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Abstract— Reliable micro-Doppler signature classification re-
quires the use of robust features describing uniquely the micro-
motion. Moreover, future applications of micro-Doppler classifi-
cation will require meaningful representation of the observed
target by using a limited set of values. In this paper the
application of the pseudo-Zernike moments for micro-Doppler
classification is introduced demonstrating the effectiveness of the
proposed approach by classifying real data. The use of pseudo-
Zernike moments allows invariant features to be obtained that
are able to discriminate the content of two-dimensional matrices
with a small number of coefficients.

I. INTRODUCTION

The analysis of radar micro-Doppler was introduced by

Chen in [1] and widely treated in [2], demonstrating the

potential of micro-Doppler information for target classifi-

cation and micro-motion analysis. In the last decade the

analysis of micro-Doppler signatures has been investigated

for different families of radar systems [3], demonstrating the

effectiveness of models and potential of radar micro-Doppler.

Despite the quasi-complete knowledge of the phenomenon

and its representation [2], an open problem related to the

exploitation of micro-Doppler signatures is the realization of

a reliable, robust and efficient procedure to classify targets

in different observation conditions. Different approaches have

been applied to classify micro-Doppler signatures, for example

in [4] and [5] a template-based approach with interesting

results was introduced, while in [6] and [7] a combination

of information extracted from the Cadence Velocity Diagram

(CVD) of the received data were used with the aim to remove

acquisition dependence in the micro-Doppler feature. In [8]

a Mean Frequency Profile (MFP) based approach has been

presented achieving good results with low complexity.

In this paper we present a novel micro-Doppler signature

extraction method that is based on pseudo-Zernike moments

[9]. The family of geometric moments represented by Hu [10],

Zernike [11], and pseudo-Zernike [9], have been widely used

in image processing for pattern recognition. These moments

can provide interesting characteristics such as position, scale,

and rotational invariance. Zernike moments, unlike Hu mo-

ments, are obtained using a set of orthogonal polynomials,

namely Zernike polynomials, that are independent. This is an

important property as independent moments allow us to obtain

more information considering the same number of coefficients.

Pseudo-Zernike moments introduced by Bhatia in [9] improve

Zernike moments by reducing the noise sensitivity compared

to Zernike moments and increasing the number of moments

available for a given order of the polynomial. For these reasons

the pseudo-Zernike moments were selected as features to

discriminate different micro-Doppler signatures, in the novel

approach described in this paper.

The remainder of the paper is organized as follows. Section

II introduces the pseudo-Zernike moments theory, and the

novel feature extraction algorithm is described. The effective-

ness of the proposed approach is demonstrated in Section III,

where classification results on real data are presented. Section

IV concludes the paper.

II. PSEUDO-ZERNIKE MOMENTS BASED FEATURES

In this section, a novel feature for radar micro-Doppler

classification is introduced. The approach is based on the

use of pseudo-Zernike moments [9], in order to obtain re-

liable feature vectors with relatively small dimension and

low computational complexity. The novel feature benefits of

the specific properties of the pseudo-Zernike moments such

as invariance with respect to translation and rotation and in

particular the scale invariance can be included if required by

the specific applications.

In the following subsections the theory defining the pseudo-

Zernike moments is introduced, followed by the novel feature

extraction algorithm.

A. Pseudo-Zernike Moments

Let f(x, y) be a non-negative real defined image, i.e.

f(x, y) ≥ 0. The moments of f(x, y) of order (or degree)

n+ l are defined as the projection of the function f(x, y) on

the monomials xnyl, by the integral [10]

Mn,l =

∫∫

xnylf(x, y) dx dy. (1)

Pseudo-Zernike polynomials are a set of orthogonal func-

tions with simple rotation properties [9], that can be written

in the form
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Wn,l (x, y, ρ) = Wn,l (ρ cos θ, ρ sin θ, ρ) = Sn,l (ρ) e
jlθ, (2)

where j is the imaginary unit, x = ρ cos θ, y = ρ sin θ, l

is an integer, whereas Sn,l(ρ) is a polynomial (called radial

polynomial) in ρ of degree n not smaller than l. These

functions form a complete basis and satisfy, on the unit circle

(i.e. for x2 + y2 ≤ 1), the orthogonality relation

∫∫

x2+y2≤1

W ∗
n,l (x, y)Wm,k (x, y) dx dy =

π

n+ 1
δmnδkl, (3)

where the symbol (·)∗ indicates the complex conjugate oper-

ator, and δmn is the Kronecker delta function, i.e.

δmn =

{

1 if m = n

0 if m 6= n
.

As given in [9], the radial polynomials, Sn,l(ρ), have the

following explicit expressions

Sn,l(ρ) =

n−|l|
∑

k=0

(−1)k (2n+ 1 − k)!

k! (n+ |l| + 1 − k)! (n− |l| − k)!
ρn−k, (4)

where n ≥ 0 and l are integers such that n ≥ |l|. Finally,

the complex pseudo-Zernike moments (obtained projecting

f(x, y) on the pseudo-Zernike polynomials) are defined as

ψn,l =
n+ 1

π

2π
∫

0

1
∫

0

W ∗
n,l (ρ, θ) f(ρ cos θ, ρ sin θ)ρdρdθ. (5)

Notice that, the number of linearly independent pseudo-

Zernike polynomials is (n + 1)2. Moreover, an important

characteristic of the pseudo-Zernike moments is the simple ro-

tational transformation property; indeed, the moment requires

only a phase factor for the rotation [9].

B. Feature Extraction Algorithm

The proposed micro-Doppler feature extraction algorithm

is shown in Fig. 1. The signal containing the micro-Doppler

components is pre-processed to have zero mean and unit

variance.

The first step is the computation of the spectrogram of the

signal. The choice of the spectrogram, rather than other time-

frequency distributions, is motivated by its robustness with

respect to interference terms present in the so-called energy

distributions [12]. An example of the spectrogram of s(t) of

a running human observed with a 16 GHz carrier frequency

radar [13], [14], [15], is shown in Fig. 2-a.

The CVD introduced in [6], [16] to extract micro-Doppler

features, is defined as the Fourier Transform of the spectro-

gram along each frequency bin. An example of the CVD

obtained from the spectrogram in Fig. 2-a is shown in Fig.

2-b. From the CVD useful information can be extracted such

Fig. 1. Block scheme of the proposed feature extraction algorithm.
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Fig. 2. Spectrogram (a) and CVD (b) from the returns relative to a running
man. The observation time is 4 s.

as the period of each components and their maximum micro-
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Doppler shifts. The CVD is computed as second step of the

proposed algorithm.

The third step of the algorithm is the projection of the CVD

onto basis constituted by the pseudo-Zernike polynomials. The

polynomials depend on the CVD size only and can be pre-

computed and used to populate a look up table. As the pseudo-

Zernike polynomials are defined on the unit circle the CVD

dimension is scaled, before the coefficient is computed, to

avoid information loss. The output of this stage is the set of

(n + 1)2 magnitudes of the pseudo-Zernike coefficients; the

modulus is used in order to obtain the rotational invariance of

the coefficients. The resulting feature vector, F , is normalized

using the following linear rescaling

F̃ =
F − µF

σF

, (6)

where µF and σF are the mean and standard deviation of the

feature vector. These values are then used to populate the

micro-Doppler feature to be used as input to a classifier.

Classification of extracted feature vectors is then performed

using a Support Vector Machine (SVM) classifier with a Radial

Basis Function (RBF) kernel, employing a cross-validation

grid search for selection of cost function and kernel parame-

ters. The one-against-all approach [17] was used to perform

multi-class classification.

III. EXPERIMENTAL RESULTS ON REAL RADAR DATA

To analyze the performance of the proposed algorithm,

the correct classification (defined as the number of correct

classified objects over the total number of analyzed objects)

has been considered as a figure of merit. The algorithm has

been tested on real Ku band radar data, with short range within

radar and target (100− 1000 m) [13], [14], [15]. The analysis

has been conducted on the entire 4 s time observation window

and on shorter time windows (2, 1 and 0.5 seconds), extracted

from the beginning of the 4 s sequence. In this way, it is

possible to test the algorithm with respect to the variation of

the available observation time.

Attention has been focused on 5 different classes of data,

included in the same class the case of a target moving

toward and away from the radar location. A summary of the

classes and acquisitions is reported below for a total of 362
acquisitions:

• class 1. Person running toward/away from the radar (284
s - 71 samples);

• class 2. Person walking toward/away from the radar (396
s - 99 samples);

• class 3. Person crawling (72 s - 18 samples);

• class 4. Group of people running toward/away from the

radar (200 s - 50 samples);

• class 5. Group of people walking toward/away from the

radar (496 s - 124 samples).

From all the available samples, 70% are used for training,

while the other 30% are used for testing. In order to statisti-

cally characterize the classifier and its performance, a Monte

Carlo approach has been applied, using different selections

of the training and test sets of the data chosen randomly

for each class. To estimate the classifier performance, 50
different experimental cases have been evaluated, reporting

the mean and standard deviation (or degree of reliability). The

spectrogram is computed using N = 512 points for the DFT

computation, and a Hamming window of length M = 256,

with 50% overlap. Notice that, the choice of the number

of DFT points depends on the acquisition system (i.e. Pulse

Repetition Frequency) and the expected time dynamic of the

targets (e.g. humans, animals rather than helicopters).

Fig. 3 shows the average correct classification versus the

pseudo-Zernike moments order for different signal’s duration,

and with the corresponding degree of reliability. The average

correct classification values are also summarized in Table I.

Analyzing the result of Fig. 3 and Table I, it is clear

that performances increases with the pseudo-Zernike moments

order. In particular, it is sufficient to consider the pseudo-

Zernike moments of order 5 (36 coefficients) to provide

the 95% correct classification. Furthermore, as expected, as

the acquisition time of the considered signals reduces, the

classification performance experiences a reduction due to the

reduced amount of micro-Doppler information contained in

the analyzed signal (see Figs. 3-a to 3-d). Moreover, for

comparison purposes, the 20-components MFP-based classifier

suggested in [8] is also considered. As the curves of Fig. 3

show, the proposed classification algorithm can achieve better

performance than the MFP-based, if a sufficient high moments

order is chosen. Finally, the proposed classification algorithm

has been compared also with the Time-Frequency Distribution

- Direction Features (TFD-DF) technique proposed in [7].

As the curves show, the TFD-DF classifier outperforms the

pseudo-Zernike based one if a 0.5 s signal length is consid-

ered; however, as the duration of the signals increases, the

proposed algorithm achieves an higher probability of correct

classification than the TFD-DF.

To further analyze the behavior of the proposed classifi-

cation algorithm, in Table II the confusion matrix related to

signals of 4 s length, using pseudo-Zernike moments of order

5, is reported. This matrix gives more information about the

behavior of the classifier than the single value represented by

the correct classification. Specifically, this confusion matrix

allows to better understand the types of error performed

by the classifier. For instance, in classifying class 1 (see

row 1 of the matrix), even if the algorithm never chooses

classes 3, 4, and 5, in the 4.8% of times it chooses class

2, performing a bad classification. Notice that, in this paper

we have reported only one confusion matrix for simplicity

purposes; in fact for each Monte Carlo run, it is possible to

compute a different confusion matrix. However, the average

correct classification gives a synthetic value that is sufficient

to assess the performance of such a classifier.

IV. CONCLUSIONS

In this paper a novel approach for micro-Doppler fea-

ture extraction has been presented. The proposed algorithm

exploits the properties of the pseudo-Zernike moments to
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Fig. 3. Correct classification (%) versus pseudo-Zernike moments order. The solid line represents the average correct classification (over 50 runs) with its
corresponding degree of reliability, the dashed curve is related to the MFP-based classifier proposed in [8], whereas the dot-dashed curve refers to the TFD-DF
classifier given in [7]. Subplots refer to different signal lengths (i.e. 4, 2, 1 and 0.5 s, respectively).

TABLE I

AVERAGE CORRECT CLASSIFICATION (%) FOR DIFFERENT OBSERVATION TIME WINDOWS AND PSEUDO-ZERNIKE MOMENT ORDERS.

Pseudo-Zernike Moments Order
1 2 3 4 5 6 7 8 9 10

T
im

e
[s

] 4 62.8 81.8 88.8 93.5 95.2 95.3 95.3 95.7 95.9 95.8

2 59.7 82.4 87.4 90.8 91.8 93.3 94.6 94.8 95.7 95.8

1 57.6 80.4 82.7 85.7 86.8 88.4 90.6 91.0 90.8 90.8

0.5 54.3 75.9 79.9 80.9 81.7 83.1 86.2 86.2 85.7 86.1

TABLE II

CONFUSION MATRIX RELATED TO 4 S SIGNALS LENGTH, OBTAINED FOR

PSEUDO-ZERNIKE MOMENTS OF ORDER 5 FROM A SINGLE RUN.

class number

cl
a
ss

n
u

m
b

er 1 2 3 4 5

1 95.2% 4.8% 0% 0% 0%

2 0% 96.5% 3.5% 0% 0%

3 0% 0% 80% 0% 20%

4 0% 0% 0% 93.3% 6.7%

5 0% 2.7% 0% 0% 97.3%

extract robust features with a limited number of values. The

moments are applied to the Cadence Velocity Diagram of

the micro-Doppler signature in order to minimize the feature

acquisition dependence. Moreover the invariant properties of

the novel feature, together with the opportunity to extract a

desired accuracy from the data, open to many ATR (Automatic

Target Recognition) applications. To demonstrate the use of the

pseudo-Zernike moments in ATR, the novel features have been

tested on real micro-Doppler data producing high classification

accuracy.
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