
A New Approach to Moving Targets and
Background Separation in Multi-Channel SAR

Di Wu, Mehrdad Yaghoobi and Mike Davies
School of Engineering

University of Edinburgh
UK, EH9 3JL

Email: {D.Wu, m.yaghoobi-vaighan, mike.davies}@ed.ac.uk

Abstract—This paper describes a new approach for decoupling
the slowly-moving targets and the clutter under multi-channel
SAR (Synthetic Aperture Radar) scenarios. Given the phase
histories received by different channels, the high-level data
structures, e.g. the sparsities of moving targets, enable us to
enforce advanced constraints on an optimisation problem to
distinguish the dynamic targets from static background. Specif-
ically, an iterative method is employed for the decomposition
by alternatively updating the arguments. The dynamic parts
can then be used for the subsequent analysis on states of the
targets, and the static parts, in the case that the background
does not change significantly over time, can be inherited in
subsequent sub-aperture processings. The presented approach
is demonstrated on simulated three-channel SAR data.

Index Terms—SAR, GMTI, sparsity, compressed sensing

I. INTRODUCTION

Synthetic Aperture Radar (SAR) can be traced back to
1950s when the military was in need of a remote surveillance
device with all-weather, day-or-night capability. By super-
imposing the received signals along the flight path, SAR
imaging systems synthesise a large virtual aperture to provide
high spatial resolution images. It is well known that moving
targets will be displaced and blurred in the formed images.
One appealing application for SAR is Ground Moving Target
Indicator (GMTI) which aims at revealing the moving targets
in the SAR images and correcting their patterns.

Displaced Phase Center Antenna (DPCA) [1] and Along
Track Interferometry (ATI) [2] are the widely used subtrac-
tive methods in the SAR/GMTI community which expose
the moving targets with magnitudes and interference phases
respectively. DPCA is noise-limited since the noise can corrupt
the differential image between different channels and ATI is
clutter-limited since the clutter will contaminate the image
phases if its energy is comparable to the moving targets
[3]. They are all taken as the practical clutter cancelation
algorithms which perform moving targets detections instead of
thorough decomposition (though ATI is capable of estimating
radial velocities of targets).

In this paper we introduce an optimization based approach
with an iterative process to decompose the raw data into
two portions which correspond to the moving targets and
background respectively. The proposed method is designed
to integrate GMTI abilities and give imaging abilities on
both moving targets and static clutter. The remainder of this

paper is organized as follows. Section two describes the signal
modeling of a standard multi-channel SAR system. In section
three, the SAR processing basics, and the moving targets and
background separation approach are presented. Section four
demonstrates the performance of the proposed method with
a simulated three-channel SAR scenario. The conclusions are
discussed in section five.

II. SIGNAL MODELING

Based on Fig. 1 we depict a multi-channel SAR platform
in the spotlight mode with the moving targets in the observed
scene. The phase centres of antennas are spatially separated by
a distance d (evenly spaced) on the flight path of the platform.
Let the azimuth time of the transmitted pulses be τn where
n = {1, 2, ..., N} is the pulse number; r(τn) denotes the
position of one target at τn; r(t)i (τn) and r

(o)
i (τn) represent the

distance from the target to the i−th antenna and the distance
from the scene origin to the corresponding antenna position.
The platform velocity within a short sub-aperture can also be
approximated with a constant vp.

The discrete received signals for a target after the de-
chirping process (the platform motion is compensated with
reference to the scene origin) are given by:

Yi(fk, τn) = Aiσ(r(τn)) exp
(
−j4πfkui(τn)

c

)
(1)

where {fk|k = 1, 2, ...,K} denotes the range frequencies;
Ai is a nominal factor for the i−th channel which accounts
for the beam pattern and energy loss; σ(r(τn)) represents the
complex reflectivity of the moving target at the location r(τn);
c is the speed of light and ui(τn) denotes the differential
range r

(t)
i (τn) − r

(o)
i (τn). Given the collection of the target

reflectivities X ∈ C
M×L, we have the received signals in

matrix-vector form as Yi = ΦF (X) where ΦF is the forward
projection operator projecting from the image domain to data
domain.

III. MOVING TARGETS AND BACKGROUND
DECOMPOSITION

A. SAR Pre-processing

In SAR/GMTI, the raw data is first pre-processed with chan-
nel balancing techniques [4] to retrieve the same responses
for stationary targets between different channels. We denote
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Fig. 1. The geometry of a multi-channel SAR system with moving targets in
the monitored scene.

Ỹi = {Ỹi(fk, τn)} ∈ C
K×N as the balanced data for the i−th

channel. Suppose the radar channels share the same track,
the received echo of the aft-antenna can be viewed as the
delayed received signal of the fore-antenna, if the monitored
scene does not change over time. In the case that the transfer
functions of different channels have been equalised, we have
that Ỹi(fk, τn) = Yi(fk, τn + (i− 1)Δ) where Δ = d/vp.

B. SAR Imaging

The typical SAR imaging mechanism, based on widely
accepted assumptions of static scene and isotropic reflectors,
is modeled as the following linear inverse problem Y =
Φ0

F (X) + e, where Y is the phase history, X is the formed
image, e stands for the noise and Φ0

F is the forward projection
operator assuming stationary scene. The SAR image formation
is equivalent to finding the solution of an optimisation prob-
lem:

min
X
‖Y− Φ0

F (X)‖2F (2)

where ‖‖F represents the Frobenius norm. A number of algo-
rithms have been proposed to solve this model. One widely
used solution is X = Φ0

B(Y) which employs the backward
projection operator Φ0

B to approximate the pseudo inverse of
Φ0

F with its Hermitian transpose.

C. Moving Targets and Background Separation

There have been investigations on the exploitation of spar-
sity in SAR moving target imaging and detection [5][6][7].
Motivated by practical SAR/GMTI methods and SAR imaging
models, the features of the moving targets, which are exploited
by DPCA and ATI, can be used to constrain the SAR image
forming optimisation. In combination with other high level

data structures, such as sparsity, the SAR/GMTI scenarios
can be better described with a hybrid DPCA/ATI type model
[8] from the mathematical perspective. Efficiently solving the
enriched model has opportunities to realise versatile utilities
in SAR/GMTI and establish thorough understandings over the
data flow.

Given that the de-chirped and channel balanced phase histo-
ry for channel i is Ỹi (here the antennas are assumed equally
spaced), we apply variable splitting to the image domain, and
respectively denote X ∈ C

M×L and F ∈ C
M×L (displaced

and defocused) as the stationary background and moving target
reflectivities in the first channel. It is then reasonable to assume
that F is sparse compared to the whole scene. It is also well
known that the formed image of one moving target will have a
phase difference (4π/c)f0vr(d/vp) between two channels, in
which f0 stands for the central frequency of the transmitted
signal, vr is the radial velocity of the target, d denotes the
spatial gap between the two channels. This phase shift is a
function of vr and assumed to be constant for one target within
a short sub-aperture. The following model is then introduced
to decouple the moving targets and stationary clutter:

min
X,F,P

1

2

∑
i

‖Ỹi − Φ0
F (X + F� P(i−1))‖2F

s.t. X ∈ C
M×L,F ∈ C

M×L,P ∈ C
M×L

‖F‖0 ≤ s

|Pml| = 1, m = 1, . . . ,M, l = 1, . . . , L

supp(F) = supp(P-1)

(3)

where P is a pure phase correction matrix which is element-
wise magnitude 1 (Pml = exp (j0) = 1 for static object
(m, l) with 0 phase shift), � is the element-wise product
operator, s stands for the sparsity constraint of the moving
target reflectivities. F and P-1 are expected to be non-zero
only on the moving targets pixels and share the same support.
Presumably since the antennas are assumed to be equally
spaced, P(i) is defined as:

P(i) = P� . . .� P︸ ︷︷ ︸
i

(4)

where i > 0 and P(0) = 1.
The minimization model (3) is interpreted as forming the

SAR images for the moving targets F and static background
X, and estimating the phase corrections P, based on optimising
the data consistencies upon the received data sets and enforc-
ing the sparsities and phase shifts on the moving targets. Also
we expect to see better matches between the phase histories
and forwarded SAR images compared to conventional imaging
techniques, and the estimated X can be naturally used for other
sub-aperture processings.

Since directly solving (3) is challenging, we hereby employ
an iterative process for practical uses. The variables X, F
and P can be estimated alternatively by fixing others and
updating one variable each time. The estimations of F and P
are not straightforward, we thus reformulate (3) and introduce



intermediate variables. Let dXi = F�P(i)−F�P(i−1) and
X1 = X + F. Then for I channels we have:

min
X1,dXi

1

2
‖Ỹ1 − Φ0

F (X1)‖2F+

1

2

I∑
i=2

‖Ỹi − Φ0
F (X1 +

i−1∑
j=1

dXj)‖2F

s.t. X1 ∈ C
M×L, dXi ∈ C

M×L

‖dXi‖0 ≤ s̃, i = 1, . . . , I − 1

(5)

The dXi (i = 1, . . . , I − 1), F and P − 1 are supposed to
have the same support, therefore we can enforce the sparsity
constraint on dXi in (5).

In each iteration we first update X1 along the inverse
gradient direction. The dXi can then be updated with the
gradient decent method and hard thresholding operations [9].
The next step is to estimate P and F based on the intermediate
variables dXi. To mitigate the expensive computational cost
of evaluating the gradients, based on the definitions of X1 and
dXi, we simply approximate P and F with

Pml=

⎧⎨⎩Hz

(
N
(

1

I − 2

I−1∑
i=2

dXi
ml�dXi−1

ml

))
(m, l)∈Ω

1 otherwise
(6)

Fml=

⎧⎨⎩
1

I − 1

I−1∑
i=1

dXi
ml�(P(i)

ml − P(i−1)
ml ) Pml �= 1

0 otherwise
(7)

where Hz is the threshold operator that sets all the small phase
shifts, i.e. |Pml − 1| < z (z = 0.02 is a good choice), to
zero (Pml = 1) to prevent from having too large Fml, �
is the element-wise division operator, N is the normalisation
operator (N (P) = P � |P|) to eliminate the amplitudes of
P and make it a pure phase correction matrix, and Ω is the
intersection of the support sets of dXi (i = 1, . . . , I − 1).

The detailed implementations are specified in Algorithm
1. Particularly μ is the approximated Lipschitz constant for
the gradient of function f(X) = 1/2‖Ỹ1 − Φ0

F (X)‖2F . The
T (a, b) denotes the hard-thresholding that all the elements in
a which are below b (in magnitudes) are replaced with zeros.

IV. EXPERIMENTAL RESULTS

In this section we consider a simulated scenario to demon-
strate the effectiveness of the proposed approach. Within
standard Cartesian coordinates, the platform carries a three-
channel SAR system in spotlight mode, and the first antenna
(fore-antenna) linearly moves from (7000, -25, 7000) m to
(7000, 25, 7000) m with velocity vp = 200 m/s. The channels
are evenly spaced on the platform track with 0.1 m. The pulse
repetition frequency (PRF) is 2000 Hz, the central frequency of
the transmitted signal is 10 GHz to simulate an X-band Radar,
and the range frequency step size is 800 kHz. The monitored
region consists of two moving targets which move from (0, 0,
0) m with (2, 26, 0) m/s and from (-50, 50, 0) m with (-3, -16
, 0) m/s respectively.

Algorithm 1 : Iterative algorithm for approximating the solu-
tion of (3).

1: Initialisation: X ← μΦ0
B(Ỹ1); P ← 1; F ← 0; dXi ←

μΦ0
B(Ỹi+1 − Ỹi) (i = 1, . . . , I−1); X1 ← X+F; i← 1;

k ← 1
2: while k < K do
3: X1 ← X1 − μ

1

I
×

Φ0
B

(
Φ0

F

(
IX1+

I−1∑
i=1

(i× dXI−i)

)
−

I∑
i=1

Ỹi

)
4: while i < I do
5: dXi ← dXi−

μ× Φ0
B

(
Φ0

F

(
X1 +

i∑
j=1

dXj

)
− Ỹi+1

)
6: dXi ← T

(
dXi, 1%× ‖dXi‖2F

)
7: i← i+ 1
8: end while
9: P from (6)

10: F from (7)
11: dXi ← F�P(i)−F�P(i−1); X ← X1 − F
12: k ← k + 1
13: end while

We have obtained the phase histories as 313×500 matrices,
and the discrete grid to be considered here is 512×512 which
corresponds to -100 m∼100 m in x direction and -100 m∼100
m in y direction. Static targets are distributed on this grid and
one stronger static target is located at (50, 0, 0) m. ATI is
well known to be hampered by the scenarios where moving
targets and clutter are mixed together. Relatively stronger
amplitudes and random phases are given to the static clutter in
a rectangular region on purpose to be mixed with one moving
target in the image domain and test the performance of the
decomposition. Also we add approximately 16.5 dB Gaussian
random noises to the raw data. In the remainder of the paper,
we apply the fast back-projection and re-projection algorithms
(decimation-in-image) [10] as the backward Φ0

B and forward
Φ0

F operators. The simulated scenario can be found in Fig. 2.
It can be seen that the moving target at (0, 0, 0) m is shifted to
the top and mixed with the rectangle, the other moving target
at (-50, 50, 0) m is shifted to the bottom, and both of them
have been majorly defocused along the azimuth direction.

We first fix the three raw phase histories with simple
multiplications in the Fourier domain to realise the delay in
time domain and complete the channel balancing. Then the
three balanced data sets Ỹ1, Ỹ2 and Ỹ3 are processed with
the presented moving targets and background decomposition
algorithm. Since SAR applications are essentially high volume
data processings, as shown in Algorithm 1, we start with a
proper initialisation to make X the scaled back-projected Ỹ1

instead of 0 and retrieve better results within few iterations.
In practice, there exists a crucial structure for P where its
elements for one specific target are approximately constant
(proportional to the radial velocity of the moving target). We
currently do not enforce this structure in our model, and the



estimations of X and F are limited by the accuracy of the
estimated P.

The comparisons of the decompositions with different ini-
tialisations are shown in Figure. 3. It can be seen that the
two iteration implementation with proper initialisations gives
us a good enough performance. Here the rectangle is well
separated from the moving target. With conventional methods
the whole support of the moving targets will be cropped and
the amplitudes and phases will not be accurately estimated.
The estimated phase correction matrix P is transferred to the
velocities in x direction via vx =

√
2(c/(4π))∠P (vp/(f0d)),

where ∠ is an operator to extract the phases, and the estimated
vx is shown in Figure. 4. We take the local mean values
of vx as the estimations for the target velocities and get -
2.89 m/s and 2.17 m/s which are close to the ground truths.
Here the standard ATI on the first two channels, i.e. ∠P =
−∠(Φ0

B(Ỹ1)� (Φ0
B(Ỹ2))

∗), gives the velocity estimations as
-2.87 m/s and 1.5 m/s (local mean values). The ATI results
remain consistent for the -3 m/s target but have deviations for
the target which is embracing comparable rectangular clutters.
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Fig. 2. The formed image in dB based on the first channel data with the fast
back-projection algorithm.

V. CONCLUSION

This paper presents a moving target and background sep-
aration approach in multi-channel SAR scenarios. Specifi-
cally by modeling the phase differences between channels
and utilising the sparsities of the moving targets within an
optimisation framework, the raw data can be decomposed into
dynamic/stationary portions, and the moving/static objects can
be imaged. Preliminary results based on an iterative process
demonstrate the effectiveness of the proposed approach.
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