
Transmit Beamforming Design for
Two-Dimensional Phased-MIMO Radar with

Fully-Overlapped Subarrays
Anastasios Deligiannis, Jonathon A. Chambers, and Sangarapillai Lambotharan

Advanced Signal Processing Group
School of Electronic, Electrical and Systems Engineering
Loughborough University, Leicestershire, UK, LE11 3TU

Emails: {A.Deligiannis, J.A.Chambers, S.Lambotharan}@lboro.ac.uk

Abstract—We investigate a subaperturing technique for two-
dimensional (2D) transmit arrays within the context of multiple-
input multiple-output (MIMO) radar. Specifically, we investigate
the performance of transmit beamforming using fully overlapped
subarrays of a 2D transmit array. As reported for linear array
of antennas, this 2D transmit array exploits the advantages of
the MIMO radar technology without sacrificing the coherent
processing gain at the transmit side provided by the phased-
array concept. In order to achieve high coherent processing gain,
a weight vector should be designed for each subarray to steer
the transmit beam in certain 2D sector in space. This is achieved
by solving a convex optimization problem that minimizes the
difference between a desired transmit beampattern and the actual
beampattern produced by the 2D array of antennas, under
a constraint in terms of uniform power allocation across the
transmit antennas.

I. INTRODUCTION

The innovative concept of MIMO radar has been the focus
of intensive research within the academic community and
practitioners all over the world in the last decade [1], [2], [3].
In contrast to a phased-array radar which transmits scaled ver-
sions of a single waveform, the MIMO radar system transmits
via its antennas multiple probing signals that may be chosen to
be either correlated or uncorrelated. This waveform diversity
enables superior capabilities when compared to a phased-array
radar [1]. There are two basic regimes of operation considered
in the literature. In the first regime, the transmit and receive
array elements are broadly spaced. This kind of concept is
known as MIMO radar with widely separated antennas. In
the second regime, the transmit and receive array elements
are closely spaced, known as MIMO radar with collocated
antennas.

Exploiting the concept of widely separated antennas [3], it
is possible to capture the spatial diversity of the target’s radar
cross section (RCS), improve the target detection performance,
enhance the ability to combat signal scintillation, and estimate
accurately the parameters of rapidly moving targets. Moving
on to the concept of MIMO radar with colocated antennas
[2], this paradigm has been shown to offer higher resolution,
higher sensitivity to detect slowly moving targets, better pa-
rameter identifiability, and direct applicability of adaptive array

techniques.

It is known that the aforementioned advantages of MIMO
radar are achieved at the cost of losing the transmit coherent
processing gain offered by the phased-array radar [5]. The
innovative idea of combining the benefits of phased-array
and MIMO radars has been reported recently in the literature
[5], [9]. In [5], the breakthrough concept of fully overlapped
subaperturing of a Uniform Linear Array (ULA) has been
introduced. As proved in [5], the partition of the transmit
array into a number of subarrays that are allowed to overlap
overcomes the loss of transmit coherent gain and jointly
exploits the advantages of the phased-array and MIMO radars.

The transmit beamforming design in MIMO radar with
colocated transmit arrays has been extensively investigated in
the literature [4]-[8]. In particular, most of the work is focused
on a one dimensional ULA. It has been shown in [6] and [8]
that convex optimization techniques can solve efficiently the
problem of transmit beamforming in a ULA. The extension of
this to two-dimensional transmit beamforming optimization is
presented in [4].

In this paper, we investigate transmit beamforming design
for phased-MIMO radar with fully overlapped 2D transmit
subarrays. Each subarray is programed to coherently transmit a
waveform which is orthogonal to the waveforms transmitted by
other subarrays. In order to achieve high coherent processing
gain, a weight vector should be designed for each subarray
to steer the transmit beam to a specific 2D sector in space,
determined by a desired transmit beampattern. To accomplish
this, we solve an optimization problem that minimizes the
difference between the desired transmit beampattern and the
actual beampattern obtained by the array of antennas under
the constraint of uniform power allocation across the transmit
antennas. It is possible to add more constraints, such as
minimum sidelobe level and uniform power distribution over
each subarray. As the optimization problem in its original
form is non-convex, it has been converted to convex form us-
ing semidefinite relaxation techniques. The simulation results
highlight the advantage of the 2D subaperturing technique for
MIMO radars.
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II. SYSTEM MODEL

Fig. 1: Fully overlapped subaperturing of a 5 × 5 uniform
rectangular array(URA) when K=5.

In the proposed model, we consider a radar system that has
a uniform rectangular array (URA) at the transmit side, which
consists of Mt × Nt antennas, where Mt is the number of
antennas in each column and Nt is the number of antennas in
each row of the planar transmit array. The adjacent antenna
elements at each column are assumed to be equidistant with
spacing dm and at each row also equidistant with spacing dn.
The main idea behind our system model is to partition the
transmit 2D array into K subarrays (1 ≤ K ≤Mt ×Nt) which
are fully overlapped. An example of the fully overlapped
subaperturing of a 5 × 5 URA into 5 subarrays is shown
in Fig. 1. As described in Fig. 1, each subarray consists
of Mt × Nt − K + 1 antennas. In order to achieve this
subaperturing, we introduce the selection matrix Zk, which
is an Mt × Nt matrix containing 0 and 1 entries. When the
(mn)th entry equals 1 then the (mn)th element of the 2D
array belongs to the kth subarray, while 0 means that the
element does not belong to the kth subarray. As a result, the
matrix Zk defines the kth subarray. The MtNt × 1 steering
vector associated with the kth subarray can be denoted as:

ak(θ, φ) = vec(Zk � [u(θ, φ)vT (θ, φ)]) (1)

where vec(·) is the operator that stacks the columns of a
matrix in one column vector, � denotes the Hadamard product,
(·)T denotes the transpose, θ and φ denote the elevation and
azimuth angles respectively. The vectors u(θ, φ) ∈ CMt×1 and
v(θ, φ) ∈ CNt×1 are written as:

u(θ, φ) = [1, ej2πdmsin(θ)cos(φ), . . . , ej2π(Mt−1)dmsin(θ)cos(φ)]T

v(θ, φ) = [1, ej2πdnsin(θ)sin(φ), . . . , ej2π(Nt−1)dnsin(θ)sin(φ)]T

The kth subarray of the transmit URA emits the kth

element of the predesigned independent waveform vector
ψ(t) = [ψ1(t), . . . , ψK(t)]T of size K × 1, which satisfies
the orthogonality condition

∫
T0
ψ(t)ψH(t) = IK , where T0

is the radar pulse width, t refers to the time index within the
radar pulse, IK is the K×K identity matrix, and (·)H denotes
the Hermitian transpose.

The aim is to focus the energy of the transmit array into
a 2D spatial sector defined by Θ = [θ1 θ2] in the elevation
domain and Φ = [φ1 φ2] in the azimuth domain. Therefore,
we form K transmit beams, each of them is steered by the cor-
responding subarray. Then each of the orthogonal waveforms
ψk is radiated over one beam. The complex envelope of the
signals at the output of the kth subarray can be designed by
sk(t) = wkψk(t), where wk ∈ CMtNt×1 is the transmit weight
vector, used to form the kth transmit beam. The power of the
probing signal emitted by the kth subarray can be modeled as

Pk(θ, φ) = aHk (θ, φ)E{sk(t)sHk (t)}ak(θ, φ)

= aHk (θ, φ)wkwHk ak(θ, φ) (2)

The array transmit beampattern is hence defined as

P (θ, φ) =
K∑
k=1

aHk (θ, φ)wkwHk ak(θ, φ) (3)

The equation (3) of the total transmit power defines the array
transmit beampattern.

III. TRANSMIT BEAMFORMING DESIGN

In order to design the 2D transmit beamforming, we de-
rive the optimization problem of minimizing the maximum
difference between the desired 2D transmit beampattern and
the transmit beampattern of our system given by (3). The
constraint of our optimization problem is the uniform power
allocation across the transmit antennas. Therefore, similar to
the work in [4] for URA without subaperturing, we wish to
solve the following optimization problem:

min
w1,...,wK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

wHk ak(θ, φ)aHk (θ, φ)wk| (4)

s.t.
K∑
k=1

|W[lk]|2 =
E

MtNt − (K − 1)
, l = 1, . . . ,MtNt

(5)
where W = [w1, ...,wK ] ∈ CMtNt×K is the transmit beam-
pattern weight matrix, Pd(θ, φ) is the desired beampattern
and E is the total available power. In the constraint (5), we
divide the total power with MtNt− (K−1) because there are
MtNt−(K−1) elements in each subarray space. It is possible
to have additional constraints for this optimization problem,



such as sidelobe control or uniform power distribution over
each subarray. This optimization problem is in a non-convex
form. Defining a matrix Xk = wkwHk ∈ CMtNt×MtNt , k =
1, ...,K, we formulate the optimization problem as:

min
X1,...,XK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

Tr{ak(θ, φ)aHk (θ, φ)Xk}|

s.t.
K∑
k=1

diag{Xk} =
E

MtNt − (K − 1)
1MtNt×1

Xk � 0, k = 1, . . . ,K

rank(Xk) = 1, k = 1, . . . ,K (6)

where Tr{·} denotes the trace of a matrix, diag{·} denotes
the diagonal of a square matrix, 1MtNt

defines the MtNt × 1
vector of ones, and rank(...) denotes the rank of a matrix. We
use Xk � 0, k = 1, . . . ,K to indicate that Xk is positive
semidefinite. The rank constraint maintains the optimization
problem (6) as non-convex. Relaxing the rank constraint
(semidefinite relaxation), we recast the optimization problem
as follows [10]:

min
X1,...,XK

max
θ,φ
|Pd(θ, φ)−

K∑
k=1

Tr{ak(θ, φ)aHk (θ, φ)Xk}|

s.t.

K∑
k=1

diag{Xk} =
E

MtNt − (K − 1)
1MtNt×1

Xk � 0, k = 1, . . . ,K (7)

After the rank relaxation, the optimization problem (7)
is convex and it is solved using semidefinite programming
(SDP). The next step is to extract the transmit weight vectors
from the optimal solution of the optimization problem (7),
denoted as X∗

k, for k = 1 , . . . ,K . There are two cases for
deriving the optimal weight vectors wk. If the rank of X∗

k

is one, which is the ideal case, the optimal wk is obtained
straightforwardly as the eigenvector of X∗

k, corresponding to
the principal eigenvalue, multiplied by the square root of the
principal eigenvalue. On the other hand, it is still possible
the rank of X∗

k is greater than one. In this case we need to
use randomization techniques to derive the optimal transmit
weight vectors [4].

The following randomization technique is applied. Ini-
tially, we define the eigenvalue decomposition of X∗

k as
X∗
k = UkLkUHk . Then we produce Λ random vectors rλk ,

λ = 1 , ...,Λ, with elements uniformly distributed on the unit
circle of the complex plane, providing us with Λ candidate
transmit weight vectors as wλk = UkL(1/2)

k rλk . Then, we choose
the optimal weight vector wopt,k, as the one which minimizes

the objective function of the optimization problem (7). Finally,
we normalize the optimal weight vector wopt,k as:

wnorm,k = wopt,k
||Xk||F

||wopt,kwHopt,k||F
(8)

where || · ||F denotes the Frobenius norm. Using the transmit
weight vectors derived in (8) we design the transmit beampat-
tern for our systems.

IV. SIMULATION RESULTS

In this section, we present the simulation results of the
proposed design model. We assume a 5×5 transmit URA with
half-wavelength spacing between adjacent antennas (dm =
dn = λ/2, where λ is the wavelength). In the first example,
the transmit array is divided into 5 subarrays which are fully
overlapped as described in Fig.1. Each subarray consists of 21
antennas. The desired beampattern has a mainlobe defined by
the 2D sector Θ = [−40o,−20o] in the elevation domain and
Φ = [50o, 85o] in the azimuth domain. We also incorporate a
transition zone defined by Θ = [−50o,−40o]

⋃
[−200,−10o]

and Φ = [40o, 50o]
⋃

[85o, 95o]. Any error that occurs in this
region is ignored in the beamforming design. The 2D transmit
beampattern is obtained by solving the optimization problem
(7) and it is shown in Fig.2. It is obvious that the power
allocation of the transmit beampattern is concentrated in the
desired 2D sector. Moreover, the sidelobe levels are very low
and do not extend to the whole 2D space.

Fig. 2: Transmit beampattern in the case of k=5 subarrays.

In the second example we assume the same 5× 5 transmit
URA, but the transmit array is divided into 7 subarrays which
are fully overlapped. Each subarray consists of 19 antennas.
In this simulation, the 2D sector of interest is defined by
Θ = [15o, 55o] in the elevation domain and Φ = [110o, 140o]
in the azimuth domain. Furthermore, a transition zone is
incorporated and defined by Θ = [5o, 15o]

⋃
[55o, 65o] and

Φ = [100o, 110o]
⋃

[140o, 150o]. The resulting 2D transmit
beampattern is shown in Fig.3. It is clear from the two figures
that in the case of 7 fully overlapped subarrays, the sidelobe
levels are even lower than the case of 5 subarrays.



Fig. 3: Transmit beampattern in the case of k=7 subarrays.

Fig. 4: Transmit beampattern in the case of full URA.

In the third example, our objective is to compare the
proposed subaperturing technique with the case when the URA
uses all of its elements when transmitting the probing signal.
Once again, we assume a 5 × 5 transmit URA with half-
wavelength spacing between adjacent antennas. The 2D sector
of interest is defined as in the first example in order to facilitate

(a) Elevation cross section (b) Azimuth cross section

Fig. 5: Cross sections of the transmit beampattern at φ = 63o

and θ = −27o, respectively.

the comparison. We use 5 transmit beams to synthesize the 2D
transmit beampattern. The resulting 2D transmit beampattern
is shown in Fig.4. The results in Fig.5 show two cross sections
of the transmit beampattern, incorporating both the proposed
method and the full URA case. The first cross section is
plotted against the elevation angle by keeping the azimuth
angle constant at 63o. Similarly, the second cross section is
derived against the azimuth angle by holding the elevation
angle constant at −27o. It is worth noting that the sidelobe
levels are clearly lower for the proposed method.

V. CONCLUDING REMARKS

We have investigated a new subaperturing technique for
MIMO radars with planar URA at the transmit side. Specifi-
caly, we considered the problem of 2D transmit beamforming
design for the MIMO radar with fully overlapped subarrays.
The simulation results confirmed that the system transmit
beampattern approximates the desired sector of space with
high accuracy. Furthermore, the sidelobe levels are very low
and are restricted in an area close to the mainlobe, without
covering the whole 2D space. Moreover, it is apparent that as
the number of subarrays increases the transmit beampattern
produces lower sidelobe levels. Finally, a comparison was
performed between the proposed method and the case when
the transmit side consists of a full URA. It is shown that the
concentration of the power within the desired 2D sector is
more evident in the proposed method.
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