developed an efficient 

implementation by using polynomial time optimization algorithm to find the k-best solutions to an assignment 

problem along with pruning and merging techniques to reduce the number of low probability hypotheses. MHT 

essentially keeps a set of multiple hypotheses and thus the assignment ambiguity will be resolved in future when 

subsequent new observations are arrived. In this case, hard decisions are not made until they need to be with the fact 

of using more information, rather than just the current data frame, thus possible error association could be corrected 

when more evidences are updated. Such features along with the dramatic increases in computational capabilities 

have made MHT a preferred data association method for modern systems [20]. 

Until very recent, a new concept has been introduced in MTT area - the random finite set statistics (FISST) [27]. 

While the conventional MTT methods try to solve the problem explicitly by expending single target tracking with 

data association capabilities, the number of targets is also considered as a random variable (random set) and explicit 

data association are avoided in FISST. The innovation of FISST is to model both the system and measurement as 
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random finite sets (RFSs) and directly apply the Bayes recursion to these set-valued random variables and thus 

solving the data association problem implicitly. In contrast to explicit data association methods, conventional 

probability-mass functions are replaced by belief-mass functions. Probability hypothesis density filter (PHD) [28] 

and multi-target multi-Bernoulli (MeMBer) [29] filter proposed by Mahler have successfully implemented the 

FISST concept into MTT. 

The objective of this paper is to derive an efficient strategy for road-constrained MTT. The main contribution of this 

work is twofold: 1) a constrained MHE algorithm is proposed to solve the state estimation problem arising in road 

maps assisted target tracking. Since MHE is an optimization based method, it provides a natural way to handle 

nonlinear systems and incorporate various inequality constraints that may be difficult to be dealt with in other state 

estimation algorithms. 2) The work is further extended from single target tracking into MTT. A new MTT strategy 

for tracking multiple ground vehicles, namely MHE-MHT, is proposed, where moving horizon concept is combined 

with MHT  to incorporate various road and other environment information. In this combined strategy, tracking 

association ambiguity is handled by MHT algorithms that have been proved as a preferred data association method 

while constrained state estimation is solved by MHE.   

The paper is organized as follows. After presenting the introduction in road map constrained MTT, MHE based 

single target tracking is proposed for incorporating the road and other possible constraints. This work is further 

extended to MTT by combing with MHT in the following section In order to verify the efficiency of the proposed 

algorithms, simulation results of multiple target tracking with inequality road width constraints are presented . 

Finally, this paper ends with conclusions.  

 

MHE BASED TARGET TRACKING WITH ROAD CONSTRAINT 

In the operation of automated vehicles, it is necessary to track all the nearby road users to make sure the safety of the 

vehicles and other road users. Tracking road users  is in fact a constrained estimation problem as the objects of 

interest  must be on the road. In this section, both the road constrained state estimation problem and MHE based 

target tracking are described.  

A. System specification  

Consider the movement of objects of interest described by the discrete system: 

    𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝜔𝑘           (1) 

and the observation equation:        

    𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘               (2) 

where the time point 𝑘 takes integer values, 𝑓: ℝ𝑛 → ℝ𝑛 is the nonlinear system function and ℎ:ℝ𝑛 → ℝ𝑚 is the 

nonlinear measurement model. 𝑥𝑘  𝜖 ℝ
𝑛 is the state vector, 𝑦𝑘𝜖 ℝ

𝑚 is the vector of available measurements. The 

vectors 𝜔𝑘  𝜖 ℝ
𝑛 and 𝑣𝑘  𝜖 ℝ

𝑚 are Gaussian noises of the process and the measurement described by independent 

pdfs 𝑝(𝜔𝑘) = 𝑁(0, 𝑄) and 𝑝(𝑣𝑘) = 𝑁(0, 𝑅), respectively, where 𝑄 and 𝑅 are covariance matrices. It is 

commonly assumed that the initial pdf of the state vector is known as a Gaussian pdf 𝑝(𝑥0) = 𝑁(�̃�0, �̃�0). Let 

Fk, Gk and Hk be the Jacobian matrices with respect to 𝑥𝑘, 𝜔𝑘 and measurement states, respectively.. Then the 

system described in (1) and (2) is now equivalent to a linear system.    

B. Target tracking road width constraints 

As discussed in Introduction, ground targets are constrained when moving along a road network. Thus the 

knowledge of terrain database and road maps can be used as constraints and incorporated into the tracking 

algorithm. In most existing techniques, the road map constraints target motion in a one-dimensional physical 

space [30] (by ignoring the road width) and incorporate them as equality constraints. This is fairly good 

approach when an observer is far away from the moving objects such as in the scenario of unmanned aircraft 

tracking a ground vehicle. However in automated vehicles, only objects in proximity are of interests. The road 

width is comparable to the measurement accuracy (high accuracy sensors such as lidar) . In this paper, road 

network information is considered as road width inequality constraints and the target motion is restricted by 

these physical constraints in both straight and curved segments.  
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      Linear state inequality constraints Suppose that at each time step 𝑘, 𝑥𝑘 is subject to the following linear 

inequality constraint: 

    𝑎𝑘 ≤ 𝐶𝑘(𝑥𝑘) ≤ 𝑏𝑘                  (3) 

where 𝐶𝑘: ℝ𝑛 → ℝ𝑐, 𝑎𝑘, 𝑏𝑘  𝜖 ℝ
𝑐, and the inequality ≤ holds for all elements of the vectors and 𝑎𝑘 ≠ 𝑏𝑘, ∀𝑘. 𝐶𝑘 is a 

known 𝑐 × 𝑛 matrix, 𝑎𝑘 and 𝑏𝑘 are the known vectors each with a dimension of 𝑐 × 1 representing the lower and 

upper road boundary individually, 𝑐 is the number of constraints, 𝑛 is the number of states, and 𝑐 ≤ 𝑛. 𝐶𝑘 is 

supposed to be of full rank. For target tracking with straight (linear) road width constraint shown in Figure 1, Eq (3) 

is expressed as: 

    [
−𝐼
𝐼

] ∗ 𝑇𝑔,𝑙(𝑥𝑘) ≤ [
−𝑢𝑏
𝑙𝑏

]         (4) 

where 𝑇𝑔,𝑙 is known as the transformation matrix representing the rotation from the global coordinate to the road 

network local coordinate (with orientation along and orthogonal to the road) by rotation angle 𝜃.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Straight road width linear constraint 

 

  Nonlinear state inequality constraints In the same fashion as the linear road width constraint shown in (3), 

a circular or curved road segment shown in Figure 2 can be represented as a nonlinear inequality constraint as  

    𝑟1 ≤ √𝑥1,𝑘
2 + 𝑥2,𝑘

2 ≤ 𝑟2        (5) 

The road is defined by two arcs with radii 𝑟1and 𝑟2 representing the lower/upper road boundary, with the center at 

the origin of the Cartesian coordinate system. At each time step 𝑘, target position state 𝑥1,𝑘 and 𝑥2,𝑘 are subject to 

the following nonlinear inequality constraint  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Curved road width nonlinear constraint 
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C. Moving horizon estimation with constraints  

MHE is an optimization approach based state estimation method that can take into account the constraint 

during estimation process and provide a constrained estimate directly. Essentially, MHE follows Bayes rule 

which maximizes the probability density function of the past states given the measurements in a fixed length of 

horizon . Considering a horizon length of N past time steps, the joint conditional density is then given by: 

    𝑝(𝑋𝑁|𝑌𝑁) ∝  𝑝(𝑌𝑁|𝑋𝑁) 𝑝(𝑋𝑁|𝑌0:𝑘−𝑁−1) ,        (6) 

where 𝑝(𝑋𝑁|𝑌0:𝑘−𝑁−1) =  𝑝(𝑥𝑘−𝑁 , … , 𝑥𝑘−1|𝑦0, … , 𝑦𝑘−𝑁−1), is the a priori state density given the measurements 

before the horizon; 𝑝(𝑌𝑁|𝑋𝑁) = 𝑝(𝑦𝑘−𝑁 , … , 𝑦𝑘−1|𝑥𝑘−𝑁 , … , 𝑥𝑘−1) is the joint measurement likelihood function. 

Assuming that  𝑋𝑁 is a first order Markovian chain, the a posteriori joint conditional density of (6) is: 

    𝑝(𝑋𝑁|𝑌𝑁) = 𝑐 ∏  𝑝(𝑦𝑗|𝑥𝑗)∏  𝑝(𝑥𝑗+1|𝑥𝑗)
𝑘−1
𝑗=𝑘−𝑁

𝑘−1
𝑗=𝑘−𝑁 𝑝(𝑥𝑘−𝑁|𝑌0:𝑘−𝑁−1) ,           (7) 

where c is the constant and 𝑝(𝑦𝑗|𝑥𝑗) is the likelihood function for each measurement within the horizon. 

𝑝(𝑥𝑗+1|𝑥𝑗) is the state transition probability density function and 𝑝(𝑥𝑘−𝑁|𝑌0:𝑘−𝑁−1) is the a priori density of the 

initial state of the horizon. For system (1) and (2), the state transition pdf is defined as 𝑝(𝑥𝑘+1 − 𝑓(𝑥𝑘)): 

𝑝(𝑥𝑘+1|𝑥𝑘) =  𝑝(𝜔𝑘) = 𝑝(xk+1 −  �̂�𝑘+1) = 𝑝(𝑥𝑘+1 − 𝑓(𝑥𝑘)) ,          (8) 

where 𝜔𝑘 is the system process noise defined by 𝑁(0, 𝑄), and the likelihood function is defined by 𝑝(𝑦𝑘 − ℎ(𝑥𝑘))  

𝑝(𝑦𝑘|𝑥𝑘) = 𝑝(𝑣𝑘) = 𝑝(𝑦𝑘 −  �̂�𝑘) = 𝑝(𝑦𝑘 − ℎ(𝑥𝑘)) ,          (9) 

where 𝑣𝑘 is the measurement noise of 𝑁(0, 𝑅). Now by applying negative logarithm to joint density (7), we obtain 

the MHE cost function for system (1)-(2) which is a quadratic programming (optimization) problem:  

𝜙𝑇
∗ = min

𝑥0,{𝜔𝑘}𝑘=0
𝑇−1

𝜙𝑇(𝑥0, {𝜔𝑘}) = arg min
𝑧(,{𝜔𝑘}𝑘=𝑇−𝑁

𝑇−1
∑ ‖𝜔𝑘‖𝑄−1

2𝑇−1
𝑘=𝑇−𝑁 + ‖𝑣𝑘‖𝑅−1

2 + 𝛤𝑇−𝑁(𝑧) ,         (10) 

where ‖𝛼‖𝐴
2 = 𝛼𝑇𝐴𝛼 for quadratic form. 𝑥𝑘 ≔ 𝑥(𝑘; 𝑧, {𝜔𝑗}𝑗=𝑇−𝑁

𝑘−1
) denotes the solution of (10) for system (1),(2) 

at time k with initial state z and process noise {𝜔𝑗}𝑗=𝑇−𝑁

𝑘−1
 in horizon length. 𝛤𝑇−𝑁(𝑧) is referred to as arrival cost 

which plays an important role in summarizing the effect of the past measurements {𝑦𝑘}𝑘=0
𝑇−𝑁−1 as a priori information 

on the state 𝑥𝑇−𝑁 (ΓT−N(z) = − log(p(𝑥𝑘−𝑁|𝑌0:𝑘−𝑁−1)) ). However, the initialization of MHE with the best 

choice of the arrival cost term is an open issue. In this paper, the arrival cost is approximated using the EKF with 

the following form: 

ΓT−N(z) ≈  (𝑧 − �̅�𝑇−𝑁
𝑚ℎ )′𝑃𝑇−𝑁

−1(𝑧 − �̅�𝑇−𝑁
𝑚ℎ ),          (11)  

where �̅�𝑇−𝑁
𝑚ℎ  is the optimal estimate at time T-N generated in (10) given measurements from time 0 to T-N-1, the 

covariance matrix  𝑃𝑇−𝑁 is an estimate of the covariance of  �̅�𝑇−𝑁
𝑚ℎ  calculated by EKF. Typically any nonlinear filter 

capable of propagating the conditional mean and covariance could be used to compute the arrival cost in MHE such 

as unscented Kalmen filters, particle filters and cell filters.  

Since MHE is an optimization framework based state estimation algorithm, the physical road width constraints 

discussed above could be easily imposed on the MHE state variables.   

 

MHE BASED MULTIPLE HYPOTHESIS TRACKING (MHE-MHT) 

In this section, we first review the original MHT algorithm described by Reid [18] and Cox [19]. Then the formation 

of MHE-MHT structure is set forth explicitly.  

 

A. Multiple hypothesis tracking structure 



6 
 

The original MHT algorithm is a deferred decision logic which forms alternative association hypotheses in order to 

deal with observation to track assignment uncertainties. According to Reid’s paper, the hypothesis based MHT 

keeps the past hypotheses in the memory between consecutive time steps. MHT has the advantage of being able to 

deal with track creation, confirmation, occlusion and deletion in a probabilistically consistent way. The original 

MHT framework contains three main processes: hypothesis generation, probability calculation and hypothesis 

reduction. When a new measurement is received, observations that fall within the gate region set a possible 

measurement to track assignment thus an existing hypothesis is extended to a set of new hypotheses by considering 

all possible tracks to measurements assignments. Several assumptions are made when generating hypothesis: 

Assumption 1 

(i) Each hypothesis contains a set of compatible observation to track assignments,  

(ii) Assignments are defined as ‘compatible’ if they have no measurements in common which means in each  

Hypothesis, each measurement can only update with one of the existing tracks. 

B. MHE-MHT framework 

In Figure 3, we present the flow diagram of MHE-MHT algorithm. Let 𝑌𝑘 = {𝑦𝑖
𝑘}

𝑖=1

𝑚𝑘
 denote the set of 𝑚𝑘 

measurements received at time k. Each of the measurement has three possible hypotheses: 

 The measurement starts a new target 

 The measurement is a false alarm  

 The measurement belongs to an existing target 

 

1)  Gate Check: First the distance between the predicted priori target and the current measurements is calculated 

known as measurement prediction error/innovation. The prediction of target position is done by KF prediction 

update and the distance is defined as the Mahalanobis distance:  

(𝑦𝑚
𝑘 − �̂�𝑘∕𝑘−1)

𝑇
𝑆𝑘∕𝑘−1(𝑦𝑚

𝑘 − �̂�𝑘∕𝑘−1) ≤ 𝐺𝑎𝑡𝑖𝑛𝑔,          (12)  

where 𝑦𝑚
𝑘  is the measurement m at time k, �̂�𝑘∕𝑘−1 is the predicted target position and 𝑆𝑘 𝑘⁄ −1 is the covariance of 

innovation vector , 𝑆−1
𝑘∕𝑘−1 = 𝐻 𝑃(𝑘)𝐻 + 𝑅 both are calculated by KF. 𝐺𝑎𝑡𝑖𝑛𝑔 is a matrix of binary values which 

indicates maximum possible distance between measurement and targets. Only the measurements inside the gate are 

considered for assignment. Later, these statistical differences are used in data association. 

2)  Data association: MHE-MHT implements the same data association process as the Reids algorithm[18] which 

has been explained above. The assignment matrix is generated to represent all possible target-to-measurement 

associations.  Then each new hypothesis contains a set of potential target-to-measurement assignments, leading to an 

exhaustive approach of enumerating all the possible assignment combinations. To solve this problem, the Murty’s 

algorithm [19] is used to find the k-best assignment/new hypotheses generated from each parent hypothesis. To 

further reduce the computational cost, a merging algorithm is also implemented in to prevent hypotheses from being 

considered if the ratio of their probability to the best hypothesis becomes too small. 

3)  Target Maintenance:  For ground target tracking scenarios, vehicles may enter or leave the surveillance field of 

view during the tracking process. Moreover, occlusion or miss detection is also possible when a vehicle is hidden 

behind another one. In order to achieve a fully functional tracking algorithm, we implement target maintenance logic 

in MHE-MHT structure. Basically, there are three possible status for a set of targets in this logic: target initiation, 

confirmation/deletion and maintenance. The implementation is based on track-oriented approach. The targets 

present at a time step are a combination of existing targets from the parent tracks and any new targets resulting from 

the set of measurement associations. For any targets in existence at time k-1, the possible associations at time k: 
 Target initiation: If the measurement is associated with a new target and the new target hypothesis 

appears in the current k-best hypotheses. Add a target lifetime index to the target with value 1. 

 Target confirmation/deletion: The new target is confirmed only if the detected target appears along  

the same track over a consecutive iterations of Ct times. The lifetime index is accumulated by 1whenever the 

tentative target is detected and will become Ct (confirmation threshold) when confirmed. On the contrary, the 

lifetime index for any existing target is reduced by 1 whenever the target is not associated with the current 

measurement and will be permanently deleted from target list when the lifetime is 0. 

 Target maintenance: The confirmed target may be temporally occluded or undetected by the sensor.  
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For this situation, the track measurement for unassociated targets is updated according to the predicted position 

of the target last associated states.  
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Figure 3.  Flow diagram of MHE-MHT algorithm 

 

4)  MHE filter:  The details about implementing MHE for constrained target tracking have been discussed in 

previous section in this paper. In this part, the main work will focus on comparing the difference between MHE and 

KF under the MHT structure. In the original MHT, the ‘Filter’ process is based on Kalman state estimation 

including two individual steps: prediction update and measurement update. However, the two steps are combined in 

MHE and solved directly by optimization solver. In MHE, the state estimation is determined online by solving a 

finite horizon state estimation problem. To determine new estimate of the target state, the finite horizon of latest 

measurements are resolved while the problem is solved recursively with only the current step measurement being 

considered in KF. Assuming that at time k, 𝑥𝑘 ≔ 𝑥(𝑘; 𝑧, {𝜔𝑗}𝑗=𝑇−𝑁

𝑘−1
) denotes the solution of MHE optimization 

function (10) for a linear, time-invariant discrete-time system with initial state z and process noise {𝜔𝑗}𝑗=𝑇−𝑁

𝑘−1
 in 

horizon length N. Then the estimation result is: 

𝑥(𝑘; 𝑧, {𝜔𝑗}𝑗=𝑇−𝑁

𝑘−1
) = 𝐹𝑘𝑧 + ∑ 𝐹𝑘−𝑗−1𝐺𝜔𝑗

𝑘−1
𝑗=0 ,          (13)  

and if considering the road linear inequality constraint in (3), an additional MHE state constraint is consideredas 

𝑎𝑘 ≤ 𝐻𝐶𝑘
𝐹𝑘𝑧 + 𝐻𝐶𝑘

∑ 𝐹𝑘−𝑗−1𝐺𝑤𝑗 + ∑ 𝑣𝑗 ≤ 𝑏𝑘
𝑘−1
𝑗=0

𝑘−1
𝑗=0 ,          (14)  

where F is the linear state transition matrix, and  𝐻𝐶𝑘
 is the linear constraint matrix. {𝑣𝑗}𝑗=𝑇−𝑁

𝑘−1
 is the estimated 

measurement noise for N horizon length.  

The filtering process would be similar to KF if measurements are always detected and updated with the target,  

However, a problem arises when miss detection happens among a horizon of measurements, since there is 

no individual predict update process in MHE and the estimation problem is solved by an optimization solver. In the 

MHE-MHT algorithm, the missing target measurement is presumed as one step predicted state calculated by 

KF: 𝑥𝑘 = 𝐹𝑥𝑘−1 and thus the estimated process noise 𝜔𝑗 and measurement noise 𝑣𝑗 for time k is taken as null. This 
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assumption is equivalent the one used in KF-MHT for missed detection which treats the non-available posterior 

measurement updated estimate as the prior predicted state. The proof is shown below: 

 For Kalman filter at time k 

      Prediction Update:  �̂�𝑘|𝑘−1 = 𝐹�̂�𝑘−1|𝑘−1 

        Measurement Update:   �̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑦𝑘 −  �̂�𝑘|𝑘−1) 

 If at time k, measurement 𝑦𝑘is missing, then the predicted state �̂�𝑘|𝑘−1 is taken as estimated state �̂�𝑘|𝑘,        

In other words, the measurement update step is rejected  

 So 𝐾𝑘(𝑦𝑘 −  �̂�𝑘|𝑘−1) = 0, and thus 𝑦𝑘 =  �̂�𝑘|𝑘−1, where  �̂�𝑘|𝑘−1 is predicted target  �̂�𝑘|𝑘−1 = 𝐻𝐹�̂�𝑘−1|𝑘−1 

 In this case, for system : 

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝜔𝑘    

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘 

 So 𝑦𝑘 =  �̂�𝑘|𝑘−1 = 𝐻𝐹𝑥𝑘 and thus 𝜔𝑘  𝑎𝑛𝑑 𝑣𝑘are null 

Correspondingly, the high level logic for MHE-MHT target maintenance is shown below in Table 1: 

Table 1. 

High level logic for MHE-MHT target maintenance 

-- At time k, for nExistedTarg number of existing target in a hypothesis 

   For k=1: nExistedTarg   

          (Case one: permanent deleted targets)       

          If LifePoint == 0 

              Continue; (the target is permanently deleted/already disappeared) 

          End 

          (Case two: target maintenance—target updating with measurement or temporally miss detection)    

          If Targ≠asso (Target not associated with current measurement)  

              LifePoint=LifePoint-1; 

                 If LifePoint>0 

                    Implement KF prediction for MHE estimation 

                End 

          Else (Target associated with current measurement) 

              Implement MHE update; 

                 If LifePoint<MaxLifePoint 

                    LifePoint= LifePoint+1; 

               End 

          End    

          (Case three: target initialization) 

  For k=1: nNewTarg (measurement is associated to a new target)               

         Use current measurement as initial position; 

         LifePoint=0; 

End 

5)  N-scan pruning:  The key principle of the MHT method is that difficult data association decisions are deferred 

until more data are received, which could be achieved by using N-scan pruning. The structure provides a convenient 

mechanism for implementing deferred decision logic and for presenting a coherent output from the MHT. The 

continued growth of the tracks is also controlled by N-scan pruning technique by keeping only the N previous scans 

in the trees. The hypotheses with low probability are deleted after N-scan pruning. The survive target after pruning 

process are predicted using the new measurements obtained and reformed into new hypotheses. In MHE-MHT the 

number of N scans is chosen as the same value for horizon length in MHE. As a result, the association uncertainty at 

time k-N is resolved by the hypotheses given at time k and meanwhile the estimation process considers all 

measurements within the last N scans.  
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SIMULATION and RESULTS 

In this section, the proposed algorithm is evaluated by means of two examples. The first example is aimed at 

illustration of handling nonlinear inequality road constraint using a MHE based approach, using a single target 

circular road tracking scenario. The second one which is inspired by [28] is a complex multiple target tracking 

scenario incorporating road inequality constraints for an intersection scenario. 

 

A. Target tracking with nonlinear road inequality constraints 

In the first example, we follow the previous study of [8] in 2012 to set up the test scenario. A moving vehicle 

on a circular road section is considered as shown in Figure 4. The road is defined by two boundaries with two 

arcs of r1=96m and r2=100m, respectively, centered at the origin of a Cartesian coordinate system. The 

vehicle dynamics is described by a white noise acceleration motion model.  

𝑥𝑘+1 = [

1 𝑇 0 0
0 1 0 0
0 0 1 𝑇
0 0 0 1

] 𝑥𝑘 +

[
 
 
 
 𝑇

2
2⁄ 0

0 𝑇 2
2⁄

𝑇 0
0 𝑇 ]

 
 
 
 

𝜔𝑘                        (15) 

where the state vector 𝑥𝑘 = [𝑥1,𝑘 , 𝑥2,𝑘 , �̇�1,𝑘 , �̇�1,𝑘] 
𝑇  consists of the vehicle position and velocity in x and y directions,  

𝑇 = 1 is the sampling interval, and 𝜔𝑘 is a two-dimensional Gaussian process noise with zero mean and covariance 

matrix 𝑄 = 𝑒𝑦𝑒(2). The initial state of the vehicle is 𝑥0 = [98,0,0,10] 𝑇. The vehicle is supposed to move for 

𝑘 = 1,… , 𝐾 with 𝐾 = 20.  

The vehicle is tracked by range and bearing sensors modelled as: 

                       𝑧𝑘 = [
√𝑥

1,𝑘+
2 𝑥2,𝑘

2

𝑎𝑟𝑐𝑡𝑎𝑛(
𝑥2,𝑘
𝑥1,𝑘

)
] + 𝑣𝑘                                            (16) 

where 𝑣𝑘 is a two-dimensional Gaussian zero-mean measurement noise with a diagonal covariance matrix 𝑅 =

𝑑𝑖𝑎𝑔{8, 10−3}. Given the road boundaries, the state inequality constraint is shown in (5): 𝑟1 ≤ √𝑥1,𝑘
2 + 𝑥2,𝑘

2 ≤ 𝑟2. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Tracking scenario for example 1  

 

The performance of constrained MHE filter was measured using the mean-square error (MSE): 

 𝑀𝑆𝐸 = (2(𝐾 + 1))
−1

∑ ∑ (𝑥1,𝑘 − �̂�i,k)
22

𝑖=1
 

𝐾

𝑘=0
                       (17) 
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We compare the performance of constrained MHE (cMHE) with different horizon length (N=2 and 8) with 

some other conventional filters. In [8], Straka compared several conventional filters including the unscented 

Kalman filter (UKF), divided difference filter (DFF), the Gaussian mixture filter (GMF), constrained particle 

filter (cPF) and the truncated versions tUKF, tDDF, and tGMF. The results are shown in table.2: 

 

Table 2. 

Estimation performance of filters for example 1 

                       UKF        DDF       GMF       tUKF        tDDF      tGMF      cPF(103samples) cMHE (N=2) cMHE(N=8) 

 

MSE         7.79        20.27       6.31      4.23        4.90        3.63          4.29             4.46              3.98  

Time (s)    0.019      0.027      0.042     3.280      3.458      6.612        9.28             1.09              2.97 

 

It can be seen from Table 2 that the tUKF, tDDF, tGMF outperform their unconstrained conventional filters 

UKF, DDF and GMF. The cPF provides high quality estimates however at an expense of high computational 

cost. The proposed constrained MHE in this paper provides reasonable good performance especially when 

increasing the horizon length. When N=8 the cMHE provides the second best MSE=3.98 among all filters in 

Table.2 which is slightly worse than tGMF with MSE=3.63 however cMHE provides a much better the 

computational cost with only half time taken for tGMF by using fmincon server in MATLAB. 

 

B. Multiple target tracking for intersecting road scenario 

In the second example, we set up a multiple target tracking simulation for interacting scenario. As illustrated in 

Figure5, the region of interest is [-1000m,1000m] x [-1000m,1000m] with an unknown and time varying number of 

targets observed in a clutter environment. The vehicle dynamics is described the same as (15) and the state vector 

𝑥𝑘 = [𝑥1,𝑘 , 𝑥2,𝑘, �̇�1,𝑘, �̇�1,𝑘] 
𝑇  consists of the vehicle position and velocity while the measurement model is defined as 

a noisy position in x and y directions. 𝑇 = 1 is the sampling interval and the two-dimensional Gaussian process 

noise has covariance matrix 𝑄 of 5 m/𝑠2 standard deviation. Initially, two targets start moving in the environment 

with initial state 𝑥1,0 = [250,250,0,0] 𝑇 and  𝑥2,0 = [−250,−250,0,0] 𝑇. The target initial covariance is defined as 

 𝑃  
0 = 𝑑𝑖𝑎𝑔[100,100,25,25] 𝑇for both two targets. Each target is detected with a probability of  𝑃𝑑 = 0.98, and the 

Gaussian noise based position measurement has a standard deviation of 10m in both directions. The detected 

measurements are immersed in clutter that can be modeled as a Poisson distribution with clutter density of 

βFA=12.5 ∗ 10−6 over the 4 ∗ 106𝑚2 region (i.e., 50 clutter returns over the region of interest). As shown in Figure 

5, Target 1 and 2 appear at the same time in different locations, traveling along straight lines and cross each other at 

K=53s. A new target spawns from Target 1’s trajectory at time K=66s. The total simulation time is K=100s.  

The target trajectories are supposed to be constrained by road boundaries, each with a width of 6 meters using the 

road inequality constraint in (4). The position estimates are shown in Figure 6, it can be seen that the constrained 

MHE-MHT algorithm provides accurate tracking performance. Moreover, the algorithm not only tracks Target 1 

and 2 but also able to detect and track the spawned Target 3. The lifetime threshold is defined as 4, which means any 

new target can only be confirmed if successfully detected in 4 sequential time steps. The horizon length used in 

MHE in chosen as 4 and so as for N-scan pruning. At each time 3-best hypothesis are generated from each parent 

hypothesis.    
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Figure 5.  Target trajectories for scenario 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

     

 

 

Figure 6.  Position estimation for MHE-MHT 

 

To further analysis our algorithm, Figure7 shows a comparison between original Kalman filter based MHT and 

constrained MHE-MHT using the optimal subpattern assignment metric (OSPA) [31] which considers not only the 

estimation performance but also association accuracy. 
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Figure 7.  OSPA performance for MHE-MHT and KF-MHT algorithm 

 

From the results, it can be seen that the MHE-MHT algorithm performance is more stable than KF-MHT which 

is concluded by the variation of the OSPA distance over time. This is because of the more accurate state 

estimation performance for constrained MHE which also affects the accuracy of new target detection and data 

association. In the original KF-MHT, road width constraint is not considered which makes the predicted target 

more likely to associate with clutter and thus generate false new targets. At time k=66, the new target appears 

which makes OSPA increase significantly. However, the faulty association hypotheses are soon discarded in 

MHE-MHT by the correct one which has higher hypothesis probability.  

 

CONCLUSION 

In this paper, we propose a novel MHE-MHT algorithm for constrained multiple target tracking problems. 

External road information is employed by MHE filters in state estimation process. A target maintenance logic 

is designed for MHE-MHT algorithm to track multiple targets efficiently and accurately.  Initial simulation 

studies  have shown the effectiveness of the proposed algorithm against conventional algorithms. 

The future work will focus on incorporating extra domain knowledge in the MHE-MHT structure especially 

for target interaction problems since the target are considered moving independently in most target tracking 

algorithms without having interacting behaviors with other targets or physical environment. Experimental 

research combing real sensor data and digital map information will also be carried out.  
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