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In this work a formation flying–based architecture is presented
within the context of a distributed antenna array. An artificial
potential function method is used to control the formation, whereby
deviation from an all-to-all interaction scheme and swarm shaping
are enabled through a self-similar connection network. Introduction
of an asymmetric term in the potential function formulation results
in the emergence of structures with a central symmetry. The
connection network then groups these identical structures through a
hierarchical scheme. This produces a fractal shape that is considered
for the first time as a distributed antenna array exploiting the
recursive arrangement of its elements to augment performance. A
5-element Purina fractal is used as the base formation, which is then
replicated a number of times increasing the antenna array aperture
and resulting in a highly directional beam from a relatively low
number of elements. Justifications are provided in support of the
claimed benefits for distributed antenna arrays exploiting fractal
geometries. The formation deployment is simulated in Earth orbit
together with analytical proofs completing the arguments aimed to
demonstrate feasibility of the concept and the advantages provided
by grouping antenna elements into coherent structures.
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I. INTRODUCTION

The value of exploiting formation flight techniques for
space science, remote sensing, and telecommunications
applications is gaining popularity [1–5]. So far, proposed
formation flying concepts have been based on a relatively
low number of cooperating spacecraft, as in the case of
Lisa, Proba-3, or StarLight missions [6–8]. The
exploitation of a formation flight architecture with an
increased number of elements that maintains an acceptable
level of system complexity can be pursued through the
control of autonomous and independent agents as a single
group entity [2, 9].

Coupling reliable formation flying capabilities with
the possibility of producing complex patterns using
spacecraft will enable the potential of grouping a number
of antenna elements into a cooperative structure. This has
long been known and applied in antenna array theory
[10, 11] and proposed at conceptual level for space
applications [12–14].

The key point in the exploitation of formation flying
techniques for the deployment of an antenna array is that
the performance of a homogeneous pattern of array
elements can be matched or surpassed by fractal
geometries as per [14] and [15]. Fractal geometries as
defined by [14] can be considered self-similar structures
propagated from a core initiator through a number of
stages of growth by an identical generator. Application of
fractal geometries in antenna array design has mainly
focussed on single structures, that is to say, one device
housing the antenna array. In this context each satellite
houses an antenna that contributes to form the fractal
pattern. Hence, the problem turns into producing a fractal
pattern from a formation of spacecraft that provides a
platform for a number of array elements able to exploit the
fractal pattern characteristics.

From a control point of view, this can be realised
through artificial potential functions (APFs), which
represent a popular control method particularly suited to
large structures of autonomous agents, as discussed in,
e.g., [17–19]. The way to obtain complex formations
through APFs, while maintaining a high degree of
reliability and analytically provable characteristics, can be
revealed through the design of a limited connection
network. Network characteristics reflect on the final
pattern deployed through APFs acting along its edges. In
particular, when the connection network presents
self-similarity characteristics (i.e., the same network
structure repeats for nodes and groups of nodes), this
affects not only on the final formation but also the stability
and robustness properties, which are the same when
considering the control of a single spacecraft or groups of
those. As a consequence, the overall control architecture
result is scalable and possesses a certain degree of fault
tolerance.

From the array point of view, self-similarity and
sparseness lead to a number of benefits—similar
performance in operation across a number of frequencies
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becomes possible because of the repetitive nature of the
array pattern as per [14] and [15], array performance
degrades gracefully with element failure, and, finally,
equivalent performance can be achieved for a fraction of
the number of elements used in square lattice–arranged
arrays [19].

In this paper, we propose the deployment of a
distributed fractal antenna array across a large group of
satellites. Previous works [13, 20] have discussed the
benefits of flying an arbitrary formation of distributed
antenna elements to take advantage of the lower risks and
costs associated with a network compared with a single
large element. On the other hand, examples in literature
investigate the benefits of a fractal-shaped monolithic
antenna [14]. The present work merges for the first time
the concepts of distributed antenna arrays, fractal
antennas, and formation flying. The inherent control
complexity is reduced through joint control techniques
making use of APFs and a self-similar communication
network. In a similar fashion, the overall antenna gain and
performance is increased, even though, when compared
with a similarly performing planar structure, a reduced set
of radiating elements is used.

A description of the theoretical background is provided
in Sec. II and is followed by a more detailed mathematical
analysis related to the specific problem in Sec. II. The
topics covered include: the control method in terms of the
APF characteristics and communication network, as well
as an overview of fractal antenna theory, its application to
a specific geometry, and the resulting performance. In
Sec. IV, numerical simulations are performed for the case
of an architecture in geostationary orbit, although the set
of equations used is valid in general for circular orbits, and
nothing prevents the concept from being applied to any
other orbit. Discussion and Conclusions follow in Secs. V
and VI, respectively. In this paper, we demonstrate the
potential of implementing an innovative architecture based
on multiple autonomous spacecraft forming a fractal array.

Notation. In this paper, vectors and matrices are
denoted by lowercase and uppercase boldface variables,
respectively. For two vectors x and y, x · y is the scalar
product. The first and second derivatives of a function χ

with respect to time are, respectively, denoted by χ̇ and χ̈ .
Finally, a linear approximation of a function f at a given
point is represented by f̃ .

II. METHODOLOGY

A group of N spacecraft is considered, divided into
subgroups of n agents such that N = nk, with k ∈ N

+. It
is assumed that each spacecraft carries an element of the
array where the spacecraft–array element pair will be
named from here on as agent. “Spacecraft” and “array
element” will instead be used when referring to these
components of the complete system. The agents are
connected according to a nondirectional graph described
by an adjacency matrix A ∈ N

N×N containing binary
elements aij, with i, j ∈ [1, N]. The spacecraft are

controlled through pairwise APFs, which act only along
the edges of the graph. There is no global position or
orientation of the agent formation, but within the
formation, relative positions are considered for agents and
groups of agents. whereas relative orientation is
considered for groups of agents only. This implies that
single array elements are pointed correctly or, as assumed
here, are isotropic sources.

This section shows how a self-similar formation can be
obtained from mutually interacting agents, and how the
array performance can be analysed for such a system. For
this purpose, artificial potential function characteristics
and communication graph topology are described. The
fundamental concept of applying fractal geometries to the
design of antenna arrays using a self-scaling method is
described for the case of planar configurations only,
although similar arguments can be applied to linear and
3D formations.

A. Artificial Potential Functions

The spacecraft are controlled through APFs operating
along the edges of a communication network. The APFs
operate on a pairwise basis; that is, they do not depend on
position or velocity of the agents but only on their state
relative to the other spacecraft with which they are
connected. In particular, the Morse potential is used. This
is composed of an attractive component

Ua
ij = −Ca

ij exp

(
−|xij |

La
ij

)
(1)

and a repulsive component

Ur
ij = Cr

ij exp

(
−|xij |

Lr
ij

)
, (2)

where Ca
ij and Cr

ij are constants regulating the magnitude
of the potential, whereas La

ij and Lr
ij are constants related

to the attractive and repulsive scale lengths. The subscripts
i and j refer to the potential sensed by agent i because of
interaction with agent j. The relative position vector of
agent i with respect to agent j is denoted by xij . The
control law is completed by a virtual viscous-like damping
in the form σvi , with σ being a positive damping constant
to be defined later and vi representing agent velocity. This
control law, together with the hypothesis of no external
disturbances and idealised sensing and actuation
capabilities, results in the motion equations

ẋi = vi (3)

mv̇i = −∇Ua
i − ∇Ur

i − σvi , (4)

where m defines the agent mass and is assumed the same
for all agents, and

∇(·) = ∂(·)
∂xi

(5)
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Fig. 1. Adjacency matrix for case n = 5 and k = 2, creating group of N
= 25 agents. Nonzero entries are represented by dots.

Ua
i =

∑
j

(aijU
a
ij ) and Ur

i =
∑

j

(aijU
r
ij ), (6)

with aij being the entry of the adjacency matrix to be
defined next.

B. Adjacency Matrix

As reported in Sec. II-A, agents communicate through
a network of links. In general in a network system studied
through graph theory, an adjacency matrix contains
nonzero entries in the (i, j) location whenever there is a
directed edge from node i to node j, indicating a
communication link between the two agents represented
by these nodes. Moreover, the matrix is not weighted (i.e.,
the elements aij ∈ {0, 1} are binary). The strength of the
interactions is provided by the APF via (6). Although the
proposed adjacency matrix is symmetric (i.e., the graph is
not directed), this does not imply that the virtual
interactions amongst the agents are symmetric.

Within the adjacency matrix A for a system with N =
nk agents, the edges belonging to fully connected n-agent
subgroups form n × n submatrices along the
block-diagonal. The remainder of the matrix contains
links between agents in the nk−1 different subgroups.

Example 1: For the case n = 5 and k = 2, 5
subgroups create 5 × 5 submatrices along the diagonal of
the adjacency matrix, as indicated in Fig. 1.
Communication between any pair of subgroups is
maintained through one linking agent per subgroup (the
central one), accounting for n – 1 connections each.
Besides that, the relative orientation of peripheral
subgroups with respect to the central subgroup is ensured
by 1 linking agent per peripheral subgroup connecting to
the adjacent one in the central core.

Example 2: For the case n = 5 and k = 3, there are
25 subgroups creating 5 × 5 submatrices along the

Fig. 2. Adjacency matrix for case n = 5 and k = 3, creating group of N
= 125 agents. Self-similarity of matrix can be observed.

Twenty-five–agent matrix of Fig. 1 is replicated now 5 times along
diagonal, and other entries of matrix, grouped in 5 × 5 squares, are in

same positions as links in 25-agent matrix.

diagonal of the adjacency matrix. These are connected in
groups of 5 as described in Example 1 and are represented
by the 25 × 25 squares along the diagonal of Fig. 2. The
communication between any pair of 25-agent subgroups is
this time ensured by groups of 5 agents that replace the
single agents of Example 1.

The network is designed such that the peripheral
nodes are weaker than the central nodes. This means that
loss of control of one node through loss of a link is more
likely for nodes that belong to peripheral regions of the
formation; hence, they do not play the part of bridge
between large portions of the ensemble. This implies that
the loss of some links is more likely to produce the
disconnection of smaller and peripheral portions of the
network than of a large portion. Each node is in any case
at least connected to n – 1 other nodes. When the number
of generators increases, those groups that were endpoints
for the previous generator become embedded and more
firmly bonded into the larger pattern. This ensures that, in
the most critical scenario, the loss of at least n – 1 links is
needed for fragmentation to occur. In Fig. 3, the node
degree is reported for the adjacency matrix of dimension
125, that is, the number of links each node is connected to.
Sorting is from the central node to peripheral nodes.

C. Fractal Electrodynamics

On the basis of the above control methods to shape a
group of agents into a fractal geometry, this section
addresses their performance as an antenna, which is
assessed by means of fractal electrodynamics, defined
as the combined study of fractal geometries with
electromagnetic theory that provides methods for
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theoretical analysis and synthesis of fractal antenna
arrays. One of the key metrics used to evaluate antenna
array performance is directivity—it defines how the
power radiated varies as a function of the angle of arrival
when observed in the antenna far field. Utilising the
methods described in this section, specific fractal
geometries and their directivity will be addressed in
Sec. III-D.

Since the focus of this work lies in the control of
two-dimensional planar structures, only the design and
analysis of planar fractal antenna arrays is described.
Because the proposed fractal antenna array is part of a
satellite constellation whose aperture is small compared
with its orbit, Cartesian coordinates are used to describe it.
Directivity, which is generally derived from the product of
the array factor [10] and the radiation characteristics of the
individual antenna array elements, is here only dependent
on the array factor because isotropic antenna elements are
assumed.

The array factor is a function of the geometry of the
array and the excitation phase. Varying the separation
and/or phase between the antenna elements allows the
total field of the array to be controlled and alters the
characteristics of the array factor. Fig. 4 shows a
symmetric planar array with uniformly spaced elements
separated by distances dx and dy in the x and y directions.
The array factor for such a symmetric planar array
configuration has been derived as [10] based on the
weighting Smn of fractal elements,

Fig. 3. Node degrees as number of links belonging to each node. A
self-similar scheme can be observed, with nodes in central position being

most connected. In this scheme, maximum number of connections per
node is 28.

�(ux, uy) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S11 + 2
M∑

m=2

(
Sm1 cos(mux) + S1m cos(muy) + 2

N∑
n=2

Smn cos(mux) cos(nuy)

)
, M odd

4
N∑

n=1

M∑
m=1

Smn cos
(
(m − 1

2 )ux

)
cos

(
(n − 1

2 )uy

)
, M even,

(7)

whereby the array factor �(ux, uy) is expressed in
dependency of a wavenumber k projected onto the x–y
plane of the array, giving projection lengths weighted by
the interelement spacings dx and dy,

ux = dx |k|(sin θ cos φ − sin θ0 cos φ0) (8)

uy = dy |k|(sin θ sin φ − sin θ0 sin φ0). (9)

In (8) and (9), θ and φ are the angle of incidence of a
potential source illuminating the array, |k| = 2π/λ, the
modulus of the wavenumber depending on the wavelength
λ of the source, and θ0 and φ0 define the spherical angles
of the array.

Deterministic fractal arrays are constructed in a
self-similar manner and consist of many smaller parts
whose shape resembles that of the overall object. They are
formed by the repetition of a generating subarray at scale
1; to construct higher scales of growth, repetitions of this
small subarray are used. Utilising (7) and the methodology
defined above, it is possible to construct and analyse a
deterministic planar fractal array. The pattern of the
generating subarray is achieved by switching elements of
a fully populated symmetric array on or off according to

Smn =
{

1, if element (m, n) is turned on

0, if element (m, n) is turned off
, (10)

until the desired fractal pattern emerges.
Following (10), the thinned generating subarray can be

copied, scaled, and translated to produce the final array.
Due to the recursive nature of the development procedure,
deterministic fractal arrays created in this manner can
conveniently be thought of as arrays of arrays. The array
factor for a deterministic fractal array may be expressed in
a general form given as a product of scaled versions of the

Fig. 4. Symmetric planar array in x–y plane, with interelement spacings
of dx and dy and definition of spherical angles θ and φ for wavenumber

vector k of farfield source.
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same generating subarray pattern [15],

�P (u) =
P∏

p=1

�frac(δp−1u), (11)

where �P (u) represents the array factor of the fractal
generating subarray resulting from the thinning of the
symmetric planar array, and u is the vector of dependent
variables. The expansion factor δ controls how much the
array grows with each application of the generating
subarray and is inherited from the size of the symmetric
planar array before thinning. Furthermore, the parameter P
in (11), represents the scaling level/growth stage.

The directivity D(θ, φ) of an array measures the
power radiated in a specific direction as defined by
spherical angles θ and φ, such as for the planar case in
Fig. 4. For single-element antennas, the electrical and
physical dimensions require adjustment to achieve a
steering towards specified directions, grouping individual
antenna elements into arrays can enable highly directional
radiation patterns. For a planar antenna array with a
symmetrical radiation pattern, the directivity is given by

D(θ, φ) = F 2(θ, φ)

1
4π

2π∫
0

π∫
0

F 2(ϑ, ϕ) sin(ϑ) dϑ dϕ

, (12)

where F (θ, φ) denotes the radiation intensity of the
antenna in the direction of the angles θ and φ. For the case
of isotropic sources, individual antenna radiation patterns
are unity, and radiation intensity reduces to the antenna
array factor �P (θ, φ) in (11), and F (θ, φ) = �p(θ, φ)
can be substituted into (12).

By grouping a number of smaller distributed antenna
elements, it is possible to form a fractal antenna array. The
design and analysis of a fractal antenna array has been
described above and provides the possibility of increasing
directivity and steer the main beam of an antenna. This
offers a number of benefits in the context of space
communications, including cost reduction and risk
mitigation due to a reduced number of antenna array
elements. Fractal arrays evaluated following the procedure
detailed above belong to a special category of thinned
arrays. Application of the pattern multiplication theorem
to the analysis and design of planar fractal arrays is
considered in subsequent sections.

III. CONTROL LAW AND FRACTAL ANTENNA
ANALYSIS

In this section the characteristics of the control
technique used to drive an ensemble of agents towards the
formation of a fractal pattern and the issues related to the
design of a fractal-shaped antenna array are considered. It
is first shown how asymmetry in attraction-repulsion
potential leads necessarily to a central symmetry
configuration. It is then shown how the APF coefficients
are calculated to get the desired distance between agents.
Analysis of the control law is completed by considering

Fig. 5. Configuration with 5 agents—all having APFs with identical
coefficients—arranged in homogeneous formation.

the nonlinear stability characteristics. Fractal antenna
design methodology is finally illustrated in detail for the
case of a Purina fractal antenna array [15]. With reference
to Sec. II, from now on only the case of an initiator of n =
5 elements is considered.

A. Central Symmetry Emergence

Central symmetry emerges at the initiator level by
means of asymmetry between the interactions of one
single agent with the group. This is obtained through a
different value of the Lr

ij parameter along the directed
edges connecting the agent to the other 4 in the initiator
structure. This is here explained by finding the conditions
that make the artificial potential derivatives null along two
orthogonal axes, which are centred on the agent
considered and define the plane where the control is
exerted. The out-of-plane motion is undertaken through
other means and is explained in Sec. IV. Considering the
5-agent scheme, given in Fig. 5, the first derivative of the
artificial potential sensed by agent 1 can be calculated for
the regular pentagon formation pictured. Then, the
conditions that apply to the APF coefficients to reach a
stable equilibrium are deduced. APF derivatives can be
calculated as

∂Ui

∂xi

=
n∑

j=1

(
Ca

ij

La
ij

exp

(
−|xi − xj |

La
ij

)

− Cr
ij

Lr
ij

exp

(
−|xi − xj |

Lr
ij

))
xi − xj

|xi − xj | (13)

∂Ui

∂yi

=
n∑

j=1

(
Ca

ij

La
ij

exp

(
−|xi − xj |

La
ij

)

− Cr
ij

Lr
ij

exp

(
−|xi − xj |

Lr
ij

))
yi − yj

|xi − xj | , (14)

with Ui = Ua
i + Ur

i . Excluding the trivial case for
Lr

ij = La
ij and Cr

ij = Ca
ij , (13) and (14) can be driven to

zero while satisfying the stability condition Lr
ij < La

ij

[17]. From here on, just changes in Lr
ij are considered,

where (i, j) refers to indexing within the 5-agent group. In
contrast, La

ij , Ca
ij , and Cr

ij are considered independent of
the pair of agents (i.e., they take the same value for every
index i, j and will hence be omitted below).
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Taking the planar formation in Fig. 4, the equilibrium
along y is trivially satisfied for all possible distances d,
either for the case Lr

ij = Lr for all (i, j)—that is, it takes
the same values along all the edges—or for the case in
which one agent has a different repulsive scale distance.
This can be understood by simply considering the
symmetry of the formation about the x-axis. Equilibrium
along the x-axis does not lead to an explicit expression for
the equilibrium distance; nonetheless, the derivative of the
potential with respect to x referring to any agent can be
calculated. Due to the homogeneity of the configuration,
any agent can be taken to analyse the artificial potential
field. In particular, for agent 1,

∂U1

∂x1

∣∣∣∣
pent.

= 2
Ca

La

(
exp

(
− d

La

)
cos α + exp

(
− d2

La

)
cos β

)

−2
Cr

Lr ′

(
exp

(
− d

Lr ′

)
cos α+ exp

(
− d2

Lr ′

)
cos β

)
,

(15)

where

d2 = d

2

√(
tan α + 1

cos α

)2

+ 1 = kd, (16)

can be determined with k > 1. This is considered an initial
equilibrium scenario for some equilibrium distance d and
for Lr = Lr ′

that is the same repulsive scale distance
sensed by all the agents. In this scenario, (15) must equal
0, but if Lr �= Lr ′

and, in particular, Lr < Lr ′
, the

separation distance must shrink. Thus, the equilibrium
distance reduces as the scale separation distance shrinks.
This can be verified by differentiating (15) with respect to
Lr ′

, leading to

∂2U1

∂x1∂Lr ′

∣∣∣∣
pent.

= 2
Cr

Lr ′ 2

(
exp

(
− d

Lr ′

)
cos α+ exp

(
− kd

Lr ′

)
cos β

− d

Lr ′ exp

(
− d

Lr ′

)
cos α

− kd

Lr ′ exp

(
− kd

Lr ′

)
cos β

)
. (17)

The expression in (17) is negative definite, since a
reduction of Lr ′

produces an acceleration on agent 1 in the
direction of the positive x-axis and therefore leads to a
reduction of its equilibrium distance,

∂2U1

∂x1∂Lr ′

∣∣∣∣
pent.

< 0

∴
(

1 − d

Lr ′

)(
exp

(
− d

Lr ′

)
cos α

)

+
(

1 − kd

Lr ′

)(
exp

(
− kd

Lr ′

)
cos β

)
< 0. (18)

This is always satisfied for d > Lr ′
. The sufficient

condition d > Lr ′
can be obtained by a wide choice of

system parameters, which can be easily seen by inspecting
the equilibrium distance for the simple case of two agents.
This case is obtained by summing up and setting equal to

zero the derivatives in (1) and (2) for |xij |2 = d and then
solving for d,

d = LaLr

Lr − La
ln

CaLr

CrLa
> Lr. (19)

In particular, for Ca = Cr, the relationship shown in (19)
is true as long as La �= Lr. However, as stability imposes
La > Lr, to make the potential function convex in the
vicinity of the equilibrium, it can be concluded that (19) is
always verified for stable potentials and possible to
achieve for other choices of the parameters Ca and Cr.

The other agents in the group considered in Fig. 5 tend
to keep the same relative distance with respect to agent 1.
This produces the new equilibrium configuration that sees
the agent with reduced separation distance finding its
equilibrium position in the centre of the 5-agent group
while also fulfilling equilibrium conditions for the other
agents. A contour plot of the potential that agent 1 senses
is reported in Fig. 6 for both equilibrium and
nonequilibrium parameter choices.

By similarly working the Cr parameter, the same effect
can be obtained as (15) is linear in Cr. Here, parameter Lr ′

is used to force the central symmetry configuration over
the pentagonal one, while parameter Cr is used to produce
the desired interagent distance only. The cross
configuration generated by the asymmetry in the potential
repulsive scale length is sketched in Fig. 7.

Considering that interactions amongst agents are only
along the edges of the adjacency matrix, a representation
of the repulsive and attractive scale parameter, as well as
of the other coefficients influencing (1) and (2), can be
given in terms of a matrix that has the same structure as
the adjacency matrix described in Sec. II-B. An extract
from the top left-hand corner of the repulsive distance
matrix is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Lr Lr Lr Lr Lr
2 0 0

Lr ′
0 Lr Lr Lr 0 Lr

3 0

Lr ′
Lr 0 Lr Lr 0 0 0

Lr ′
Lr Lr 0 Lr 0 0 0 · · ·

Lr ′
Lr Lr Lr 0 0 0 0

Lr ′
2 0 0 0 0 0 Lr Lr

0 Lr
3 0 0 0 Lr ′

0 Lr

0 0 0 0 0 Lr ′
Lr 0

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where 0s are in the same positions as in the adjacency
matrices in Figs. 1 and 2, and where the coefficients
regulating the interactions among nodes, which are the
centres of two different 5-agent groups, are denoted by Lr

2.

Finally Lr
3 is used to indicate the value along the edges

connecting peripheral agents across different 5-agent
groups. Hence, coefficients Lr, La, Cr, and Ca can be
arranged in square matrices of dimension N; because these
coefficients refer to the edges of the graph, they take a
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Fig. 6. Contours for potential sensed by agent at origin (a) in which all
agents have same value of repulsive potential scale length Lr and (b) in

which central agent has repulsive scale distance Lr ′
< Lr .

different value, depending on which agent the edge is
connected to.

One consideration that is worth noting is that the
arrangement in pentagonal configuration is not guaranteed
by the condition Lr ′ = Lr. While having Lr ′ �= Lr will for
sure exclude an equilibrium configuration in the shape of a
pentagon, the contrary cannot be stated. The cross
configuration in Fig. 7 can be obtained for both the
choices of Lr ′

considered. From this point of view,
excluding one of the two configurations can be seen as a
method for escaping one local minimum configuration.

When considering a cross configuration as in Fig. 7,
different from the pentagon case, the potential field for the

Fig. 7. Cross pattern emerging by shrinking repulsive potential scale
length sensed by centre agent.

agent in the centre cannot be considered as for the others.
It is in equilibrium anyway, whatever Lr parameter is
chosen because of the symmetry of potential acting on this
agent, which translates into two pairs of equal and opposite
terms for the sums in (13) and (14), making both equations
trivially null. For this reason, the agent with Lr = Lr ′

will
find its equilibrium position at the centre, enabling the
cross formation. This also justifies the consideration about
the two possible arrangements for agents with the same
repulsive scale distance parameter: given the central agent
is in an equilibrium position, a group of agents with the
same repulsive potential can spontaneously arrange in a
cross configuration. Equilibrium for the surrounding
agents according to the scheme of Fig. 7 is only
determined by (13), as the y-component is null by
symmetry. The equilibrium distance d, as shown in Fig. 7
is found by solving for the value d that satisfies

Cr

Lr

(
exp

(−d

Lr

)
+ exp

(−2d

Lr

)
+

√
2 exp

(√
2d

Lr

))

= Ca

La

(
exp

(−d

La

)
+exp

(−2d

La

)
+

√
2 exp

(−√
2d

La

))
,

(21)

which is obtained by expanding (13). As can be seen,
there is no closed-form analytical solution. On the other
hand, a stable equilibrium distance exists for a choice of
the free parameters Ca, Cr, La, and Lr satisfying the
conditions stated in [18]. In particular for given Lr and La,
with La > Lr, a stable equilibrium can be found by tuning
the parameters Ca and Cr. This is further elaborated in
Sec. III-B.

B. APF Coefficient Definition

The coefficients of the APF acting along the edges of
the graph are calculated such to set the desired distance
amongst the spacecraft. Just the Cr coefficient is
calculated as a function of the others, which are set. The
change of Cr parameter only or, more precisely, the
change in the ratio Cr/Ca is sufficient to modify the
position of the minimum, hence the design distance, for
the APF used. In particular, an interaction between two
spacecraft belonging to two different n-agent groups is
considered, with a design distance dd; the ratio Cr/Ca can
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hence be calculated by manipulating (19) as

Cr

Ca
= Lr

La
exp

(
dd

La − Lr

LaLr

)
. (22)

Once the coefficients are set, (22) can be reversed to
calculate the equilibrium distance. When more than 2
agents are involved, an analytic expression for the
equilibrium distance cannot be defined, but given a desired
distance, one can always get an expression for the value of
the ratio Cr/Ca that produces that separation. In particular
for a fully connected group of 5 agents, the Cr/Ca ratio can
be calculated equating to zero the gradient of the potential
for the formation according to the scheme in Fig. 5. As the
y component is trivially null, Cr/Ca can be calculated
considering just the x component of the gradient in (13).
This corresponds to (21), which can be manipulated
algebraically to obtain

Cr

Ca
= Lr

La

exp
(− dd

La

) + exp
(− 2dd

La

) + √
2 exp

(
−

√
2dd

La

)
exp

(− dd

Lr

) + exp
(− 2dd

Lr

) + √
2 exp

(
−

√
2dd

Lr

) .

(23)

This tuning method can be extended to the other links of
the adjacency matrix; by defining the coefficients in this
way, the desired self-similar pattern is produced.

C. Stability of Control Law

The stability can simply be proved following a
procedure similar to that in [17]. Consider the time
derivative of the energy as the sum of artificial potential
and real kinetic energy,

dEt

dt
= dKt

dt
+ dUt

dt
, (24)

where

Ut = 1

2

∑
i

∑
j

aijUij (25)

is the total potential energy per unit mass with

Uij = Ua
ij + Ur

ij , (26)

and

Kt = 1

2

∑
i

Ki = 1

2

∑
i

(vi · vi) (27)

is the total kinetic energy per unit mass. Expanding (24),

dEt

dt
=

∑
i

(
∇Ut · vi + ∂Kt

∂vi

· v̇i

)
, (28)

where the gradient operator ∇(·) is defined in (5).
Substituting (4) and (26) into (28) yields

dEt

dt
=

∑
i

[
∇Ut · vi + ∂Kt

∂vi

· (−∇Ui − σvi)

]
, (29)

∴ dEt

dt
=

∑
i

[
(∇Ut · vi − ∇Ui · vi) − σ |vi |2

]
. (30)

As the potential depends upon pairwise interactions,
the derivative with respect to xi is not null for both the Uij

and Uji potentials that constitute the total potential Ut. If
the agents interacted in a symmetric way, this would
cancel out with the gradient ∇Ui, but as the sum of the
potential derivatives upon any agent includes asymmetric
terms, this does not occur. Nevertheless the difference
between the gradients always can be damped by the
artificial viscous damping. Hence, it can be concluded that

∃ σ > 0 :
∑

i

[
(∇Ut · vi − ∇Ui · vi) − σ |vi |2

] ≤ 0.

(31)

This is enabled by the fact that artificial potential and its
derivative are bounded functions.

As total energy time derivative can be made a negative
semidefinite function, this can be compared to a
Lyapunov-like function whose derivative is always proved
to be negative and zero at equilibrium, corresponding to
null speed. Thus, the system will leak energy and stabilise
eventually into a static formation that corresponds to the
minimum of total energy.

The stability characteristic outlined above does not
imply that the system will relax into the desired formation
as the energy might be minimized, even just in the local
sense, with a configuration that is not one the system was
meant to take.

D. Fractal Antenna Array Design and Analysis

A distributed antenna array spread across a satellite
formation offers the potential of improved directivity and
gain for an increasing number of elements. However,
controlling a large number of satellites flying in relatively
close proximity to one another does not provide a
convenient solution. A more practical design would
involve a formation with a reduced number of elements,
that is able to achieve similar performance. Basing
antenna array formations on fractal geometries provides
not only the potential to reduce the number of elements
but also offers the possibility to operate across a range of
frequencies; the self-replicating nature of fractal patterns
extends to their performance characteristics, too, which
means that rapid analysis of a wide range of antenna
characteristics is possible.

The method described in Sec. II-C is followed here to
design and analyse a planar array based on the Vicsek or
Purina [14] fractal. A 3 × 3 symmetric planar array is
thinned down to form the Purina fractal pattern that has
the simple subarray S1 at growth scale P = 1,

S1 =

⎡
⎢⎣

1 0 1

0 1 0

1 0 1

⎤
⎥⎦ . (32)

The array fractal pattern SP at an arbitrary growth scale
P ∈ N, P ≥ 2 is given by

SP = S1 ⊗ SP−1, (33)
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Fig. 8. First three stages of growth of Purina fractal array for (a) P = 1, (b) P = 2, and (c) P = 3.

with ⊗ denoting the Kronecker product, whereby a unit
entry means that an element is switched on, and a zero
indicates that the array element is switched off, generating
the entries previously discussed in (10). Fig. 8
demonstrates the first three stages of growth for the Purina
fractal array.

The array factor associated with the generating
subarray in Fig. 8(a) can be derived from (7) by setting
dx = dy = λ/2, with λ the wavelength of the signal,
M = 2, and S11 = 1, resulting in

�frac(ux, uy) = 1 + 4 cos ux cos uy. (34)

Substituting the array factor in (34) into (11), and with an
expansion factor of δ = 3 relating to the size of the full
square lattice array, the product form of the array factor
equation at growth stage P,

�P (ux, uy) =
P∏

p=1

{
1 + 4 cos(3p−1ux) cos(3p−1uy)

}
,

(35)
is based on the simplification of (8) and (9) due to
dx = dy = λ/2 to

ux = π(sin θ cos φ − sin θ0 cos φ0) (36)

uy = π(sin θ sin φ − sin θ0 sin φ0). (37)

With θ0 and φ0 indicating the look direction of the
beamformer, (34) can be recast in terms of spherical
coordinates θ and φ. Assuming for simplicity that the look
direction of the beamformer is towards broadside with
θ0 = φ0 = 0, the array factor

�P (θ, φ) =
P∏

p=1

{
1 + 4 cos(3p−1π sin θ cos φ)

× cos(3p−1π sin θ sin φ)
}

(38)

results. Substituting (38) into (12) for isotropic sources, a
reduced expression

Fig. 9. Directivity plots for first three stages of Purina fractal arrays
shown in Fig. 8, with assumed direction of main beam towards broadside

(θ = 0).

DP (θ, φ) = �2
P (θ, φ)

1
4π

2π∫
0

π∫
0

�2
P (ϑ, ϕ) sin(ϑ) dϑ dϕ

(39)

for the directivity of the Purina array based on isotropic
sources is obtained.

With the help of (39), the directivity plots for the
different growth stages of the Purina fractal array in Fig. 8
can now be computed. These are shown for the first three
growth stages in Fig. 9 for the case of φ = 0◦. In each
case, the directivity pattern has been normalised to its own
maximum, making it possible to compare the relative
performance of the various stages of growth. It can be
noted that, as the number of elements increases, the gain
of the main beam increases with respect to the sidelobe
level. Also, with increasing P, the beamwidth decreases
(i.e., the resolution of the array is enhanced). Additionally,
self-similarity in the fractal array leads to self-similarity in
the produced radiation pattern. Note how each stage
provides an envelope for the rescaled version of the
following stage.

The above steps have detailed the step-by-step
procedure used in the design and analysis of a fractal array.
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Combining the antenna elements has the potential to alter
the radiation characteristics of an ensemble of antennas
and can result in a steerable and highly directive beam.

IV. SIMULATION RESULTS

The control method illustrated in this paper is used to
simulate a possible operative scenario in which a
spacecraft formation is used to form a distributed array in
Earth orbit. A geostationary orbit—a circular Earth orbit
with radius 42157 km and 0 deg inclination—is chosen to
simulate the dynamics, although the application is not
specifically aimed at telecommunications. Deployment of
a fractal antenna array is simulated in which the system is
composed of 125 radiating elements.

The system requirements suggest suitable actuators
and to a certain degree limit the choices regarding agent
selection and separation. The method of control and the
possibilities offered by reducing the size of individual
radiating elements, while maintaining an overall large
aperture, drive towards the selection of a satellite in the
size range of a pico- or nanosatellite suitable for a
separation in the order of 1 m. This is the separation
chosen as the interspacecraft distance is still small enough
to control motion through mutually exchanged
electromagnetic forces and far apart enough to allow for
relatively coarse accuracy, in particular at the release from
a carrier spacecraft or launcher.

The 125 unitary mass agents reproduce the shape of a
Purina fractal at a growth stage of P = 3; they are
deployed in 25 groups of 5-agent subgroups, which is the
elementary unit of the formation (N = 125, n = 5). The
dynamics of the spacecraft formation is based on
Clohessi-Wilthshire (CW [21]) linearised equations in an
orbiting reference frame.

The reference frame forms a Cartesian coordinate
system and is arranged such that

• the x-axis is tangent to the orbit and parallel to the
orbital velocity vector,

• the y-axis is parallel to angular momentum vector,
and

• the z-axis is orthogonal to the first two and pointing
towards the Earth’s centre of gravity.

The CW equations in this reference frame are

ẍ = −2νż

ÿ = −ν2y

z̈ = −2νẋ − 3ν2z, (40)

where ν is the orbital frequency.
Initial conditions were set such that each spacecraft

had an initial position randomly picked within a sphere
centred on its final position and radius equal to 1.5 times
the distance to its nearest neighbour to account for
possible initial swapped positions between near agents;
initial relative velocities are null. This corresponds to
assuming that a carrier spacecraft or launcher releases the
agents with coarse accuracy (i.e., not completely random).

Attitude for the single spacecraft is not considered,
whereas overall attitude control for rotation around the x
and y axes is guaranteed by positioning control through a
parabolic potential that flattens the formation onto the x–y
plane. Sensors are idealised; that is, the exact position of
any one agent is known without delay by all the agents to
which it is linked.

Although actuators are not modelled here, some
characteristics relating to the possible use of
electromagnetic forces are considered. In particular,
actuators of the kind proposed in [22] and [23] are
considered. As these actuators, particularly those based on
Coulomb forces, cannot be used concurrently due to
interference issues, a duty cycle is set up, and the
ensemble is split into a number of groups so that any two
groups active at the same time are relatively far apart. This
allows interferences to be neglected. Each group is
controlled across a time period of the duty cycle. Over the
whole duty cycle, each group of agents is controlled for
the same amount of time. As a consequence, agents
belonging to more than one group (e.g., linking agents
between groups) are controlled longer. The frequency of
the duty cycle needs to be high enough not to allow
spacecraft to drift away between control periods. This can
be bounded from below by considering a linearised
version of the control law and computing the frequency of
the associated harmonic oscillator. Considering the APF
only, the control can be linearised about the equilibrium as

m ˜̈xi =
∑

j

{
Ca

ij

La
ij

exp

(−dij

La
ij

)
− Cr

ij

Lr
ij

exp

(−dij

Lr
ij

)

−
[
Ca

ij

La 2
ij

exp

(−dij

La
ij

)
− Cr

ij

Lr 2
ij

exp

(−dij

Lr
ij

)](
xi − dij

)}
,

(41)

where it is assumed that the equilibrium position is at a
distance d from the neighbouring agents and that these
agents are fixed in their positions. The sum is extended to
all the neighbouring agents acting along one axis. As an
example, considering the central agent of Fig. 7, this
means that only 2 agents contribute to its oscillatory
motion along the orthogonal axes.

Since (41) is in the form of a linearised harmonic
oscillator perturbed by a constant acceleration, the
frequency associated with this system is

ωi =
√√√√∑

j

Ca
ij

La 2
ij

exp

(
−dij

La
ij

)
− Cr

ij

Lr 2
ij

exp

(
−dij

Lr
ij

)
.

(42)

Therefore, the frequency at which control is performed
should not be smaller than supi ωi , which is obtained by
considering all the sets of values defining the control of
the groups. For the case reported here, the whole duty
cycle lasts 2 s and the 125 spacecraft are considered as
belonging to 9 groups, which are
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TABLE I
Values of Coefficients Used in Numerical Simulations

Ca Cr La Lr Lr’

Fully connected groups (FGCs) 4 3.94722 2 1 0.5
Centres of FGCs 1 0.99596 4.5 4 2
Peripheral agents between adjacent FGCs 0.8925 1 2 0.5
Centres of 25-agent groups 2500 2505.3 10 9.9 4.5
Peripheral of 25-agent groups 69.96 70 3 2.9

σ = 0.1 for all agents

• the 5, 5-agent groups at the centre of the 25-agent
groups,

• the 5, 5-agent groups at the top of the 25-agent
groups,

• the 5, 5-agent groups at the bottom of the 25-agent
groups,

• the 5, 5-agent groups at the left of the 25-agent
groups,

• the 5, 5-agent groups at the right of the 25-agent
groups,

• the agents linking the centres of the 5-agent groups
in the 25-agent groups,

• the agents bonding the 5-agents side-by-side in the
25-agent groups,

• the agents bonding the centres of the 25-agent
groups, and

• the agents bonding the sides of the 25-agent groups.

The connections between each group (consisting of 25
agents) are ensured by pairs of agents instead of groups of
agents. This allows a reduction of the computational
efforts for each agent and a reduction of the computational
resources needed for the simulation. On the other hand,
this reduces the control power and slows down the
deployment of the formation. Table I shows the values of
the coefficients used.

The agent at the centre of the formation (e.g., agent 1)
is the only one linked to the centre of the reference frame
by a quadratic potential in the form Uc = ζ |x1|2, with
ζ = 0.1 as a weighting parameter. This is to provide a
kind of orbit-tracking capability or, in practical terms, the
possibility to stay anchored to the centre of the reference
frame. This also suggests that the task of tracking the orbit
can potentially be carried out by a single agent only, while
the others just track their relative position with respect to
the central agent. Without loss of generality, for simplicity
the central agent is assumed here to track the orbit. The
control law is applied for just x- and y-axes of the orbital
reference frame with control on the z-axis performed
through a simple parabolic potential Uzi = ζ |zi |2, for i =
1, . . . N, that flattens the formation on the plane z = 0,
where again ζ = 0.1 is a weighting parameter. The actions
of both quadratic potentials are damped by virtual
dissipative terms σ ẋi .

Snapshots from the deployment are shown in Fig. 10.
It can be noted that after 1 d the deployment exhibits slight
distortions, in particular within peripheral groups.

Finally, in Fig. 11, errors on the designed relative
position after 1 d are plotted. The error measure is the
difference between the actual distance of each spacecraft
from the centre of the formation and the ideal design
distance; this is then plotted as a percentage of the desired
spacing. It can be seen that the maximum error is less than
5%. The evaluations of both the snapshots in Fig. 10 and
the error in Fig. 11 are considered after a maximum of
24 h; this is sufficient to prove the self-arranging
capabilities of the control technique. After a further 24 h,
the magnitude of the maximum error is halved compared
with the 24-h values in Fig. 10. Theoretically a complete
relaxation with no positioning errors is possible, but only
after an infinite period of time due to the viscous-like
damping.

V. DISCUSSION

The idea of meeting needs for highly directional
antenna arrays through a space-based fractionated
architecture is constructed around the possibility of
locating a number of spacecraft, each carrying an antenna
element, according to a precise fractal scheme. This
improves overall antenna performance and capabilities
while using a contained number of elements. In turn, the
possibility of using small spacecraft enables the formation
of a fractionated antenna but requires accurate spacing
between the elements. Orientation is not considered here
for single agents because they are assumed to be isotropic
sources. Thus, in the case of an antenna array as described
above, the relative agent positions within the whole array
is the key requirement, as this influences the performance
of the array. Hence, considering just coarse attitude
control for single agents, a description of the system
characteristics in a global sense is possible as long as
relative positions are precisely known. Utilising this
knowledge, directivity through array phasing is achievable
at the group level for compensation of global attitude
errors and at the agent level to accommodate
misalignment of the single elements.

From a control point of view, the need for precise close
formation flying can be tackled by using reliable
techniques and implementing these on relatively small
agents. In this respect, artificial potential functions are
particularly suited for the task as their stability
characteristics are analytically provable; hence, they do
not need extensive Monte Carlo test campaigns to validate
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Fig. 10. Formation deployment in geostationary, with snapshots taken at (a) t = 0 s, (b) t = 60 s, (c) t = 3600 s = 1 h, and (d) t = 86400 s = 24 h.

Fig. 11. Errors in relative design positioning after 1 d from release of
formation. Distances are computed with respect to agent at centre of

formation; distance error expressed as percentage of ideal design
distance.

their behaviour. Moreover, APFs allow for highly
nonlinear control through quite straightforward
computation due to their smoothness. As the amount of
information needed is just the relative position of a number

of neighbours, the connection network presented here has
the double advantage of shaping the formation on one side
and reducing the number of connections on the other.
These combined characteristics make small spacecraft,
even with reduced computation capabilities, able to carry
out the task of arranging into a formation exclusively
through interagent interaction in a decentralised way.

The artificial potential functions account for collision
avoidance of the spacecraft as long as they are connected
in the network, which holds for any two spacecraft whose
nominal positions are in close proximity. Two agents may
then collide if they are in close proximity while they are
not meant to be; hence, there is not a connection between
them. This is anyway avoided by choosing the initial
conditions adequately, that is, collocating each spacecraft
within its basin of attraction with an initial velocity within
the control capability of the actuators. This also accounts
for the problem of the local minima typical of APF control
methods. It would be possible to account for collision of
noncommunicating spacecraft by triggering avoidance
manoeuvres in case of closeness revealed by any sensor
scanning of the local neighbours. These kinds of
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avoidance manoeuvres are to be designed so as not to
introduce persistent instability in the control of the agents
already linked through the network, and their analysis is
beyond the scope of this work.

Although the paper is not focussed on the dynamics of
the formation in the orbit environment, the definition of
the simulation scenario imposes the need to consider
specific orbit parameters and suitable actuators. Here, a
geostationary orbit was considered, although agents are
not specifically targeted at telecommunication purposes.
When dealing with actuator modelling, it was decided to
keep the topic as close as possible to one of control; that
is, actuator characteristics were considered only in part.
Although the response of the actuators was not included,
their choice took into account the close proximity
scenario, and the use of interagent electromagnetic forces
was proposed rather than thrusters, which may imply
plume impingement problems. Moreover the APF
methods drive the system through an oscillatory stage
before the achievement of the equilibrium configuration,
during which residual energy (both virtual potential and
real kinetic) is dissipated. This translates into fuel wasting
when considering the use of thrusters. The introduction of
a duty cycle in the control operation is a consequence of
the choice of actuators. Another advantage of having
actuators that mimic the virtual interagent action of the
artificial potential makes the analysis applicable to a wider
selection of possible actuators. The duty cycle just applies
to interagent actions for which Coulomb forces can be
considered. Indeed in [24] and [22], it was shown how a
closely spaced formation can be maintained in
geostationary orbit using this type of actuation. For z-axis
concerns, the use of Lorentz forces as in [23] might be
considered, although their effectiveness is to be
investigated further in relation to the magnetic
environment.

The communication network was intended in the first
place for control purposes only, but the need for task
assignment in the fractionated architecture, as well as
array phasing, can be carried out through the same
architecture. In particular, the system inherits a structured
hierarchical network, where the ranking of the agents
depends on the number of links to which they are
connected. This does not imply that the resulting
architecture is centralised but allows the task assignment
to be carried out on the basis of the hierarchy of the agents.
For instance, the guidance for the whole formation can be
carried out by a number of spacecraft that communicate in
an all-to-all scheme, in order to share the computational
efforts (e.g., the centres of the 25-agent groups), and then
passed to another module able to compare this to the
navigation to eventually generate a control input for the
whole formation. This is different from the guidance,
navigation, and control functions that each spacecraft
carries out: while each spacecraft should find its position
in a distributed architecture, the whole system follows a
guidance law that enables mission task achievement. It is
worthwhile stressing how the position of each agent is not

predetermined in a strict sense. The links of each agent are
preassigned, but this does not prevent agents, or groups of
agents belonging to the same level, to swap their positions.

A final consideration about the planarity of the
formation can be made. The main claim of this paper, as
far as control, is to propose a control architecture that
exploits emergent behaviour shaped by the connection
network. It was considered that a 2D application is
sufficient to prove the main feature of the technique.
Nevertheless, the same considerations about the
emergence of a central symmetry and the buildup of
several hierarchical levels in a self-similar fashion can be
applied to 3D formations, as well as an initiator composed
of a different number of agents.

VI. CONCLUSIONS

In this paper the deployment of a self-similar
formation of autonomous agents aimed at producing a
fractal geometry array was investigated in the context of a
space-based distributed antenna array. Artificial potential
functions and self-similar adjacency matrices were used to
obtain self-similar patterns in a formation of mobile
agents, whereas electrodynamic analysis was used to
assess the performance and potential benefits that arise
from the fractal patterns. The formation deployment was
simulated in geostationary Earth orbit and demonstrated
the feasibility of the concept.

The exploitation of emergent self-similar, or fractal,
patterns in space-based antenna arrays is encouraged by
the reduced sensitivity of the performances of the array to
element failure and by the possibility to account for
positioning errors through actively controlling the phasing
of the array elements. Moreover, the fractal geometry of
the array allows for performances in terms of directivity
that are comparable, or even improved, to that of a
classical square lattice scheme that makes use of a higher
number of elements.

The APF method enables the use of analytic tools to
draw the characteristics of the control law in terms of the
stability and achievement of the final desired
configuration. The self-similar connection scheme used
accounts for multiple redundancy towards dispersion; that
is, any link between two agents can be lost without
catastrophic consequences for the whole formation. The
system is cooled down using artificial damping, which, in
terms of control, represents an improvable means, in that
the dissipation of artificial potential energy may translate
into real fuel waste for the actual agents. The aim of
avoiding undesirable effects through the choice of
thrusters as actuators drove the consideration of
electromagnetic interagent forces to control the formation
for simulation purposes in a geostationary environment.

Finally, the use of multiple independent elements to
form the array allows for relaxation of attitude control
requirements for the single agents, shifting from an
attitude problem to one of relative agent/group positioning
that defines the attitude for the whole formation.
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