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Abstract—This paper deals with coherent multi-polarization
SAR change detection assuming the availability of reference and
test images collected from N multiple polarimetric channels. At
the design stage, the change detection problem is formulated
as a binary hypothesis testing problem and the principle of
invariance is used to come up with decision rules sharing the
Constant False Alarm Rate (CFAR) property. A class of sub-
optimum invariant receivers, which also includes the Generalized
Likelihood Ratio Test (GLRT), is considered. Detection maps
on real high resolution SAR data are computed showing the
effectiveness of the considered invariant decision structures.

I. INTRODUCTION

A technical challenge in SAR signal processing is change
detection, namely the capability to identify temporal changes
within a given scene [1], [2] starting from a pair of co-
registered images representing the area of interest. Two main
approaches, known as incoherent and coherent, have been
proposed in open literature to process the image pair. The
former attempts to detect changes in the mean power level of
a given scene exploiting only the intensity information from
the available images (thus neglecting phase information [3]):
differencing and ratioing are well-known techniques in this
context [4].

Starting from the multi-polarization data model developed
in [5] and [6], we propose a new framework for change
detection based on the theory of invariance in hypothesis
testing problems [7], [8]. This is a viable mean to force
some desired properties to a decision statistic at the design
stage and has already been successfully applied in some
different radar detection problems [9]–[11]. Otherwise stated,
the principle of invariance allows to focus on decision rules
which exhibit some natural symmetries implying important
practical properties such as the Constant False Alarm Rate
(CFAR) behavior. Besides, the use of invariance leads to a
data reduction because all invariant tests can be expressed in
terms of a statistic, called maximal invariant, which organizes
the original data into equivalence classes. Also the parameter
space is usually compressed after reduction by invariance and
the dependence on the original set of parameters become
embodied into a maximal invariant in the parameter space
(induced maximal invariant).
The paper is organized as follows. In Section II, we deal
with the formulation of the multi-polarization SAR change
detection problem. In Section III the maximal invariant for the

SAR change detection problem is defined. The sub-optimum
invariant detectors are introduced in Section IV, and in Section
V we assess the performance of the introduced invariant tests
on real multi-polarization SAR images. Finally, in Section VI,
we draw conclusions and outline some possible future research
tracks.

II. PROBLEM FORMULATION

A multipolarization SAR sensor measures for each pixel of
the image under test N ∈ {2, 3} complex returns, collected
from different polarimetric channels (for instance HH and VV
for N = 2; HH, VV, and HV with reference to N = 3).
The N returns from the same pixel are stacked to form the
vector X(l,m), where l = 1, . . . , L and m = 1, . . . ,M (L
and M represent the vertical and horizontal size of the image,
respectively). Therefore, the sensor provides a 3-D data stack
X of size M × L ×N which is referred to in the following
as a datacube and is illustrated in Figure 1.

Fig. 1: Construction of the datacube.

For SAR change detection applications, we suppose that
two datacubes X (reference data) and Y (test data) of the
same geographic area are available; they are collected from
two different sensor passes and are accurately pixel aligned
(co-registrated). We focus on the problem of detecting the
presence of possible changes in a rectangular neighborhood A,
with size K = W1×W2 ≥ N , of a given pixel. To this end, we
denote by RX (RY ) the matrix whose columns are the vectors
of the polarimetric returns from the pixels of X (Y ) which
fall in the region A and SX = RXR

†
X (SY = RYR

†
Y ).

where (·)† represents the conjugate transpose;
The matrices RX and RY are modeled as statistically

independent random matrices. Moreover, the columns of Rx
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(RY ) are assumed statistically independent and identically
distributed random vectors drawn from a complex circular
zero-mean Gaussian distribution with positive definite covari-
ance matrix ΣX (ΣY ). Under the aforementioned settings, the
change detection problem in the region A can be formulated
in terms of the following binary hypothesis test{

H0 : ΣX = ΣY

H1 : ΣX 6= ΣY
(1)

where the null hypothesis H0 of change absence is tested
versus the alternative1 H1.

III. MAXIMAL INVARIANT

It is not difficult to prove that our testing problem is
invariant under the group of transformations G acting on the
sufficient statistic (SX ,SY ) as:

G =
{
g : SX → BSXB

† , SY → BSYB
† ,

B ∈ GL(N)} . (2)

where GL(N) is the General Linear group of degree N over
the field of complex numbers, representing the set of N ×N
non-singular matrices together with the operation of ordinary
matrix multiplication.

The invariance property induces a partition of the data space
into orbits (or equivalence classes) where, over each orbit,
every point is related to every other through a transformation
which is a member of the group G. Any statistic that identifies
different orbits in a one-to-one way significantly reduces the
total amount of data necessary for solving the hypothesis
testing problem and constitutes the compressed data set to
be used in the design of any invariant detector. These kind of
statistics are called maximal invariants since they are constant
over each orbit (invariance) while assuming different values
on different orbits (maximality).

Formally, a statistic T(SX ,SY ) is said to be a maximal
invariant with respect to the group of transformations G if
and only if
• Invariance:

T(SX ,SY ) = T[g(SX ,SY )], ∀g ∈ G.
• Maximality:

T(SX1
,SY1

) = T(SX2
,SY2

) implies that ∃ g ∈ G such
that (SX2

,SY2
) = g(SX1

,SY1
).

Notice that there are many maximal invariant statistics, but
they are equivalent in that yield statistically equivalent de-
tectors. Moreover, all invariant tests can be expressed as a
function of the maximal invariant statistic [7], [13], which for
the problem of interest is provided by the following

Proposition 1: A maximal invariant statistic for problem
(1) with respect to the group of transformations (2) is the N -
dimensional vector of the eigenvalues λ1, . . . , λN of

SXS
−1
Y . (3)

1This testing problem is also well known in statistical literature with
reference to real observations [7, Ch. 8].

Interestingly the principle of invariance realizes a significant
data reduction: the maximal invariant statistic is a real N -
dimensional vector whereas the original sufficient statistic is
composed of the two N×N Grammian matrices SX and SY .

After reduction by invariance, the parameter space is also
partitioned into orbits and the relevant parameters are embod-
ied into any induced maximal invariant, namely any function
of the parameters that is constant over each orbit of the
parameter space but assumes different values over different
orbits. For the case at hand, an induced maximal invariant is
composed of the eigenvalues δ = [δ1, . . . , δN ]T of the matrix:

ΣXΣ−1Y (4)

We explicitly observe that in the reduced parameter space
the partition corresponding to the two composite hypotheses
of the test (1) is Ξ0 = {1N}, relative to ΣX = ΣY , and
Ξ1 = {1N}, relative to ΣX 6= ΣY , where {1N} is the set
of the N -dimensional column vectors with at least one entry
different from 1. The structure of Ξ0, which now corresponds
to a simple H0 hypothesis, clearly shows that all invariant
receivers that process a maximal invariant statistic through a
transformation independent of δ1, . . . , δN , achieve the CFAR
property.

IV. DESIGN SUB-OPTIMUM INVARIANT DETECTORS

It can be demonstrated that the Most Powerful Invariant
(MPI) test for the considered problem cannot be implemented
as it requires the knowledge of the induced maximal invariant.
This implies also the lack of an Uniformly Most Powerful
Invariant (UMPI) test, suggesting to investigate invariant de-
cision rules based upon different strategies. However, there is
no criterion for choosing a priori a receiver instead of another.
An intuitive rule to select invariant tests for our problem
could be based on the following asymptotic observation. For
large values of K, the eigenvalues of S−1X SY tend to δi,
i = 1, . . . , N ; hence decision rules

h(λ1, . . . , λN )
H1
>
<
H0

T , (5)

1) are very effective to discriminate deviations δi � 1,
when h(·, . . . , ·) is an increasing function of the argu-
ments. However they perform poor when δi are smaller
than 1.

2) are very effective to discriminate deviations δi � 1,
when h(·, . . . , ·) is a decreasing function of the argu-
ments. Nevertheless they perform poor when δi is greater
than 1.

3) in principle could achieve good detection levels for both
δi � 1 and δi � 1, when h(·, . . . , ·) complies with
h
(

1
λ1
, . . . , 1

λN

)
= h (λ1, . . . , λN ).

On the other hand one cannot analyze all possible reason-
able detectors; so in the following, we focus on six decision
rules, which, based on extensive numerical analysis, are seen
to achieve satisfactory detection performance.
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1) GLRT: This approach is equivalent to replacing the un-
known parameters in the likelihood ratio with their maximum
likelihood estimates, under each hypothesis [14]. Interestingly,
under very mild technical assumptions, the GLRT is invariant
[15]. For the present problem it has been proposed in [5], [6]2

and is given by

max
ΣX

max
ΣY

fSX ,SY
(SX ,SY |H1,ΣX ,ΣY )

max
ΣX

fSX ,SY
(SX ,SY |H0,ΣX)

H1
>
<
H0

T1 , (6)

with T1 the detection threshold. After optimizations and
monotonic transformations, (19) can be shown statistically
equivalent to

N∏
i=1

(1 + λi)
2

λi

H1
>
<
H0

T1 , (7)

where the same symbol T1 has been used to denote the
modified detection threshold.

Interestingly, the GLRT complies with condition 3 that was
given at the beginning of the section, namely we expect the
GLRT capable to achieve good detection levels both when
δi � 1 and δi � 1.

2) Arithmetic and Armonic Mean Based Detectors: These
decision rules are respectively given by

N∑
i=1

λi

H1
>
<
H0

T2 , (8)

N∑
i=1

1

λi

H1
>
<
H0

T3 , (9)

where T2 and T3 are the detection thresholds.
The former complies with condition 1 whereas the latter

with condition 2. As a consequence (8) is suitable to detect
deviations δi � 1 while (9) δi � 1.

From (8) and (9) it is also possible to construct another
decision rule satisfying condition 3 merely summing the
decision statistics, i.e.

N∑
i=1

(
1

λi
+ λi

) H1
>
<
H0

T4 , (10)

with T4 the detection threshold.
3) Maximum and Minimum Eigenvalue Based Detectors:

These tests are respectively based on the following compar-
isons

λ1 +
1

λN

H1
>
<
H0

T5 , (11)

2With reference to real observations it is derived in [7, Ch. 8].

max

(
λ1 ,

1

λN

) H1
>
<
H0

T6 , (12)

with T5 and T6 the decision thresholds. An intuitive ex-
planation to the decision rules is based on the following
arguments: the former term, λ1, dominates for large deviations
δi � 1, whereas, the latter term, 1

λN
, if δi � 1. Hence, (11)

and (12) are supposed to perform well both for δi � 1 and
δi � 1.

V. TESTING ON REAL DATA

In this section the performance analysis of the algorithms
proposed in Section IV is presented. The analysis is performed
using real X-band data, the dataset used is the Coherent
Change Detection Challenge dataset acquired by the Air Force
Research Laboratory (AFRL) [12], the data contains passes
acquired with three polarizations (HH, VV and HV).

For our analysis we focus on two acquisitions from the
entire dataset, unfortunately the ground truths of the data is
not available (e.g. the actual changes between two different
acquisitions), so the selection of two passes providing the
opportunity to generate a sufficiently accurate ground truth was
required. For this reason the best candidates result to be two
passes: the acquisition named “FP0124” is used as reference
pass, while the acquisition “FP0121” is used as test pass. The
selected area of interest is a sub-image of 1000× 1000 pixels
(i.e., L = M = 1000) and is composed of several parking
lots which are occupied by numerous parked, (i.e., stationary)
vehicles. For this particular scenario the changes between the
reference and test images (denoted by X and Y respectively),
occurred during the time interval between the two acquisitions
can be distinguished in two cases:
• a vehicle is present in X but is not present in Y , this

case is referred as departure;
• a vehicle is not present in X but is present in Y , this

event is referred as arrival.
Using the cases defined above, can be visually identified (by
flickering the two images) a total of 34 changes between X
and Y . The obtained ground truth is shown in Figure 2-a,
whereas the black regions represent the departures and the
white ones indicate the arrivals.

Although the acquisitions were performed during the same
day and the images were registered, the returns from a scatterer
can contribute differently to neighbour pixels, for example a
slightly different aspect angle can produce a different amount
of energy spill-over. These relative differences in the imaged
data can lead to false alarms in the change detection results. In
order to prevent false alarm caused by pixel contamination by
target returns, we consider a guard area around each arrival-
departure. This allows the definition of an extended ground
truth (see Figure 2-b) used in the following to compare the
performance of the considered detection algorithms.

In order to assess the performance of the detectors we
present both the number of detected changes and the change
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(a) Ground truth. (b) Ground truth with guard cells.

Fig. 2: Ground truth superimposed to the reference image and
ground truth with the addition of guard cells.

(a) Detector (7). (b) Detector (8).

(c) Detector (9). (d) Detector (10).

(e) Detector (11). (f) Detector (12).

Fig. 3: Detections maps for W = 5 and N = 3.

detection maps.

In the analysis presented in this section, the thresholds are
set to ensure Pfa = 10−3 in the complement of the extended
ground truth area, namely, in the region where no changes
occur. Moreover, are considered both the cases of N = 2 and
N = 3 which correspond, respectively, to jointly consider HH
and VV polarizations, or to jointly consider all the available
channels (HH, VV and HV).

The number of change detections for each detector corre-
sponding to a change present in the extended ground truth are
summarized in Table I. As expected, the common trend is that
the performance improves by increasing W and N .

The detection maps obtained for the case with W = 5
and N = 3 for the different detectors are shown in Figure
3. From the detection maps and Table I it can be observed
that detectors (7), (10), (11), and (12) achieve a comparable
detection performance level. Of particular interest are the tests
(8) and (9), from the corresponding detection maps it is easy

Detector
W N (7) (8) (9) (10) (11) (12)

3 2 3389 3757 1984 4051 3955 4040
3 3802 3868 2314 4408 4247 4415

5 2 5372 5129 2337 5103 4877 4980
3 6492 5513 2884 5901 5463 5644

TABLE I: Number of correct detections in the extended ground
truth.

to recognize that the former identifies the departures, whereas,
the latter identifies the arrivals.

VI. CONCLUSIONS

Multi-polarization SAR change detection has been consid-
ered in this paper. The problem has been formulated as a
binary hypothesis test and the principle of invariance has been
applied to design decision rules exhibiting a special symmetry,
which is a sufficient condition to ensure the CFAR property.
The effectiveness of the proposed approaches has been tested
on real SAR data.
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