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Abstract 

Three novel micro-Doppler feature extraction algorithms are 

presented and applied to a dataset containing real X-band 

radar data of moving ground targets. Tn each case data 

dimensional reduction was carried out using principal 

component analysis (PCA) and incorporated into the feature 
extraction process. Extracted features are classified using a 

support vector machine (SVM) classifier. It was found that all 

three algorithms were able to produce classification 

accuracies in excess of 90%. The performance of the different 

algorithms are shown to depend on the method used and the 

degree of dimensionality reduction imposed at the PCA stage. 

1 Introduction 

The presence of internal motions on moving radar targets 

introduce signal modulations known as micro-Doppler (m-D) 
[1] [2]. These phenomena can be exploited to characterize the 

target time-frequency radar response in order to classify and 

identify the target [3] [4] [5]. Specifically, the classification 

of moving ground targets, including humans and animals, has 

potential applications relating to tasks such as surveillance 

and border control [3] [6]. The motion of human bodies is an 

articulated locomotion where the motion of limbs can be 

characterized by a repeated periodic movement. Walking is a 

typical human articulated motion and can be decomposed into 

a periodic motion in the gait cycle [1] [7]. 

Various human movements, such as walking, running, or 

jumping, have different body movement patterns. Compared 

with visual image sequences, radar micro-Doppler signatures 

are not sensitive to distance, light conditions and background 

complexity, which is advantageous for the purposes of 

estimating gait characteristics [ 8] [9]. 

This paper describes three algorithms that were developed to 

perform feature extraction from m-D signals. The 

Spectrogram Frequency Profile (SFP) algorithm generates 

features based on the projection of a spectrogram, gained 

through Time Frequency Analysis (TFA) of the m-D signal, 

onto its frequency axis. The Cadence Velocity Diagram 

Frequency Profile (CVDFP) algorithm generates features 

which benefit from the localisation in time of TFA by 

projecting a Cadence Velocity Diagram (CVD), which is 

formed from the spectrogram, onto its cadence frequency 

axis. A third novel algorithm combines SFP and CVDFP 

features, using Principal Component Analysis (PCA) to 

remove redundancy between the two. 

Features produced by each of these algorithms were used for 

classification of real X-band radar data containing micro­

Doppler of six classes of human and animal motions. These 
data were collected in an outdoor scenario with the influence 

of clutter and noise providing a realistic test-bench for the 

algorithms. 

Tn addition to the three novel feature extraction algorithms, an 

additional algorithm was used to extract features from the X­

band dataset. This was the time frequency distribution­

direction features (TFD-DF) algorithm which was introduced 

by Molchanov et al in [3]. This algorithm was used as a 

benchmark by which to assess the performance of the novel 

feature extraction algorithms when classifying the X-band 

dataset. The use of a benchmark algorithm was considered 

important since this dataset had not previously been used as a 
test-bench for micro-Doppler classification and thus the 

complexity of the classification problem that it presents had 

not been established. 

In conjunction with each feature extraction algorithm, a 

feature dimensionality reduction stage was applied as part of 

the feature extraction process. This stage exploits the 

minimum covariance determinant method [10] to robustly 

reduce the feature vector dimensions using a Robust PCA 

(RPCA) algorithm. The use of RPCA increases the 

separability of the classes due to its outlier rejection 

capability. 

Classification was performed using a Support Vector 
Machine (SVM) classifier. It was found that all three 

algorithms performed favourably when compared to the TFD­

DF benchmark algorithm, and were able to produce 

classification accuracies greater than 90%. A maximum value 

of 94.9% was achieved using the SFP-CVDFP-PCA 

algorithm, but the performance of each algorithm was found 

to be dependent on the method used and the degree of 



dimensionality reduction imposed at the feature reduction 

stage. 

2 Feature extraction 

Many approaches to micro-Doppler feature extraction have 

been documented where the aim has been to generate feature 

sets which are useful for a subsequent classification stage to 

identify the type of motion present in the original micro­

Doppler observation. Tn many cases the first stage of feature 

extraction is to perform time-frequency analysis (TFA) of the 

Doppler signal [3] [4] [5] although other methods which 

bypass TFA, relying instead on signal properties such as DCT 
coefficients [11], cepstrum coefficients [6] and autoregressive 

models [12] also exist. 

The effects of a target's micro motions are manifested as the 

time variant modulations of the frequency content of the 

received Doppler signal [1]. Representing the Doppler signal 

in the joint time-frequency domain can therefore be useful 

when analysing micro-Doppler signatures. Each of the 

algorithms which will be described in this section rely on 

time-frequency analysis, and specifically the short time 

Fourier transform (STFT), as a first step in extracting features 

from micro-Doppler signatures. Figure 1 gives an example 
spectrogram showing micro-Doppler of a walking human 

with could be used as the basis for the algorithms which will 

be described in this section. The modulated micro-Doppler 

component can be seen at around 150Hz (the strong signal at 

zero Doppler is static ground clutter). 
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Figure 1: Spectrogram of walking human m-D signature 

2.1 The SPF algorithm 

The spectrogram frequency profile (SFP) algorithm generates 

a feature vector from the spectrogram of a micro-Doppler 

signal (gained via the STFT) simply by summing over time 

for each of the frequency bins. The resultant feature vector is 

the average over time of the spectrum of the Doppler signal. 
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2.2 The CVDFP algorithm 

One shortcoming of the SFP algorithm is that it does not 

exploit the time varying information about the instantaneous 

frequency contained in the time-frequency distribution. The 
cadence velocity diagram frequency profile (CVDFP) 

algorithm was therefore developed in an attempt to create an 

algorithm that would generate features which benefit from the 

localisation in time property of the STFT. 

A signal's cadence velocity diagram (CVD) is formed from 

its spectrogram, as described in [4], taking the Fourier 

transform along the time dimension for each frequency bin. 

The result is a matrix whose rows represent Doppler 

frequency (or target velocity since the two are directly 

proportional) and whose columns represent cadence 

frequency, which is a measure of how often different 

frequencies occur over time within the signal. Figure 2 shows 
the CVD obtained from the spectrogram of Figure 1. From 

the CVD can be seen two peaks in ±2Hz, a characteristic 

feature which is brought out in the CVD representing the 

cadence of the steps. 
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Figure 2: CVD of walking human m-D signature 

Just as the SFP algorithm creates a feature vector by summing 
over time for each Doppler frequency bin of the spectrogram, 

the CVDFP algorithm creates a feature vector by summing 

over cadence frequency for each Doppler frequency (or 

velocity) bin of the CVD. 

2.3 The SFP-CVDFP-PCA algorithm 

Preliminary investigations demonstrated that both the SFP 

and CVDFP algorithms were capable of generating features 

which led to good classification performance when using a 

support vector machine (SVM) classifier to classify micro­

Doppler of humans and animals. These preliminary tests also 
indicated that the feature vectors generated by the two 

algorithms were significantly correlated. The SFP-CVDFP­

PCA algorithm uses principal component analysis to remove 

redundancy between the correlated SFP and CVDFP feature 

vectors, and to generate a new feature vector which contains 



information from each of these which is useful for 3 Feature dimensionality reduction 
classification. 

The first step of the SFP-CVDFP-PCA algorithm is to take 

the logarithm of the SFP and CVDFP feature values. Figure 3 
shows an example of a scatter plot of CVDFP feature values 

against SFP feature values gained from an observation of 

micro-Doppler of a walking human, subsequent to this step. 

The correlation between the two feature vectors can clearly be 

seen. 
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Figure 3: Scatter plot of SFP and CVDFP features 

The second step of the algorithm is to perform PCA on the 

SFP and CVDFP features. Figure 4 shows the resultant score 

plot, where the data are plotted relative to the newly 

calculated principal components. Here we can see that the 
features are no longer correlated. 
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Figure 4: Score plot after PCA of SFP and CVDFP features 

The final step of the SFP-CVDFP-PCA algorithm is to 

perform dimensionality reduction of the data, by discarding 

principal component 2, so as to form a feature vector. This is 

tantamount to projecting the scatter plot of Figure 4 onto the 
PC1 axis. 
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Regardless of the algorithm used to generate feature vectors 

from each observation of micro-Doppler data, the following 

stage in the feature extraction process is the application of 

PCA for dimensionality reduction of features. Dimensionality 

reduction is a common application for PCA and this approach 

has been used previously in the context of micro-Doppler 
[13] . 

Dimensionality reduction with PCA can be viewed as a sort 

of lossy compression: the number of dimensions, or principal 

components, used to represent the data is reduced and so 

information that would have been represented by higher 

ordered principal components is lost. However, the majority 

of variation in the data is explained by few low ordered 

components. The higher order components account for little 

variation in the data and can in fact identify near-constant 

linear relationships between the original features [14]. The 

data-reduced feature set can therefore be seen as a more 

efficient representation of the original data in which the 
underlying structure is retained despite the loss of some 

information. Presenting the data in this feature-reduced 

representation can increase the separability of classes, leading 

to improved performance at the classification stage. 

One issue with PCA when using experimental data is that a 

small number of outliers can skew the results of PCA [14]. 

Robust PCA addresses this problem by using the minimum 

covariant determinant (MCD) estimator method [10] to gain a 

robust estimate of the covariance matrix of the data, 

excluding outliers, which can then be used to gain robust 

estimates of the principal components of the dataset. Work 
carried out in [15] has shown that RPCA is effective for 

dimensionality reduction and that the computational costs of 

the fast MCD algorithm are sufficiently low that it can be 

implemented on an embedded device. 

Three methods of dimensionality reduction were evaluated. 

The first method uses standard PCA to reduce the number of 

features, without making any attempt to reduce the effects of 

outliers. The second method uses replaces PCA with RPCA. 

In the third method, standard PCA is performed to reduce the 

dimensionality of the data, and then RPCA is performed on 

the resulting data to remove the effects of outliers without 

performing any further dimensionality reduction. 

4 Experiments with Real Radar data 

The feature extraction methods described here were applied to 

X-band radar data of moving humans and animals. The 

dataset used was generated during a single test using a 

Selex ES PicoSAR system operating in GMT! mode (using a 

carrier frequency of 9 .2 GHz and PRF of 2kHz) [16]. The 
radar was used to target a fixed scene from a ground-based 

platform. Humans and/or horses were then introduced to the 

scene to act as targets. Data were collected for targets 

performing each of the following classes of motion: 



• Class 1: Human Walking (slow) 
• Class 2: Human Walking (medium) 
• Class 3: Human Walking (fast) 
• Class 4: Horse With Rider Walking (medium) 
• Class 5: Horse With Rider Walking (fast) 
• Class 6: Horse and Human Both Present 

The dataset consists of 28 observations for each class of 
motion where the duration of each observation is 0.5s. The 

exception to this is class 6 for which there are 112 

observations. Figure 5 shows a high resolution spectrogram of 

the m-D signature of a walking human (class 3) from this 

dataset. The micro-Doppler can clearly be seen at around 150 

Hz, and the effects of static clutter, manifested as a strong 
signal at 0 Hz, and background noise are also apparent. These 

features of the data help to provide a rigorous test scenario for 

feature extraction methods. 
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Figure 5: Spectrogram of class 3 m-D signature 

5 Classification 

Classification of extracted feature vectors was performed 

using an S VM classifier with a radial basis function (RBF) 

kernel, employing a cross-validation grid search for selection 

of cost function and kernel parameters [17] [1 8]. The "one­

against-all" approach was used to perform multi-class 

classification between the six classes described in section 4 

[19]. 

When classifying the test dataset, a system of Monte Carlo 

testing was applied whereby classification was performed 

repeatedly using randomly generated permutations of training 

and test for each repetition. For each test 50 repetitions were 

carried out, and a ratio of roughly 70% training data to 30% 

test data was maintained throughout testing. 

Each of the feature extraction algorithms described in section 

2 as well as the TFD-DF algorithm were tested and compared 

using standard PCA for feature reduction. The number of 

principal components retained when generating features was 
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varied from 5 to 30. Figure 6 shows the average classification 

accuracy (percentage of test observations whose classes were 

correctly predicted by the SVM) achieved when each of the 

algorithms was used for feature extraction. 

The dotted lines represent the classification accuracies 

achieved by each of the algorithms when no feature reduction 

was performed. Tn these cases, 128 features were included in 

each uncompressed feature vector. The results of Figure 6 

indicate that PCA can give improvements both in the number 

of features needed for each observation, and in classification 

accuracy. 

Each of the novel algorithms achieved significantly better 
classification results than the TFD-DF algorithm. This 

comparison helps to contextualise the results of this test by 

relating them to the results of tests carried out in [3]. 

Furthermore the results of Figure 6 show that the SFP­

CVDFP-PCA algorithm is capable of outperforming both the 

SFP and CVDFP algorithms when low numbers of PCs are 

retained at the feature reduction stage. A maximum 

classification accuracy of 94.9% was achieved, using this 

algorithm, when 15 PCs were retained. This validates the 

method of using PCA to combine the similar SFP and 

CVDFP feature vectors, benefiting from useful information 

from each. 
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Figure 6: Comparison of extraction algorithm performance 

Figure 7 shows results gained from a comparison of the three 

methods of dimensionality reduction described in section 3. 

These results are for an example case where the SFP was used 
for feature extraction in conjunction with each of the feature 

dimensionality reduction methods. 
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Figure 7: Comparison of PCA methods 

The best result was achieved when using standard PCA 

followed by robust PCA when 25 PCs were retained, leading 

to a maximum classification accuracy of 92.7%. This result is 

an improvement over any value gained using standard PCA. 

6 Conclusion 

Three novel micro-Doppler feature extraction algorithms, the 

SFP algorithm, the CVDFP algorithm and the SFP-CVDFP­

PCA algorithm have been described along with three methods 

of using PCA for feature dimensionality reduction. These 

methods of feature extraction were tested through their 

application to an X-band radar dataset and the use of an SVM 

classifier to classifY observations of this dataset according to 
the type of motion described by the micro-Doppler. 

High classification accuracies were achieved particularly 

when the SFP-CVDFP-PCA was used. Feature reduction 

using PCA was shown to be effective in reducing the number 

of features needed for each observation of micro-Doppler 

with the dimensionality reduced feature sets leading to better 

classification performance in some cases. In addition it was 

demonstrated that the use of robust PCA improves the 

classification accuracy per number of components used. 

Further development of this work will include the evaluation 

of performance with other data sets and with the inclusion of 

an 'unknown' class as a possible output from the classifier. 

This will be more representative of what would be needed in 

a real operational system, and will provide a better 

understanding of how well these classification techniques can 

perform in a range of scenarios. 
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