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Motivation

These lecture notes present fundamental concepts in point process theory for multi-object es-
timation problems, and includes practical derivation tools for the derivation of multi-target
detection and tracking filters. Even though these notes aims at being as self-contained as possi-
ble, the reader is expected to have basic knowledge in probability theory. Some parts, notably in
Chap. 3, may require additional knowledge in measure theory. In order to keep a natural flow in
the development of the arguments exposed in these notes, simplicity is sometimes favoured over
strict mathematical rigour in the presentation of some advanced concepts, notably pertaining to
measure theory. Fortunately, the available literature on point processes propose some excellent
books covering the topic in deeper details; some of them are provided in the next section.

A few useful references

A comprehensive study on point processes is given by Daley and Vere-Jones in [6, 7], digging
deep in measure theory to present all the fundamental concepts related to point processes and
many useful applications. Stoyan, Kendall, and Mecke follow a different approach in [14], cast-
ing the point processes in a more intuitive but perhaps less mathematically-involved framework,
and provide an excellent complement to [6, 7]. Fundamental concepts in measure theory can
be found in Bogachev’s [2, 3], and their exploitation in the context of multi-object filtering is
covered in more details in the authors’ notes from the First International School on Finite Set
Statistics [10], from which these lecture notes are inspired.

The exploitation of point processes for practical target tracking applications is to the credit of
Goodman, Mahler, and Nguyen in [9], and Mahler in [13], where the Finite Set Statistics (FISST)
framework is presented in detail. Mahler’s seminal papers on the Probability Hypothesis Density
(PHD) [11] and Cardinalized Probability Hypothesis Density (CPHD) [12] filters paved the way
for most of the subsequent developments in multi-object filtering.

Introduction

In the context of multi-target tracking, multi-object estimation problems are the study of a
population of objects or targets, whose number and individual states (e.g. position, velocity co-
ordinates) are unknown. Cast in a Bayesian framework, the multi-object filters aim at describing
the uncertainty on this population through a probabilistic description, and update that descrip-
tion across time whenever additional information on the population of targets are available –
typically, through observations collected from some sensor system observing the surveillance
scene.

A point process is a random variable whose realizations are sequences whose size and elements are
both random; it is thus particularily adapted to the description of a multi-object configuration,
i.e., a number of objects and their respective states. To a certain extent, a point process can
be seen as the extension of an integer-valued random variable, describing the size of a popula-
tion of objects, to a random variable describing the size and the states of a population of objects.
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This key remark motivated the two-step pedagogical approach followed by these lecture notes,
presenting first integer-valued random variables in Chap 1, and then point processes in Chap 2.
The concepts pertaining to integer-valued random variables have (almost) always a counterpart
for point processes, and the structures of Chaps 1, 2 present many remarkable similarities.

Organization of the lecture notes

The lecture notes are organized in three main chapters of increasing complexity:

• Chap. 1 serves as an introduction, and describes the study of a integer-valued random vari-
able through its probability generating function (p.g.f.). The exploitation of integer-valued
random variables is illustrated through the modelling and derivation of the “cardinality
only” PHD filter.

• Chap. 2 contains the core notions presented in the lecture notes, and describes the study of
a point process through its probability generating functional (p.g.fl.). The exploitation of
point processes is illustrated through the modelling and derivation of the PHD filter [11].

• Chap. 3 explores the construction and exploitation of higher-order moments for point
processes, and illustrates the concept for the Poisson point process.

Finally, a few exercises relating to the three chapters above are proposed in Chap. 4.

Note

Most of the recent developments in multi-object filtering, following the terminology proposed
in the FISST methodology [12] pertaining to Random Finite Sets (RFSs), make use of sets of
points, multi-object densities, and set integrals. The general terminology pertaining to point
processes, on the other hand, make use of sequences of points, probability measures, probability
densities, and measure-theoretical integrals.

These notions are largely equivalent, as a RFS can be seen as a (simple) point process (see
Chap. 2). However the expression of higher-order moments for point processes, presented in
Chap. 3, requires the construction of quantities described with measures but admitting no den-
sities, and more easily described with measure-theoretical integrals than set integrals. For this
reason, these lectures notes follow the general terminology of point processes.
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Chapter 1

Integer-valued random variables

In this chapter, we shall focus on the estimation of the number of targets in the surveillance
scene, and not their individual states.

1.1 Integer-valued random variables: basic concepts

The number of targets in the scene is obviously an integer, but it is unknown; thus, it is aptly
described by an integer-valued random variable X.

The random variable X is a mapping from some
probability space (Ω,F ,P) to the set of non-
negative integers N.

Depending on the construction of the random
variable X, several outcomes ωi may be associ-
ated to the same realization k.

The quantity X−1(n) represents the collection
of all the possible outcomes ωi leading to the
realization n. The probability space is endowed
with a probability measure P which allows us
to measure the “size” of X−1(n). The “larger”
X−1(n) is, the more likely is the value n to be
drawn when sampling from X.

5
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The quantity
pX(n) = P(X−1(n)) (1.1)

denotes the likelihood that n is drawn when sampling from X, which we shall describe as the
event X = n. The structure of the probability space is such that∑

n≥0

pX(n) =
∑
n≥0

P(X−1(n)) (1.2a)

= 1, (1.2b)

which ensures that the elements pX(n) can be readily intepreted as cardinality probabilities, and
the family {pX(n)}n≥0 as a cardinality distribution. In our context, pX(n) is the probability
that the population described by X has exactly n objects.

The cardinality distribution {pX(n)}n≥0 fully characterizes the random variable X, but its full
knowledge is seldom available in practical problems as it may be intractable to estimate and
propagate across time. Random variables can also be described by their moments, which pro-
vide a limited but meaningful description of the behaviour of X. Given an integer k ≥ 0, the

kth order non factorial (respectively (resp.) factorial) moment µ
(k)
X (resp. α

(k)
X ) of X are defined

as

µ
(k)
X = E

[
Xk
]

=
∑
n≥0

pX(n)nk, (1.3)

α
(k)
X = E [X(X − 1) . . . (X − k + 1)] =

∑
n≥k

pX(n)n(n− 1) . . . (n− k + 1). (1.4)

The non factorial moments are useful for the construction of the central moments such as the
variance

varX = µ
(2)
X −

(
µ

(1)
X

)2

, (1.5)

a well-known statistic which describes the spread of the values taken by X around its mean

value µ
(1)
X . Also, the correlation between two random variables X, Y can be studied through the

covariance
covX,Y = µ

(1)
XY − µ

(1)
X µ

(1)
Y . (1.6)

The factorial moments have no easy physical interpretation and are seldomly used to produce
meaningful statistics on random variables. The exception is the first-order factorial moment,

which equals the first-order non factorial moment µ
(1)
X and provides the mean value of X, usually

noted µX :

µX =
∑
n≥0

pX(n)n(= µ
(1)
X = α

(1)
X ). (1.7)

The cardinality distribution is a convenient tool to study a single given random variable. In the
multi-object Bayesian framework, however, different random variables are used to describe the
evolution of our knowledge of the same concept across time – for example, our knowledge on the
number of targets in the scene is enriched when the sensor system produces new measurements,
and the random variable describing the number of targets is updated accordingly. It turns out
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that the transition between these random variables is difficult to describe through their cardi-
nality distributions, and that another representation of the random variable is necessary to be
able to produce the filtering equations effectively.

For example, suppose that the random variables X1 and X2 are fully known through their
respective cardinality distributions {pX1

(n)}n≥0, {pX2
(n)}n≥0, and that the random variable X

is defined as the sum

X = X1 +X2. (1.8)

What is the cardinality distribution {pX(n)}n≥0 of X? One way to find out is to enumerate
every possible realization n of X and consider all the possible joint realizations of X1, X2 whose
sum equals n:

pX(0) = pX1
(0)pX2

(0), (1.9)

pX(1) = pX1
(1)pX2

(0) + pX1
(0)pX2

(1), (1.10)

pX(2) = pX1
(2)pX2

(0) + pX1
(1)pX2

(1) + pX1
(0)pX2

(2), (1.11)

· · ·

We see on the example above that a simple operation on random variables - the sum - does not
translate into a simple operation on the cardinality probabilities.

Just as the Fourier transform allows us to shift the study of time-varying signals from the
time to the frequency domain in which simple operations on signals are easily transcribed, one
would like to shift the study of random variables from the cardinality probabilities to a more
adequate domain.

1.2 Probability generating function: definitions

A generating function is a function G : R+ → R which is built upon (or “generated by”) a
(possibly infinite) sequence of real numbers1. Given a sequence of real numbers (un)n≥0, its
generating function G is defined as

G(s) =
∑
n≥0

uns
n (1.12)

for any s ∈ R+ such that the sum on the right hand side of (1.12) is finite.

Applied to a random variable X, one can substitute the cardinality probabilities {pX(n)}n≥0 in
(1.12) to produce the p.g.f. GX of X, defined as the expectation

GX(s) = E
[
sX
]

(1.13a)

=
∑
n≥0

pX(n)sn. (1.13b)

1R+ is the set of non negative real numbers. More general definitions of the generating function exist, but it
is out of the scope of this lecture.
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Note that using the cardinality probabibilities as the generating sequence imposes some re-
strictions on the range of admissible values for the test variable s, and the p.g.f. is defined for
0 ≤ s ≤ 1. From (1.13) it is easy to see that:

GX(0) =
∑
n≥0

pX(n)0n = pX(0) (1.14)

GX(1) =
∑
n≥0

pX(n)1n =
∑
n≥0

pX(n) = 1, (1.15)

Setting s to 0 in (1.13) allowed us to extract the cardinality probability pX(0) from the p.g.f.;
we will see in Section 1.3 that other cardinality probabilities can be extracted through differen-
tiation of the p.g.f..

In multi-object filtering applications it will be necessary to study the joint behaviour of sev-
eral random variables; for example, to describe the number of measurements produced by the
sensor system given the number of targets in the scene. The joint p.g.f. GZ,X of two (possibly
dependent) random variables Z, X is defined as the expectation

GZ,X(t, s) = E
[
tZsX

]
(1.16a)

=
∑
m,n≥0

pZ,X(m,n)tmsn, (1.16b)

where pZ,X(m,n) is the joint probability that Z = m and X = n. Note that, if Z and X are
independent variables, then by definition pZ,X(m,n) = pZ(m)pX(n) and the joint p.g.f. becomes:

GZ,X(t, s) =
∑
m,n≥0

pZ(m)pX(n)tmsn (1.17a)

=

∑
m≥0

pZ(m)tm

∑
n≥0

pX(n)sn

 (1.17b)

= GZ(t)GX(s). (1.17c)

We now need to introduce the notion of derivative to further exploit the p.g.f..

1.3 Ordinary differentiation

1.3.1 Definition and basic rules

As p.g.f.s are real-valued functions taking a real number as argument, the “classic” derivative
can be applied to the p.g.f.s. Suppose that f : R → R is some function, we call “the derivative
of f (evaluated) at x ∈ R”, and denote it by f ′(x), the limit

f ′(x) = lim
ε→0

f(x+ ε)− f(x)

ε
, (1.18)
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where ε ∈ R, if it exists. The ordinary derivative comes with a few calculus rules that will be
useful for the differentiation of p.g.f.s. Suppose that f and g are admissible functions, then:

sum: (f + g)′(x) = f ′(x) + g′(x) (1.19)

product: (f · g)′(x) = f ′(x)g(x) + f(x)g′(x) (1.20)

power: (fm)′(x) = mfm−1(x)f ′(x) (1.21)

chain (or composition): (f ◦ g)′(x) = g′(x)f ′(g(x)) (1.22)

1.3.2 A few advanced rules

A very important function that is used extensively in the construction of filter is the exponential
function. Indeed, a common approximation in the design of multi-object filters is to assume that
some p.g.f. can be written as an exponential as it often leads to tractable and easily implementable
filtering equations. The following “tricks” involving the exponential function will be used later
on:

ordinary differentiation: exp′(x) = exp(x) (1.23)

composition: (exp ◦f)′(x) = f ′(x)(exp ◦f)(x) (1.24)

Taylor expansion: exp(x) =
∑
n≥0

exp(n)(0)

n!
xn =

∑
n≥0

xn

n!
(1.25)

1.4 p.g.f.s and differentiation

We shall now apply the ordinary differentiation to the p.g.f. to see what kind of information
can be extracted from it. Suppose that X is a random variable with known p.g.f. GX and one
wish to determine the cardinality distribution {pX(n)}n≥0. Let us have a look at the successive
derivatives of GX :

GX(s) =
∑
n≥0

pX(n)sn, (1.26)

G′X(s) =
∑
n≥0

pX(n)(sn)′ =
∑
n≥1

pX(n)nsn−1, (1.27)

G
(2)
X (s) =

∑
n≥1

pX(n)n(sn−1)′ =
∑
n≥2

pX(n)n(n− 1)sn−2, (1.28)

· · ·

G
(k)
X (s) =

∑
n≥k

pX(n)n(n− 1) · · · (n− k + 1)︸ ︷︷ ︸
=
n(n−1)···(n−k+1)(n−k)···1

(n−k)···1
= n!

(n−k)!

sn−k. (1.29)
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Now, if we set s = 0 or s = 1 in (1.29) we get

G
(k)
X (0) =

∑
n≥k

pX(n)
n!

(n− k)!
0n−k = pX(k)

k!

(k − k)!
= k!pX(k), (1.30)

G
(k)
X (1) =

∑
n≥k

pX(n)n(n− 1) · · · (n− k + 1) = α
(k)
X . (1.31)

We have thus shown that any cardinality probability and any factorial moment can be extracted
from the p.g.f.. Since the cardinality distribution fully characterizes the random variable, it
follows from (1.30) that the p.g.f. does as well. In other words, the knowledge of a p.g.f. GX
is sufficient to provide a full description of the associated random variable X. From (1.30) and
(1.31) we can draw the practical extraction rules:

G
(k)
X (0)

k!
= pX(k),

G′X(1) = α
(1)
X = µX .

(1.32)

Joint p.g.f.s, of course, can be derivated as well. Suppose, for example, that one wish to describe
the joint behaviour of some random variables Z,X in the specific case where Z = m (it will be
very useful in Section 1.7). This is described by the univariate p.g.f. GZ=m,X(s), which can be
extracted from the joint p.g.f. GZ,X as follows:

GZ=m,X(s) =
∑
n≥0

pZ,X(m,n)sn (1.33a)

=
1

m!

dm

dtm
GZ,X(t, s)

∣∣∣∣
t=0

, (1.33b)

where (1.33a) is drawn from the definition of the p.g.f. (1.13) and (1.33b) is obtained with
a similar reasoning as shown in (1.29) and (1.30). Note that the test variable with respect
to (w.r.t.) which the joint p.g.f. is differentiated appears explicitly in (1.33b) to avoid ambiguity.
If necessary, dm

dtmGZ,X(t, s)
∣∣
t=0

in (1.33b) can then be differentiated w.r.t. the test variable s to
produce the joint cardinality probabilities {pZ,X(m,n)}m,n≥0.

1.5 Operations on p.g.f.s

We will now explore how some simple operations on random variables translate into operations
on p.g.f.s, just as some simple operations on time-varying signals translate into simple operations
on their Fourier transforms. We will consider three operations on random variables which are
very useful to model physical mechanisms in multi-target problems as illustrated in Section 1.7.

1.5.1 Marginalization

Marginalization occurs when two random variables Z,X have a known joint behaviour and one
wish to “isolate” the behaviour of one of the random variable, say Z. One must marginalize the
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joint behaviour over X, i.e. “integrate” the joint cardinality probabilities over all the possible
realizations of X since

∀m ∈ N, pZ(m) =
∑
n≥0

pZ,X(m,n). (1.34)

Suppose that the joint behaviour is known through the joint p.g.f. GZ,X . Using the definition of
the joint p.g.f. (1.16) we can write:

GZ,X(t, 1) =
∑
m,n≥0

pZ,X(m,n)tm1n (1.35a)

=
∑
m≥0

∑
n≥0

pZ,X(m,n)

 tm (1.35b)

=
∑
m≥0

pZ(m)tm (1.35c)

= GZ(t). (1.35d)

That is, the marginalization of a random variable easily translates into a very simple operation
on the joint p.g.f.:

GZ(t) = GZ,X(t, 1). (1.36)

1.5.2 Sum (or superposition)

Superposition occurs when one is not interested in the individual realizations of two independent
random variables X and Y , but only in the sum of the two realizations. If we denote by Z the
sum of random variables X, Y with known p.g.f.s GX , GY , then Z is also a random variable;
using the definition of the p.g.f. (1.13) yields

GZ(s) = E
[
sZ
]

(1.37a)

= E
[
sX+Y

]
(1.37b)

= E
[
sXsY

]
(1.37c)

= E
[
sX
]
E
[
sY
]

(1.37d)

= GX(s)GY (s), (1.37e)

where (1.37c) is equivalent to (1.37d) because X and Y are independent.

In other words, the sum of two independent random variables easily translates into the product
of the associated p.g.f.s:

GX+Y (s) = GX(s)GY (s). (1.38)

1.5.3 Branching

Branching is a special kind of dependence between two random variables Y,X. Upon any realiza-
tionm of the parent random variable Y , the daughter random variable X will be the superposition
of m identical but independent random variables T , as if any object in the parent population
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was “spawning” a number of objects in the daughter population following a common transition
mechanism described by T .

Suppose that the parent random variable Y and the transition random variable T are known
through the p.g.f.s GY , GT , and that one wish to describe the daughter random variable X. The
p.g.fl. describing the joint behaviour of the parent Y and daughter X random variables can be
written as follows:

GY,X(t, s) =
∑
m,n≥0

pY,X(m,n)tmsn (1.39a)

=
∑
m,n≥0

pY (m)pX|Y (n|m)tmsn (1.39b)

=
∑
m≥0

pY (m)

∑
n≥0

pX|Y (n|m)sn

 tm (1.39c)

=
∑
m≥0

pY (m)GX|Y (s|m)tm, (1.39d)

where GX|Y (s|m) is the p.g.f. describing the daughter random variable X conditioned on the
realization Y = k. If Y = m, then X|Y is the superposition of m independent “copies” of the
transition random variable T . Thus from (1.38) we have

GX|Y (s|m) = (GT (s))m. (1.40)

Substituting (1.40) in (1.39d) gives

GY,X(t, s) =
∑
m≥0

pY (m)(GT (s))mtm (1.41a)

=
∑
m≥0

pY (m)(tGT (s))m (1.41b)

= GY (tGT (s)). (1.41c)

The result (1.41c) above is an important result which describes the joint behaviour of the parent
and daughter random variables and that we shall use in Section 1.7. For now, since we are
interested in the description of the daughter random variable X alone, we can simply marginalize
this result over the parent random variable Y using (1.36) and we get

GX(s) = GY,X(1, s) (1.42a)

= GY (GT (s)). (1.42b)

In other words, the branching of a parent random variable following a mechanism described by
a transition random variable translates into the composition of the associated p.g.f.s.
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1.6 A few examples of random variables and their p.g.f.s

We shall now present two specific classes of random variables which are often used in multi-object
filtering and for which it is useful to learn beforehand the structure of the associated p.g.f.s.

1.6.1 Bernoulli random variable

A Bernoulli random variable X with parameter 0 ≤ p ≤ 1 is a very simple integer-valued random
variable defined as follows:

X =

{
0, with probability 1− p,
1, with probability p.

(1.43)

The construction of the p.g.f. GX is straightforward using definition (1.13):

GX(s) =
∑
n≥0

pX(n)sn (1.44a)

= pX(0)︸ ︷︷ ︸
=1−p

+ pX(1)︸ ︷︷ ︸
=p

s+
∑
n≥2

pX(n)︸ ︷︷ ︸
=0

sn (1.44b)

= 1− p+ ps. (1.44c)

The Bernoulli random variable is a “basic component” in the modelling of multi-object filters
because it depicts the physical mechanisms of target survival and target detection (see Section 1.7
for more details).

1.6.2 Poisson random variable

A Poisson random variable X with rate λX ≥ 0 is defined as follows:

∀n ≥ 0, X = n with probability exp(λX)
λnX
n!
. (1.45)

The construction of the p.g.f. GX using definition (1.13) gives:

GX(s) =
∑
n≥0

pX(n)sn (1.46a)

=
∑
n≥0

exp(−λX)
λnX
n!
sn (1.46b)

= exp(−λX)
∑
n≥0

(λXs)
n

n!
(1.46c)

That is, using the Taylor expansion of the exponential (1.25):

GX(s) = exp(−λX) exp(λXs) (1.46d)

= exp(λX(s− 1)). (1.46e)
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It is formative to extract the mean value of a Poisson random variable using the differentiation
of the p.g.f. (1.31):

µX = G′X(s)|s=1 (1.47a)

= (exp(λX(s− 1)))′|s=1 (1.47b)

= (λX(s− 1))′ exp(λX(s− 1))|s=1 (1.47c)

= λX exp(λX(s− 1))|s=1 (1.47d)

= λX exp(λX(1− 1)) (1.47e)

= λX . (1.47f)

In other words, the mean value of Poisson random variable X equals its rate; since λX fully
characterizes X through the definition (1.45), so does the mean value µX . Another important
property of a Poisson random variable, left as exercise in Ex. 4.1.2, is that its variance varX
equals its mean µX .

Despite the simplicity of their structure, Poisson random variables provide a rather accurate
description of a various number of natural phenomena (e.g. customer arrivals in queue lines). In
multi-object filtering, Poisson random variables are appealing because of the exponential form
of their p.g.f. (1.46e), easily differentiable; assuming some random variables to be Poisson allows
the production of tractable and easily implementable filtering equations.

1.7 Application: the “cardinality only” PHD filter

We shall now apply the results we have seen in the previous sections to construct the “cardi-
nality only” PHD filter. The purpose of this Bayesian filter is to estimate and propagate the
mean number of target in the scene observed by some sensor with known characteristics. The
modelling and filtering assumptions are identical to Mahler’s PHD filter [11] – hence its name
– and shall be detailed later. In other words, the “cardinality only” PHD filter can be seen as
the reduction of the PHD filter to its cardinality component – we are interested in the number
of targets only, not their state. A similar application for the “full” PHD filter will be the topic
of Chap. 2.

The data flow of one iteration of the “cardinality only” PHD filter can be represented as follows:

where the random variables provide a description of the size of the following populations:
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• Y : the targets before the prediction (prior knowledge from past iterations);

• X: the targets after the prediction;

• Z: the current measurements;

• X|Z: the targets after the data update (i.e. conditioned on some realization Z = m).

The construction of a filter follows two steps:

1. The modelling phase: we translate the physical phenomena of the tracking problem into
relations between the random variables describing the populations of interest. In our case,
we have to describe how to get X from Y , then how to get X|Z from X. We have seen
in Section 1.5 that operations on random variables are easily transcribed into operations
on their p.g.f.s: for this reason, we will describe how to get GX from GY , then how to get
GX|Z from GX .

2. The differentiation phase: we extract the information that we wish to propagate from the
appropriate differentiation of the p.g.f.s produced in the modelling phase. In our case, we
have to describe how to get µX from µY , and how to get µX|Z from µX .

The modelling phase relies on modelling assumptions, constituting a description of the physical
phenomena that we wish to take into account and that we can afford to include in the design
of the filter: it might be so, for example, that there is very slight chance that pairs of targets
move in a correlated manner, but we may have to discard the modelling of correlated targets
if the increasing complexity of the designed filter is not worth it and/or is unaffordable. Once
completed, the modelling phase provides a full description of the sizes of the population of inter-
est since random variables are completely described by their p.g.f.s (see Section 1.4). In other
words, the modelling phase gives us exactly what we are looking for and the differentiation phase
is, in theory at least, superfluous.

The differentiation phase aims at extracting a reduced information from the p.g.f.s produced
by the modelling phase. It is of course necessary in the construction of a practical filter, as the
storage of a p.g.f. requires, in the most general case, an infinite amount of memory (see definition
(1.13)). The challenge of the differentiation phase is to extract the right amount of information,
i.e. meaningful enough to the operator for tracking purposes, and resulting in filtering equations
that are tractable enough. In our present case, for example, we aim at reducing the propagated
information to the mean target number in the scene. In order to produce the filtering equations,
it is often necessary to make filtering approximations on top of the modelling assumptions; it
is the combination of both that characterizes the resulting filter - in our case, the “cardinality
only” PHD filter.

1.7.1 Modelling phase

Prediction step

The modelling assumptions are as follows:

1. The targets are independent;
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2. A target survives with probability ps, dies (i.e. vanishes from the scene) otherwise;

3. A number of newborn targets enter the scene, independently of the number surviving
targets, following a birth mechanism described by a random variable Xbirth with known
characteristics (p.g.f. Gbirth).

The prediction step can be represented as follows:

Exploiting the results established in sections 1.5 and 1.6, we can then say that:

1. Since each target survives with probability ps, the “survival” random variable Xs in the
figure above is Bernoulli with parameter ps:

Gs(s) = 1− ps + pss. (1.48)

2. The number of surviving targets is described by a random variable Xsur. which is the result
of a branching with parent random variable Y and transition random variable Xs:

Gsur.(s) = GY (Gs(s)). (1.49)

3. The predicted number of targets, described by X, is the sum of the surviving targets and the
newborn targets:

GX(s) = Gsur.(s)Gbirth(s). (1.50)

In consequence, the p.g.f. form of the prediction step of the “cardinality only” PHD filter is given
by:

GX(s) = GY (1− ps + pss)Gbirth(s). (1.51)

Note that using the p.g.f.s allowed us to produce a full description of the predicted number of
targets X without enumerating and computing each cardinality probability pX(n) for every target
number n ∈ N.

Data update step

The modelling assumptions are as follows:

1. The measurements are produced independently;

2. A target is detected and produces a single measurement with probability pd, is undetected
otherwise;

3. A number of clutter measurements are produced, independently from the target measure-
ments, following a clutter mechanism described by a random variable Zclutter with known
characteristics (p.g.f. Gclutter).
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The update step can be represented as follows:

Exploiting the results established in sections 1.5 and 1.6, we can then say that:

1. Since each target is detected with probability pd, the “observation” random variable Zobs. in
the figure above is Bernoulli with parameter pd:

Gobs.(t) = 1− pd + pdt. (1.52)

2. The number of target measurements is described by a random variable Ztarget which is the
result of a branching with parent random variable X and transition random variable Zobs.:

GZtarget,X(t, s) = GX(sGobs.(t)). (1.53)

3. The number of measurement, described by Z, is the sum of the target measurements and the
clutter measurements:

GZ,X(t, s) = GZtarget,X(t, s)Gclutter(t). (1.54)

In consequence, the joint p.g.f. of the number of measurements and targets is given by:

GZ,X(t, s) = GX(s(1− pd + pdt))Gclutter(t). (1.55)

So far, the structures of the prediction and update steps have been remarkably similar and have
led to identical results. The main difference is that we are not interested, at least as a final re-
sult, in marginalizing (1.55) over the predicted number of targets X in the same way as (1.51) is
(implicitly) marginalized over the prior number of targets Y . Nor are we interested in marginal-
izing (1.55) over the number of measurements Z; we know with certainty that the sensor system
produced m measurements and we wish to estimate the number of targets conditioned on the
realization Z = m.

In order to do this, we will use the classic Bayes’ rule for conditional probabilities which states
that

pX|Z(n|m) =
pZ,X(m,n)

pZ(m)
, (1.56)

that is, the probability that there are X = n targets in the scene, given that there Z = m
measurements, is the joint probability that there are X = n targets and Z = m measurements
over the probability that there are Z = m measurements.

If we multiply both sides of (1.56) by sn and sum over all possible realizations of X we get

∑
n≥0

pX|Z(n|m)sn =

∑
n≥0 pZ,X(m,n)sn

pZ(m)
. (1.57a)
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Using (1.13) and (1.33a), (1.57a) is equivalent to

GX|Z(s|m) =
GZ=m,X(s)

pZ(m)
, (1.57b)

where (1.33b) and (1.32) yield

GX|Z(s|m) =
1
m!

dm

dtmGZ,X(t, s)
∣∣
t=0

1
m!G

(m)
Z (0)

. (1.57c)

Finally, the denominator of Bayes’ rule being the probability that there are Z = m measurements

marginalized over all the possible target numbers, GZ(t) = GZ,X(t, 1) and thus 1
m!G

(m)
Z (0) =

1
m!

dm

dtmGZ,X(t, 1)
∣∣
t=0

. Thus (1.57c) becomes

GX|Z(s|m) =
dm

dtmGZ,X(t, s)
∣∣
t=0

dm

dtmGZ,X(t, 1)
∣∣
t=0

. (1.57d)

With (1.55) and (1.57d), we have now produced the p.g.f. form of the data update step of the
“cardinality only” PHD filter:

GX|Z(s|m) =
dm

dtmGZ,X(t, s)
∣∣
t=0

dm

dtmGZ,X(t, 1)
∣∣
t=0

,

where GZ,X(t, s) = GX(s(1− pd + pdt))Gclutter(t). (1.58)

As for the prediction step, working with the p.g.f.s allowed us to produce a full description of the
updated number of targets X|Z without enumerating and computing each cardinality probability
pX|Z(n|m) for every target number n ∈ N.

1.7.2 Differentiation phase

Prediction step

Exploiting (1.32) we can extract the mean value µX from the first derivative of the p.g.f. GX :

µX = G′X(s)|s=1 (1.59a)

Substituting the expression of the p.g.f. GX (1.51) yields

µX = (GY (1− ps + pss)Gbirth(s))′|s=1 (1.59b)

Using the product rule (1.20) then gives

µX = (GY (1− ps + pss))
′|s=1Gbirth(s)|s=1 +GY (1− ps + pss)|s=1G

′
birth(s)|s=1 (1.59c)

With the chain rule (1.22) it becomes

µX = (1− ps + pss)
′|s=1G

′
Y (1− ps + pss)|s=1Gbirth(1) +GY (1)G′birth(1) (1.59d)

= psG
′
Y (1)Gbirth(1) +GY (1)G′birth(1) (1.59e)
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Recall from (1.15) that the p.g.f.s evaluated at s = 1 always yield 1, that is:

µX = psG
′
Y (1) +G′birth(1) (1.59f)

And finally, exploiting again the relation between the mean value and the first differentiation of
the p.g.f. (1.32) yields the result

µX = psµY + µbirth. (1.59g)

Note that no filtering approximations were necessary to produce this result, which means that
the validity of the prediction step is not limited to a particular model for the prior cardinality
Y and/or the newborn cardinality Xbirth.

Update step

Again, it is straightforward to write their expression of the posterior number of targets µX|Z=m,
given that the sensor system produced m observations, as the first order derivative of the p.g.f.
GX|Z(·|m):

µX|Z=m = G′X|Z(s|m)|s=1 (1.60a)

Substituting the expression of the p.g.f. GX|Z(·|m) (1.58) yields

µX|Z=m =

dm+1

dsdtmGZ,X(t, s)
∣∣∣
t=0,s=1

dm

dtmGZ,X(t, 1)
∣∣
t=0

(1.60b)

The previous result (1.58) provides an expression of the joint p.g.f. GZ,X w.r.t. the predicted
p.g.f. GX and the clutter p.g.f. Gclutter, but at this point we have not made any assumptions on
the predicted cardinality X or the clutter cardinality and their respective p.g.f.s. If we attempt
to proceed with the derivation in (1.60b) without assuming any particular forms for the p.g.f.s
GX and Gclutter, we will end up with a very general but intractable result. We will thus assume
that:

1. The predicted number of targets X is Poisson;

2. The number of false alarms Zclutter is Poisson.

Using the expression of a Poisson random variable w.r.t. its mean value (1.46e), we can rewrite
the joint p.g.f. GZ,X (1.55) as follows:

GZ,X(t, s) = GX(s(1− pd + pdt))Gclutter(t) (1.61a)

= eµX(s(1−pd+pdt)−1)eµclutter(t−1) (1.61b)

= eµX(s(1−pd+pdt)−1)+µclutter(t−1). (1.61c)

We can now proceed to the derivation of the joint p.g.f. in its new form (1.61c), for its exponential
form makes the derivation easier exploiting the composition rule (1.24). Indeed, resolving the



20 CHAPTER 1. INTEGER-VALUED RANDOM VARIABLES

first-order derivative yields immediately:

d

dt
GZ,X(t, s) =

d

dt
eµX(s(1−pd+pdt)−1)+µclutter(t−1) (1.62a)

=
d

dt
(µX(s(1− pd + pdt)− 1) + µclutter(t− 1)) eµX(s(1−pd+pdt)−1)+µclutter(t−1)

(1.62b)

= (µXspd + µclutter) e
µX(s(1−pd+pdt)−1)+µclutter(t−1). (1.62c)

Since the multiplicative term in front of the exponential is independent of t, it is straightforward
to write the m-th order derivative of the joint p.g.f. w.r.t. t:

dm

dtm
GZ,X(t, s) = (µXspd + µclutter)

m
eµX(s(1−pd+pdt)−1)+µclutter(t−1). (1.63)

For the numerator in (1.58), we need to differentiate (1.63) once w.r.t. s. This is a simple task
using first the product rule (1.20):

dm+1

dsdtm
GZ,X(t, s) =

d

ds
((µXspd + µclutter)

m
) eµX(s(1−pd+pdt)−1)+µclutter(t−1)

+ (µXspd + µclutter)
m d

ds
eµX(s(1−pd+pdt)−1)+µclutter(t−1) (1.64a)

We then resolve the first differentiation using the power rule (1.21), and the second one using
the composition rule (1.24):

dm+1

dsdtm
GZ,X(t, s) = m (µXspd + µclutter)

m−1
µXpde

µX(s(1−pd+pdt)−1)+µclutter(t−1)

+ (µXspd + µclutter)
m
µX(1− pd + pdt)e

µX(s(1−pd+pdt)−1)+µclutter(t−1) (1.64b)

Dividing (1.64b) by (1.63) then yields:

dm+1

dsdtmGZ,X(t, s)
dm

dtmGZ,X(t, 1)
= m

µXpd

µXspd + µclutter
+ µX(1− pd + pdt) (1.64c)

At this point we just have to set s = 1 and t = 0 to produce the desired result (recall the general
expression (1.60b)):

µX|Z=m = m
µXpd

µXpd + µclutter
+ µX(1− pd). (1.65)

1.7.3 Filtering equations

We have now succeeded in producing the filtering equations of the “cardinality only” PHD filter
with equations (1.59g) and (1.65), repeated here: µX = µY ps + µbirth,

µX|Z=m = µX(1− pd) +m
µXpd

µXpd + µclutter
.

(1.66)



Chapter 2

Point processes

Here we extend the estimation problem exposed in Chap. 1 to the full scope of multi-object
filtering: we are now interested in the number and the spatial distribution of the objects. For
this reason, we cover the description of the size and the spatial configuration of a population
with point processes and their exploitation through p.g.fl.s.

We will see that results in Chaps. 1 and 2, and notably the exploitation of p.g.f.s and p.g.fl.s,
are remarkably similar. In a broad sense, considering the spatial distribution of the objects in
addition to the object number means that a lot of the quantities we defined in the previous
chapter will appear in a similar form except that a dependency upon a particular multi-object
configuration – a sequence of object states (x1, x2, . . . , xn) – will be added. Whenever a new
result is provided in this chapter, we shall reference the equivalent result in the previous chapter
for pedagogical purpose.

2.1 Point processes: basic concepts

The number of targets in the scene is obviously an integer but it is unknown; besides, we suppose
that each target has a state x in some target state space X ⊆ Rdx (e.g., position and velocity
coordinates), but it is unkwown as well. For this reason, the description of a multi-target con-
figuration is naturally provided by a point process Φ, a random variable whose realization is a
sequence whose size and elements are both random.

Remark 1. The target state space X is continuous, and we must proceed with care when defining
random variables on X describing the state of a single target. Events of the form “the target
has a state equal to some value x ∈ X” have little practical interest, because they will occur
with probability zero; rather, we wish to assess events of the form “the target has a state within
some neighborhood dx of x ∈ X”. Intuitively speaking, if X is one dimensional and describes
the target’s coordinate on some axis, we wish to be able to determine the probability that the
coordinate of the target lies within some “suitable” range of values dx (say, 5 m with a tolerance
of 2 mm) rather than a value x (say, exactly 5 m). We shall call the set of all these “suitable”
regions the Borel σ-algebra B(X) of X, and whenever we shall select a (suitable) region B ⊆ X

21
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throughout the chapter it is to be understood that B ∈ B(X). The same concept shall apply to
other continuous spaces on which probabilites are defined.

Likewise, the number of measurements produced by the sensor system between two time steps
is an integer, and we suppose that each measurement has a state z in some state space Z ⊆ Rdz
(e.g. polar and radial velocity coordinates).

A point process Φ on the state space X is a
mapping from some probability space (Ω,F ,P)
to the space X of all the sequences of points in
X, i.e. X =

⋃
k≥0 X

k.

Depending on the construction of the point pro-
cess Φ, several outcomes ωi may be associated
to “close” realizations ϕ,ϕ′.

The quantity Φ−1(dϕ) represents the collection
of all the possible outcomes ωi leading to a
realization within the neighborhood dϕ around
ϕ. The probability space is endowed with
a probability measure P which allows us to
measure the “size” of Φ−1(dϕ). The “larger”
Φ−1(dϕ) is, the more likely is a realization to
be drawn within dϕ when sampling from Φ.

The probability distribution of the point process Φ, given by

PΦ(dϕ) = P(Φ−1(dϕ)) (2.1)

denotes the likelihood that a realization is drawn within dϕ when sampling from Φ. The structure
of the probability space is such that∫

X
PΦ(dϕ) =

∫
X
P(Φ−1(dϕ)) (2.2a)

= 1, (2.2b)

which ensures that PΦ can be readily interpreted as a probability measure. In our context,
PΦ(d(x1, . . . , xk)) is the probability that the population described by Φ has exactly n objects
and that the ith object is localized in the neighbourhood dxi, 1 ≤ i ≤ n.
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An important property of point processes is that their probability distributions are always defined
as symmetric functions, so that permutations of a given realization occur with equal probability
– e.g., PΦ(d(x1, x2)) = PΦ(d(x2, x1)). In addition, if the realizations of a point process are
sequences of points that are always pairwise distinct, then the point process is called simple. In
the context of multi-target tracking problems, the point processes are (almost) always considered
simple, and this will be the case throughout this lecture.

Remark 2. An alternative construction of simple point processes as random objects whose real-
izations are sets of points ϕ = {x1, . . . , xn}, in which the elements are by construction unordered,
is more common in the literature relating to the FISST framework [13]. In this context, a point
process is called a RFS.

The probability distribution PΦ is characterized by its projection measures P
(n)
Φ , for any n ≥ 0.

The nth-order projection measure P
(n)
Φ , for any n ≥ 1, is defined on Xn; it gives the probability

for the point process to be composed of n points, and the probability distribution of these points.

By extension, P
(0)
Φ is the probability for the point process to be empty. It is important to note

that the projection measures P
(n)
Φ are not probability measures as they do not integrate to one.

For any n ≥ 0, we indeed have ∫
Xn

P
(n)
Φ (d(x1, . . . , xn)) = ρΦ(n), (2.3)

where ρΦ is the cardinality distribution of the point process, describing the size of its realizations:
that is, ρΦ(n) is the probability that a realization ϕ of the point process Φ is a sequence of n
points.

Since the probability distribution PΦ is symmetrical, so are the projection measures P
(n)
Φ . For

this reason, point processes are often described through their Janossy measures, for they “aggre-
gate” the information provided by the projection measures over all the possible permutations of

points. More precisely, for any n ≥ 0, J
(n)
Φ denotes the nth-order Janossy measure of the point

process Φ and is defined as

J
(n)
Φ (B1 × . . .×Bn) =

∑
σ(n)

P
(n)
Φ (Bσ1

× . . .×Bσn) (2.4a)

= n!P
(n)
Φ (B1 × . . .×Bn), (2.4b)

where Bi, 1 ≤ i ≤ n, is a region of X, and σ(n) denotes the set of all permutations (σ1, . . . , σn)
of (1, . . . , n).

In many practical multi-object estimation problems, the probability distribution PΦ admits a
density pΦ, which quantifies the rate of change of the probability measure PΦ per unit volume of

the state space. The quantity p
(n)
Φ (x1, . . . , xn) is thus the density of probability, per unit volume,

of the point process Φ evaluated at the sequence (x1, . . . , xn); loosely speaking, we may describe

it as the “probability that Φ = (x1, . . . , xn)”. The projection measures P
(n)
Φ and the Janossy

measures J
(n)
Φ admit densities as well, denoted p

(n)
Φ and j

(n)
Φ , respectively.
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We have now several tools allowing for an equivalent description of a point process: assum-
ing that f is suitable function on X , then the integral of f w.r.t. to the measure PΦ can be
written

PΦ(f) =

∫
X
f(ϕ)PΦ(dϕ) (2.5a)

=

∫
X
f(ϕ)pΦ(ϕ)dϕ (2.5b)

=
∑
n≥0

∫
Xn

f(x1, . . . , xn)P
(n)
Φ (d(x1, . . . , xn)) (2.5c)

=
∑
n≥0

∫
Xn

f(x1, . . . , xn)p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn (2.5d)

=
∑
n≥0

1

n!

∫
Xn

f(x1, . . . , xn)J
(n)
Φ (d(x1, . . . , xn)) (2.5e)

=
∑
n≥0

1

n!

∫
Xn

f(x1, . . . , xn)j
(n)
Φ (x1, . . . , xn)dx1 . . . dxn. (2.5f)

A measure-theoretical formulation provides a more general framework that is required to con-
struct certain statistical properties on point processes that can be exploited for practical appli-
cations, such as seen in Chap. 3, but is not necessary to obtain the more common results of this
chapter. Throughout this chapter we shall favour expression exploiting densities rather than
measures, as they are probably more common to the reader, but keep in mind that equivalent
results can be obtained with a measure-theoretic formulation as well. We shall also favour prob-
ability densities over Janossy densities, as the former spare the handling of factorial terms of the
form 1

n! are a more convenient tools in the context of functional differentiation.

Remark 3. Recall that in the FISST litterature, point processes are RFSs whose realizations
are sets of points [13]. It is common to define the set integral, for any suitable function f and
region B ⊆ X, as ∫

B

f(X)δX =
∑
n≥0

1

n!

∫
Bn

f({x1, . . . , xn})dx1 . . . dxn (2.6)

Set integrals are practical tools in the derivation of multi-object filtering solutions such as the
PHD filter, and are convenient because of their compact expression. They are not, however,
measure-theoretic integrals; for example, they are non additive as∫

B∪B′
f(X)δX 6=

∫
B

f(X)δX +

∫
B′
f(X)δX, (2.7)

in the general case, even if B and B′ are disjoint regions of the target state space X.

Similarly to random variables (see Chap. 1), the full knowledge of the multi-object density is
seldom available in practical problems and a limited description of a point process Φ is provided
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by its moment measures or its moment densities. Factorial and non factorial moment measures
can be defined for any order, but their construction is more involved than for random variables
and their will be the topic of a specific chapter (see Chap. 3). In this chapter we shall focus on
the first-order moment density or intensity or Probability Hypothesis Density µΦ, the equivalent
of the mean value of a random variable µX defined in Chap. 1.

The quantity µΦ(x) is the density, per unit volume, of the average number of objects evaluated
at x or, loosely speaking, the “average number of objects with state x”. In order to compute it,
one must count all the possible realizations ϕ of Φ with an object with state x, i.e.

µΦ(x) =

∫
X

(∑
xi∈ϕ

δx(xi)

)
pΦ(ϕ)dϕ (2.8a)

=
∑
n≥1

∫
Xn

(
n∑
i=1

δx(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn, (2.8b)

where δx(·) = δ(· − x) is the Dirac delta function. Thus (2.8b) equals to:

µΦ(x) =
∑
k≥1

∫
Xk−1

(
n∑
i=1

p
(n)
Φ (x1, . . . , x, . . . , xn−1︸ ︷︷ ︸

x as ith variable

)

)
dx1 . . . dxn−1 (2.8c)

=
∑
n≥1

∫
Xn−1

np
(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1 (2.8d)

=
∑
n≥0

(n+ 1)

∫
Xn

p
(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn (2.8e)

The last result (2.8e) shows explicitly that the first moment density is constructed by consider-
ing all the possible realizations of Φ which contains x, and marginalizing over all the possible
cardinalities and over all the possible states of the remaining elements.

Just as for the integer-valued random variables, the probability and the multi-object densities
are not convenient to deal with when one wish to describe simple operations on point processes
(see discussion in Section 1.1). We thus need to shift the study of the point processes from the
probability density to another domain.

2.2 Probability generating functional: definitions

A generating functional on X is a mapping G from the functions h : X→ R+ to R; it is built upon
(or “generated by”) a (possibly infinite) sequence of functions (un)n≥0, where un : Xn → R+.
The generating functional G of the sequence (un)n≥0 is defined as

G(h) =
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
uk(x1, . . . , xn)dx1 . . . dxn, (2.9)
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for any h : X→ R+ such that the right hand side of (2.9) is finite.

Applied to a point process Φ, one can substitute the probability density in (2.9) in order to
produce the p.g.fl. GΦ of Φ, defined as

GΦ(h) = E

[∏
x∈Φ

h(x)

]
(2.10a)

=

∫
X

(∏
x∈ϕ

h(x)

)
pΦ(ϕ)dϕ (2.10b)

=
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn. (2.10c)

Note that using the probability density as the generating sequence imposes some restrictions on
the range of admissible values for the test function h, and the p.g.fl. is defined for h : X→ [0 1].

Note the similarities between the p.g.f. of a random variable (1.13) and the p.g.fl. of a point
process (2.10). The test variable s of a p.g.f. is a real number in [0 1], while the test function of a
p.g.fl. is a mapping from the target space X into [0 1]: the p.g.fl. “adds” the spatial component
to the p.g.f., and the sum over all the possible cardinalities in the p.g.f. (1.13) becomes a sum
over all the possible cardinalities and, for a given cardinality, an integral over all the possible
object states in the p.g.fl. (2.10). From (2.10) it is easy to see that

GΦ(0) =
∑
n≥0

∫
Xn

(
n∏
i=1

0

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn = ρΦ(0), (2.11)

GΦ(1) =
∑
n≥0

∫
Xn

(
n∏
i=1

1

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn = 1. (2.12)

Setting h to the mapping h : x ∈ X 7→ 0 in (2.10) allowed us to extract the scalar ρΦ(0) from
the p.g.fl., i.e. the probability that there are no objects in the scene; we will see in Section 2.3
that the probability density evaluated in any number of points can be extracted through differ-
entiation of the p.g.fl..

In multi-object filtering applications it will be necessary to study the joint behaviour of sev-
eral point processes; for example, to describe the multi-measurement configuration produced by
the sensor system given the multi-target configuration in the scene. The joint p.g.fl. GΞ,Φ of two
(possibly dependent) point processes Ξ (on Z), Φ (on X) is defined as the expectation

GΞ,Φ(g, h) = E

[(∏
z∈Ξ

g(z)

)(∏
x∈Φ

h(x)

)]
(2.13a)

=

∫
Z

∫
X

∏
z∈ξ

g(z)

(∏
x∈ϕ

h(x)

)
pΞ,Φ(ξ, ϕ)dξdϕ, (2.13b)
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where pΞ,Φ(ξ, ϕ) is the joint probability density, per unit volume, evaluated at ξ and ϕ or, loosely
speaking, the “probability that Ξ = ξ and Φ = ϕ”. Note that, if Ξ and Φ are independent
processes, then by definition pΞ,Φ(ξ, ϕ) = pΞ(ξ)pΦ(ϕ) and the joint p.g.fl. becomes:

GΞ,Φ(g, h) =

∫
Z

∫
X

∏
z∈ξ

g(z)

(∏
x∈ϕ

h(x)

)
pΞ(ξ)pΦ(ϕ)dξdϕ (2.14a)

=

∫
Z

∏
z∈ξ

g(z)

 pΞ(ξ)dξ

(∫
X

(∏
x∈ϕ

h(x)

)
pΦ(ϕ)dϕ

)
(2.14b)

= GΞ(g)GΦ(h). (2.14c)

We now need to introduce the notion of functional derivative to further exploit the p.g.fl..

2.3 Functional differentiation

2.3.1 Definition and basic rules

The first step is to check if the “classic” derivative can be applied to functionals as well as
functions (see Section 1.3 in Chap. 1). Following the definition (1.18), the ordinary derivative of
some functional F evaluated at h would look like:

F ′(h) = lim
η→0

F (h+ η)− F (h)

η
, (2.15)

where η would be some function of the same nature as h, i.e. η : X→ [0 1]. Two problems arise
in the definition (2.15), as neither the convergence η → 0 nor the division by a function η are
well defined – recall that the argument of a functional F is a function h – and so is η in (2.15)
– not a real number h(x).

Fortunately, other differentiation tools adapted to functionals do exist: the functional derivatives.
Different functional derivatives have been defined by different authors for different applications,
the most popular being perhaps the Fréchet and the Gâteaux derivatives. The Fréchet derivative
is more restrictive, but comes with calculus rules similar to the ordinary derivative ; the Gâteaux
is more general, but does not a admit a chain rule similar to the ordinary derivative given in
(1.22). Quite recently, the chain derivative has been proposed as an intermediary between Fréchet
and Gâteaux for which a chain rule is available; since the chain rule will be important for the
derivation of filtering equations, we will use the chain derivative.

Given a functional F and two functions h, η : X → R+, we call “the (chain) derivative of F
(evaluated) at h in the direction (or increment) η”, and denote it by δF (h; η), the limit

δF (h; η) = lim
n→∞

F (h+ εnηn)− F (h)

εn
, (2.16)

where {ηn}n≥0 is a sequence of functions ηn : X→ R+ converging (pointwise) to η and {εn}n≥0

is a sequence of positive real numbers converging to zero, if it exists and is identical for any
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admissible sequences {ηn}n≥0 and {εn}n≥0. Note that the derivative δF (h; η) is a function on
the object space X; the variation of F around h in direction η being still dependent on the point
x where η is evaluated, the direction appears explicitly in the functional derivative while this is
not the case in the notation f ′(x) of the ordinary derivative.

It is formative to see how the functional derivative can be interpreted as an “extension” of
the ordinary derivative. If we consider in definition (2.16) the special case where h is the con-
stant function equal to some point x ∈ X, η another constant function equal to some point to
be specified later, and f is a functional on constant functions on X, and therefore can be seen
as a function on X, we can write

δf(x; η) = lim
n→∞

f(x+ εnηn)− f(x)

εn
(2.17a)

= lim
n→∞

ηn
f(x+ εnηn)− f(x)

εnηn
(2.17b)

= η lim
ε→0

f(x+ ε)− f(x)

ε
(2.17c)

= ηf ′(x) (2.17d)

And thus, by setting η to the constant function equal to 1:

δf(x; 1) = f ′(x) (2.17e)

The functional derivative comes with a few calculus rules that will be useful for the differentiation
of p.g.fl.s. Suppose that F and G are admissible functionals, then:

sum: δ(F +G)(h; η) = δF (h; η) + δG(h; η), (2.18)

product: δ(F ·G)(h; η) = δF (h; η)G(h) + F (h)δG(h; η), (2.19)

chain (or composition): δ(F ◦G)(h; η) = δF (G(h); δG(h; η)). (2.20)

Note that the sum and product rules (2.18), (2.19) are similar to those pertaining to the ordinary
differentiation (1.19), (1.20).

The chain rule (2.20), on the other hand, is no longer a product as in the ordinary case (1.22).
Higher-order derivations of composite functionals can be established through the Faà di Bruno’s
formula for chain differentials [4, 5]. The 2nd order shall be used in the next chapter, it states
that

δ2(F ◦G)(h; η1, η2) = δF
(
G(h); δ2G(h; η1, η2)

)
+ δ2F (G(h); δG(h; η1), δG(h; η2)) . (2.21)

2.3.2 A few advanced rules

The derivation of filtering equations for multi-object filters will involve the differentiation of a
number of p.g.fl.s or more general functionals of various forms. Some functionals with an identi-
cal structure need to be derivated in the design of a specific filter; for this reason, it is interesting
to detail here the differentiation of the most common functionals and consider the results as
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“advanced rules” later on.

Let us consider a functional F such that F (h) = h(x) for some fixed point x in the state
space X. F could be the p.g.fl. of a point process Φ that describes the trivial situation where
there is single target in the state, and that this target has state x, with probability one. Then
from the definition (2.16) we draw

δF (h; η) = lim
n→∞

F (h+ εnηn)− F (h)

εn
(2.22a)

= lim
n→∞

h(x) + εnηn(x)− h(x)

εn
(2.22b)

= lim
n→∞

ηn(x) (2.22c)

= η(x) (2.22d)

That is:

δ(h(x); η) = η(x). (2.23)

It is important to note that while “δ(h(x); η)” is a very convenient notation to use, it is improper
because the functional w.r.t. which we differentiate, namely F , does not appear. It can be written
with the more rigorous but cumbersome form

δ (· → ·(x)) (h; η) = η(x). (2.24)

You will probably favour the more cumbersome form (2.24) when you start dealing with rather
intricate functionals, because it helps you remembering the three basic elements of the diffenti-
ation process: the functional, the function where it is evaluated, and the direction in which it is
differentiated. With a little experience, you will probably switch to the lighter notation (2.26).
Exploiting the definition of the differentiation (2.16) we can expand (2.23) to the more general
result:

δ((h(x))k; η) = kη(x)(h(x))k−1, (2.25)

or, in the more exact form:

δ
(
· → (·(x))k

)
(h; η) = kη(x)(h(x))k−1. (2.26)

Let us now consider a functional F such that F (h) =
∫
h(x)f(x)dx for some function f on the

state space X. If
∫
f(x)dx = 1, F could be the p.g.fl. of a point process Φ that describes the

trivial situation where there is single target in the state with probability one, and that the target
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is distributed in space according to f . Then from the definition (2.16) we draw

δF (h; η) = lim
n→∞

F (h+ εnηn)− F (h)

εn
(2.27a)

= lim
n→∞

∫
(h(x) + εnηn(x))f(x)dx−

∫
h(x)f(x)dx

εn
(2.27b)

= lim
n→∞

∫
h(x)f(x)dx+ εn

∫
ηn(x)f(x)dx−

∫
h(x)f(x)dx

εn
(2.27c)

= lim
n→∞

∫
ηn(x)f(x)dx (2.27d)

=

∫
η(x)f(x)dx (2.27e)

That is:

δ

(∫
h(x)f(x)dx; η

)
=

∫
η(x)f(x)dx (2.28)

Similarly to (2.23), the result above uses a lighter notation where the functional does not appear
exlicitly. We need to be even more cautious in this case, for h and f seem to play the same role
and there is an ambiguity regarding the function in which the functional is evaluated. The more
exact but cumbersome notation would be

δ

(
· →

∫
·(x)f(x)dx

)
(h; η) =

∫
η(x)f(x)dx, (2.29)

where the functional to be differentiated, i.e. F : h 7→
∫
h(x)f(x)dx, appears explicitly.

Let us now consider a functional F such that F (h) =
∫
G(h|x)f(x)dx for some function f

on the state space X and some functional G. If
∫
f(x)dx = 1, G could be the p.g.fl. of a point

process Φ whose behaviour depends on the state of some target, and the F the p.g.fl. of the point
process marginalized over all the possible values x of the said target (this will be encountered in
the branching for point processes discussed in Section 2.5). Then from the definition (2.16) we
draw

δF (h; η) = lim
n→∞

F (h+ εnηn)− F (h)

εn
(2.30a)

= lim
n→∞

∫
G(h+ εnηn|x)f(x)dx−

∫
G(h|x)f(x)dx

εn
(2.30b)

=

∫
lim
n→∞

G(h+ εnηn|x)−G(h|x)

εn
f(x)dx (2.30c)

=

∫
δG(h|x; η)f(x)dx (2.30d)

= F (δG(h|·; η)) (2.30e)

That is:

δ

(∫
G(h|x)f(x)dx; η

)
=

∫
δG(h|x; η)f(x)dx, (2.31)
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or, with the more exact notation where the functional F appears explicitly in the left-hand side:

δ

(
· →

∫
G(·|x)f(x)dx

)
(h; η) =

∫
δG(h|x; η)f(x)dx, (2.32)

Loosely speaking, we can “swap” the integral and the derivative in (2.31) or (2.32) because the
functional G(h|.) is encapsulated in an integral which does not depend on the test function h
where the differentiation takes place. This result is easily expendable to integrals over a arbitrary
number of variables xi ∈ X:

δ

(∫
X
G(h|ϕ)f(ϕ)dϕ; η

)
=

∫
X
δG(h|ϕ; η)f(ϕ)dϕ, (2.33)

or, with the more exact notation where the outer functional F appears explicitly in the left-hand
side:

δ

(
· →

∫
X
G(·|ϕ)f(ϕ)dϕ

)
(h; η) =

∫
X
δG(h|ϕ; η)f(ϕ)dϕ. (2.34)

As you may imagine, the ability to swap integrals and derivatives will be extremely handy in
practical derivations. The key element that led us to the general result (2.33) is that the integral
is a linear continuous operator that allowed us to proceed from (2.30b) to (2.30c). This result
can be extended to other functionals than the integral, as seen in Ex. 4.2.1.

Finally, as explained in Section 1.3, the exponential form will be used extensively in the derivation
of multi-object filters because the derivative of the exponential functional are easy to produce.
The following results will be particularly important in the scope of this lecture. First of all,
the ordinary differentiation rule (1.23) tells us that exp′(x) = exp(x); therefore if we exploit the
relationship between ordinary and functional differentiations (2.17d) we get

δ exp(x; η) = η exp(x). (2.35)

This result is extremely simple, but it might seem of little use in the context of point processes
since we shall be dealing primarily with functionals – recall that in this context the exponential
is evaluated in x and differentiated in the direction η, which are real-valued numbers. It will be,
in fact, very useful in the resolution of composition of functionals where the outer functional is
an exponential (more on that in Chap. 3).

Let us move on to the chain rule (2.20). When the outer functional is the exponential, it simplifies
as follows:

δ(exp ◦F )(h; η) = δF (h; η)(exp ◦F )(h). (2.36)

Establishing this result is left as exercise (see Ex. 4.2.2). Note that the chain rule for exponen-
tials for ordinary (1.24) and functional (2.36) derivatives are remarkably close.

Another useful result can be drawn from (2.36). Suppose that F is the functional F (h) = h(x)
for some fixed point x ∈ X (i.e., the functional F evaluates the test function h at some point of
the target state space). Then, using (2.36) we can write

δ exp(h(x); η) = δ(exp ◦F )(h; η) (2.37)

= δF (h; η)(exp ◦F )(h) (2.38)

= η(x) exp(h(x)), (2.39)
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where we have used the property (2.24) to proceed from (2.38) to the final result (2.39). The
development above is very formative, because it follows a typical derivation process when dealing
with functional differentiation. We start from an initial expression that is a slight abuse of
notation, but is convenient to write: the differentiation in the left-hand side is made in the
direction of the function η and evaluated at the function h, not at the real-valued number h(x)
(the cases (2.35) and (2.37) are very different!). We then rewrite the initial in its “cumbersome”
but rigorous expression, then we apply previously established derivation rules (2.36), (2.24), and
then we revert back to a lighter and more convenient expression (2.39). Of course, with some
experience, one might go straight from the left-hand side of (2.37) to the final result (2.39),
having in mind the elementary rules involved in the derivation process.

2.4 p.g.fl.s and differentiation

We shall now apply the functional differentiation to the p.g.fl. to see what kind of information
can be extracted from it. Suppose that Φ is a point process with known p.g.fl. GΦ and one wish
to determine the probability density pΦ(x), i.e. the probability that 1) there is a single target
in the state space, and 2) that target has state x. Suppose that one wish to determine the first
moment density µΦ(x) as well. The results (1.32) we obtained for the p.g.f.s provide some insight
on the method to produce the desired result: we should differentiate the p.g.fl. once. Since the
spatial component is now relevant and we want to evaluate the probability density and the first
moment density in a given point x ∈ X, we shall differentiate GΦ in the direction δx:

δGΦ(h; δx) = δ

∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn; δx

 . (2.40a)

This is a typical example where we can apply the swapping rule (2.33) and we get

δGΦ(h; δx) =
∑
n≥1

∫
Xn

δ

((
n∏
i=1

h(xi)

)
; δx

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn, (2.40b)

where proceeding with the product rule (2.19) yields

δGΦ(h; δx) =
∑
n≥1

∫
Xn

 n∑
i=1

δ(h(xi); δx)

∏
j 6=i

h(xj)

 p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn, (2.40c)
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which simplifies with the advanced rule (2.23) and gives

δGΦ(h; δx) =
∑
n≥1

∫
Xn

 n∑
i=1

δx(xi)

∏
j 6=i

h(xj)

 p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn (2.40d)

=
∑
n≥1

∫
Xn−1

n∑
i=1

∏
j 6=i

h(xj)

 p
(n)
Φ (x1, . . . , x, . . . , xn︸ ︷︷ ︸

x as ith variable

)dx1 . . . dxi−1dxi+1 . . . dxn

(2.40e)

=
∑
n≥1

∫
Xn−1

n

(
n−1∏
i=1

h(xi)

)
p

(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1 (2.40f)

=
∑
n≥1

n

∫
Xn−1

(
n−1∏
i=1

h(xi)

)
p

(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1 (2.40g)

=
∑
n≥0

(n+ 1)

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn (2.40h)

Now, if we set h = 0 or h = 1 in (2.40h) we get

δGΦ(h; δx)|h=0 =
∑
n≥0

(n+ 1)

∫
Xn

(
n∏
i=1

0

)
p

(n)
Φ (x, x1, . . . , xn)dx1 . . . dxn

= p
(1)
Φ (x), (2.41)

δGΦ(h; δx)|h=1 =
∑
n≥0

(n+ 1)

∫
Xn

(
n∏
i=1

1

)
p

(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

=
∑
n≥0

(n+ 1)

∫
Xn

p
(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

= µΦ(x). (2.42)

Further differentiating (2.40h) before setting h = 0 produces the probability density evaluated
at a set of any desired size. Alternatively, further differentiating (2.40h) before setting h = 1
produces higher order factorial moment densities, which are out of the scope of this lecture.
From (2.41) and (2.42) we can draw the practical extraction rules:

1

k!
δkGΦ(h; δx1

, . . . , δxk)
∣∣
h=0

= p
(k)
Φ (x1, . . . , xk)

(
=
j

(k)
Φ (x1, . . . , xn)

k!

)
,

δGΦ(h; δx)|h=1 = µΦ(x).

(2.43)

Again, the extraction rules for p.g.f.s (1.32) and p.g.fl.s (2.43) are very similar. Since its prob-
ability density fully characterizes a point process, it follows from (2.43) that its p.g.fl. does as
well. In other words. the knowledge of a p.g.fl. GΦ is sufficient to provide a full description of
the associated point process Φ.
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Before moving on to joint p.g.fl.s, we shall write a “technical result” that is known as Campbell’s
theorem in point process theory. Assume that one wish to evaluate some real-valued function
f , defined on the state space X, on each point x ∈ ϕ, where ϕ takes all the possible realizations
of some point process Φ; in other words, one wish to compute the expected value of f w.r.t. to
Φ – for example, f could be a function such that f(x) evaluates the level of threat of a target
with state x ∈ X, and one wish to evaluate the average global level of threat of the population
of targets described by Φ. Then we have:

E

[∑
x∈ϕ

f(x)

]
=
∑
n≥1

∫
Xn

(
n∑
i=1

f(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn (2.44a)

=
∑
n≥1

(
n∑
i=1

∫
Xn

f(xi)p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn

)
(2.44b)

But, since the probability density pΦ is symmetrical:

E

[∑
x∈ϕ

f(x)

]
=
∑
n≥1

n

∫
Xn

f(x1)p
(n)
Φ (x1, . . . , xn)dx1 . . . dxn (2.44c)

=

∫
f(x)

∑
n≥1

n

∫
Xn−1

p
(n)
Φ (x, x1, . . . , xn−1)dx1 . . . dxn−1

 dx (2.44d)

=

∫
f(x)

∑
n≥0

(n+ 1)

∫
Xn

p
(n+1)
Φ (x, x1, . . . , xn)dx1 . . . dxn

 dx (2.44e)

And finally, using the expression of the first-order moment density (2.8e):

E

[∑
x∈ϕ

f(x)

]
=

∫
f(x)µΦ(x)dx. (2.44f)

In other words, rather than evaluating f at each object x ∈ ϕ averaged over all the possible
multi-object realizations ϕ of Φ, it is equivalent to evaluate f at each point x of the state
space X, weighted by the scalar µΦ(x), i.e. the “average number of objects with state x”. It
is a very important result, because it shifts the study of f from the space X of all the finite
sequences of points of X to the “much smaller” space X. Furthermore, it is valid regardless of
the point process Φ, since we have assumed no particular form to produce the result (2.44f).
The Campbell’s theorem will be very handy in the derivation of the PHD filter in Section 2.7.
We can rewrite Campbell’s theorem (2.44) under the equivalent form∫

X

(∑
x∈ϕ

f(x)

)
pΦ(ϕ)dϕ =

∫
f(x)µΦ(x)dx. (2.45)

Joint p.g.fl.s, of course, can be differentiated as well. Suppose, for example, that one wish to
describe the joint behaviour of some point processes Ξ,Φ in the specific case where Ξ yields the
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realization ξ = (z1, . . . , zm). This is described by the single variate p.g.fl. GΞ=ξ,Φ(h), which can
be extracted from the joint p.g.fl. GΞ,Φ as follows:

GΞ=ξ,Φ(h) =

∫
X

(∏
x∈ϕ

h(x)

)
pΞ,Φ(ξ, ϕ)dϕ (2.46a)

=
1

m!
δmGΞ,Φ(g, h; δz1 , . . . , δzm)|g=0 , (2.46b)

where (2.46a) is drawn from the definition of the p.g.fl. (2.10) and (2.46b) is obtained with a
similar reasoning as shown in (2.40) and (2.41). Note that one must keep track of test function
w.r.t. which the joint p.g.fl. is differentiated in (2.46b) as it does not appear explicitly. Other
notations can be adopted to avoid ambiguity, for example

δmGΞ,Φ(g, h; δz1 , . . . , δzm ; ∅), (2.47)

which means that the directions δz1 , . . . , δzm pertain to a differentiation w.r.t the first function
(i.e. g), while ∅ means that no differentiation has taken place (yet) w.r.t. the second function
(i.e. h). For the remainder of this lecture, points z will relate to the g function defined on the
observation space Z, while points x, y will relate to the h function defined on the target state
space X. For this reason, there will be no ambiguity on the function to which the directions
relate in the various differentials, and we will use the lighter notation (2.46b) rather than the
more cumbersome (2.47).

If necessary, δmGΞ,Φ(g, h; δz1 , . . . , δzm)|g=0 in (2.46b) can then be differentiated w.r.t. the test

function h to produce the joint probability density pΞ,Φ(ξ, ϕ) for any desired realization ϕ.

2.5 Operations on p.g.fl.s

We will now explore how some simple operations on point processes translate into operations
on p.g.fl.s, just as some simple operations on random variables translate into simple operations
on their p.g.f.s. We will consider three operations on point processes which are very useful to
model physical mechanisms in multi-target filtering problems.

2.5.1 Marginalization

Marginalization occurs when two point processes Ξ,Φ have a known joint behaviour and one wish
to “isolate” the behaviour of one of the point process, say Ξ. One must marginalize the joint
behaviour over Φ, i.e. “integrate” the joint probability density over all the possible realizations
of Φ since

∀ξ ∈ Z, pΞ(ξ) =

∫
X
pΞ,Φ(ξ, ϕ)dϕ. (2.48)
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Suppose that the joint behaviour is known through the joint p.g.fl. GΞ,Φ. Using the definition of
a joint p.g.fl. (2.13) we can write:

GΞ,Φ(g, 1) =

∫
Z

∫
X

∏
z∈ξ

g(z)

(∏
x∈ϕ

1

)
pΞ,Φ(ξ, ϕ)dξdϕ (2.49a)

=

∫
Z

∏
z∈ξ

g(z)

(∫
X
pΞ,Φ(ξ, ϕ)dϕ

)
dξ (2.49b)

=

∫
Z

∏
z∈ξ

g(z)

 pΞ(ξ)dξ (2.49c)

= GΞ(g) (2.49d)

Exactly as for the random variables (1.36), the marginalization of a point process easily translates
into a very simple operation on the joint p.g.fl.:

GΞ(g) = GΞ,Φ(g, 1). (2.50)

2.5.2 Superposition

Superposition occurs when one is not interested in the individual realizations of two independent
point processes Φ1 and Φ2, but only in the union of the two realizations. If we denote by Ξ the
union of two point processes Φ1, Φ2 with known p.g.f.s GΦ1 , GΦ2 , then Ξ is also a point process;
using the definition of the p.g.f. (2.10) yields

GΞ(h) = E

[∏
x∈Ξ

h(x)

]
(2.51a)

= E

[ ∏
x∈Φ1∪Φ2

h(x)

]
(2.51b)

= E

[ ∏
x1∈Φ1

h(x)
∏

x2∈Φ2

h(x)

]
(2.51c)

= E

[ ∏
x1∈Φ1

h(x)

]
E

[ ∏
x2∈Φ2

h(x)

]
(2.51d)

= GΦ1(h)GΦ2(h), (2.51e)

where (2.51c) is equivalent to (2.51d) because Φ1 and Φ2 are independent.

Similarly to the random variables (1.38), the superposition of two independent point processess
easily translates into the product of the associated p.g.fl.s:

GΦ1∪Φ2
(s) = GΦ1

(s)GΦ2
(s). (2.52)



2.5. OPERATIONS ON P.G.FL.S 37

2.5.3 Branching

Branching is a special kind of dependence between two point processes Ξ,Φ. Upon any realization
ξ = (z1, . . . , zm) of the parent process Ξ, the daughter process Φ will be the superposition of m
independent point processes Υ|zi, each one depending on the state of a different element zi, as
if any object zi in the parent population was “spawning” a number of objects in the daughter
population.

Suppose that the parent process Φ and the transition process Υ|· are known through their p.g.fl.s,
and that one wish to describe the daughter process Φ. The p.g.fl. describing the joint behaviour
of the parent Ξ and daughter Φ processes can be written as follows:

GΞ,Φ(g, h) =

∫
Z

∫
X

∏
z∈ξ

g(z)

(∏
x∈ϕ

h(x)

)
pΞ,Φ(ξ, ϕ)dξdϕ (2.53a)

=

∫
Z

∫
X

∏
z∈ξ

g(z)

(∏
x∈ϕ

h(x)

)
pΞ(ξ)pΦ|Ξ(ϕ|ξ)dξdϕ (2.53b)

=

∫
Z

∏
z∈ξ

g(z)

(∫
X

(∏
x∈ϕ

h(x)

)
pΦ|Ξ(ϕ|ξ)dϕ

)
pΞ(ξ)dξ (2.53c)

=

∫
Z

∏
z∈ξ

g(z)

GΦ|Ξ(h|ξ)pΞ(ξ)dξ, (2.53d)

where GΦ|Ξ(h|ξ) is the p.g.fl. describing the daughter process Φ conditioned on the realization
Ξ = ξ. If Ξ = ξ, then Φ|Ξ is the superposition of |ξ| independent transition processes Υ|zi,
where zi ∈ ξ. Thus from (2.52) we have

GΦ|Ξ(h|ξ) =
∏
z∈ξ

GΥ(h|z). (2.54)

Substituting (2.54) in (2.53d) gives

GΞ,Φ(g, h) =

∫
Z

∏
z∈ξ

g(z)

∏
z∈ξ

GΥ(h|z)

 pΞ(ξ)dξ (2.55a)

=

∫
Z

∏
z∈ξ

g(z)GΥ(h|z)

 pΞ(ξ)dξ (2.55b)

= GΞ(gGΥ(h|·)). (2.55c)
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The result (2.55c) above describes the joint behaviour of the parent and daughter processes and
is used in the construction of the data update equation of the multi-object Bayes filter. As before,
the result is very close to its p.g.f. counterpart (1.41c). The notable difference is that the inner
p.g.fl. in (2.55c) depends on the states of the elements in the parent population, which appears
explicitly in the notation GΥ(h|·), while the inner p.g.f. in (1.41c) does not. For now, since we are
interested in the description of the daughter process Φ alone, we can simply marginalize (2.55c)
over the parent process Ξ using (2.50) and we get

GΦ(h) = GΞ,Φ(1, h) (2.56a)

= GΞ(GΥ(h|·)). (2.56b)

In other words, the branching of a parent point process following a mechanism described by a
transition point process translates into the composition of the associated p.g.fl.s.

2.6 A few examples of point processes and their p.g.fl.s

We shall now present two specific classes of point processes which are often used in multi-object
filtering and for which it is useful to learn beforehand the structure of the associated p.g.fl.s.

2.6.1 Bernoulli point process

A Bernoulli point process Φ with parameter 0 ≤ p ≤ 1 and spatial distribution s – that is,∫
s(x)dx = 1 – is a very simple point process defined as follows:

Φ =

{
∅, with probability 1− p,
x, with probability ps(x).

(2.57)

The Bernoulli point process describes a simple situation where 1) either there is no objects in
the scene, or 2) there is a single object, with state distributed according to s. It is a “basic
component” in the modelling of multi-object filters in order to describe the behaviour of a single
target or a single measurement.

The construction of the p.g.fl. GΦ is straightforward using definition (2.10):

GΦ(h) =
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)dx1 . . . dxn (2.58a)

= p
(0)
Φ (∅)︸ ︷︷ ︸
=1−p

+

∫
h(x) p

(1)
Φ (x)︸ ︷︷ ︸

=ps(x)

dx+
∑
n≥2

∫
Xn

(
n∏
i=1

h(xi)

)
p

(n)
Φ (x1, . . . , xn)︸ ︷︷ ︸

=0

dx1 . . . dxn (2.58b)

= 1− p+ p

∫
h(x)s(x)dx. (2.58c)
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2.6.2 Poisson point process

A Poisson point process Φ with rate λ ≥ 0 and spatial distribution s is defined as follows:∀n ≥ 0, |Φ| = n with probability e−λ
λn

n!
,

The object states are i.i.d. according to s.
(2.59)

A Poisson point process describes a population whose number of element follows a Poisson distri-
bution, and whose element states are independently identically distributed (i.i.d.) in space. The
point patterns produced by a Poisson process, especially when the spatial distribution s is cho-
sen as uniform over the state space, epitomize the notion of spatial randomness. It can be used
to describe some natural phenomena, such as the distribution of a certain tree species in a forest.

The construction of the p.g.fl. GΦ using definition (2.10) gives:

GΦ(h) =

∫
X

(∏
x∈ϕ

h(x)

)
pΦ(ϕ)dϕ (2.60a)

=
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
e−λ

λn

n!

(
n∏
i=1

s(xi)

)
dx1 . . . dxn (2.60b)

= e−λ
∑
n≥0

λn

n!

∫
Xn

(
n∏
i=1

h(xi)s(xi)

)
dx1 . . . dxn (2.60c)

= e−λ
∑
n≥0

λn

n!

(∫
h(x)s(x)dx

)n
(2.60d)

= e−λ
∑
n≥0

(
λ
∫
h(x)s(x)dx

)n
n!

. (2.60e)

That is, using the Taylor expansion of the exponential (1.25):

GΦ(h) = e−λeλ
∫
h(x)s(x)dx (2.60f)

= eλ(
∫
h(x)s(x)dx−1). (2.60g)

In multi-object filtering, Poisson random variables are appealing because of the exponential form
of their p.g.fl. (2.60g), easily differentiable; assuming some point processes to be Poisson allows
the production of tractable and easily implementable filtering equations. It is, in essence, the
principle behind the derivation of the PHD filter (see Section 2.7).

It is formative to extract the first moment density of a Poisson point process in some point,
say y ∈ X, using the differentiation of the p.g.fl. (2.42):

µΦ(y) = δGΦ(h; δy)|h=1 (2.61a)

= δ(eλ(
∫
h(x)s(x)dx−1); δy)

∣∣∣
h=1

, (2.61b)
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where using the derivation rule for exponential functionals (2.36) yields

(2.61c)

µΦ(y) = δ

(
λ

(∫
h(x)s(x)dx− 1

)
; δy

)
eλ(

∫
h(x)s(x)dx−1)

∣∣∣∣
h=1

(2.61d)

= λδ

(∫
h(x)s(x)dx; δy

)∣∣∣∣
h=1

eλ(
∫
s(x)dx−1)︸ ︷︷ ︸

=eλ(1−1)=e0=1

, (2.61e)

where using the derivation rule (2.28) gives

µΦ(y) = λ

∫
δy(x)s(x)dx (2.61f)

= λs(y) (2.61g)

In other words, the first moment density of a Poisson process Φ equals its rate multiplied by its
spatial distribution; since λ and s fully characterize Φ through the definition (2.59), so does the
first moment density µΦ. It is indeed customary to describe a Poisson process through its first
moment density µΦ from which the rate λ and the spatial distribution s are easily retrieved: λ =

∫
µΦ(x)dx

s(·) = λ−1µΦ(·)
(2.62)

From (2.60g) and (2.62) we can write another expression of the p.g.fl. of a Poisson process Φ
that is common in the point process litterature:

GΦ(h) = e
∫

(h(x)−1)µΦ(x)dx. (2.63)

Since it allows the expression of the p.g.fl. w.r.t. a single quantity µΦ which is propagated by
the PHD filter, we will favour this last expression in the construction of the filter in Section 2.7.

2.7 Application: equations of the PHD filter

We shall now apply the results we have seen in the previous sections to derive the filtering equa-
tions, in their p.g.fl. form, of the PHD filter. The purpose of this Bayesian filter is to estimate
and propagate the mean number of target in any subregion of the scene, observed by some sensor
with known characteristics. Roughly speaking, the PHD filter adds a spatial component to the
“cardinality only” PHD filter presented in Chap. 1, i.e., we are now interested in the number of
targets and their state. It is formative to compare the current section to the corresponding one
in the previous chapter (Section 1.7), because the construction of the filtering equations share
remarkable similarities.

The data flow of one iteration of the PHD filter can be represented as follows:
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where the point processes provide a description of the configuration of the following populations:

• Ψ: the targets before the prediction (prior knowledge from past iterations);

• Φ: the targets after the prediction;

• Ξ: the current measurements;

• Φ|Ξ: the targets after the data update (i.e. conditioned on some realization Ξ = (z1, ..., zm)).

2.7.1 Modelling phase

Prediction step

The modelling assumptions are as follows:

1. The targets are independent;

2. A target with state x ∈ X survives with probability ps(x) and moves to some new state
y ∈ X distributed acc. to m(y|x), dies (i.e. vanishes from the scene) otherwise;

3. A number of newborn targets enter the scene, independently of the number surviving
targets, following a birth mechanism described by a point process Φbirth with known char-
acteristics (p.g.fl. Gbirth).

The prediction step can be represented as follows:

Exploiting the results established in sections 2.5 and 2.6, we can then say that:

1. Since a target with state x ∈ X survives with probability ps(x) and moves to some state
y ∈ X distributed acc. to m(y|x),, the “survival” point process Φs|x in the figure above is
Bernoulli with parameter ps(x) and spatial distribution m(·|x):

Gs(h|·) = 1− ps(·) + ps(·)
∫
h(y)m(y|·)dy. (2.64)
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Note the difference between the p.g.f. (1.48) and the p.g.fl. above (2.64). The p.g.fl. is essen-
tially in “augmented version” of the p.g.f. in which the spatial component is taken into account,
because the state y of the (eventually) surviving target does matter and does depend on the
previous state x of the target. This dependency upon the prior state is important, because it
means that the different survival point processes Gs will be dependent on different prior states,
and will behave differently. This is the reason why we mark the dependency clearly and write
“Gs(h|·)” rather than “Gs(h)”.

2. The surviving targets are described by a point process Φsur. which is the result of a branching
with parent point process Ψ and transition point process Φs:

Gsur.(h) = GΨ(Gs(h|·)). (2.65)

3. The predicted targets, described by Φ, is the superposition of the surviving targets and the
newborn targets:

GΦ(h) = Gsur.(h)Gbirth(h). (2.66)

In consequence, the p.g.fl. form of the prediction step of the PHD filter is given by:

GΦ(h) = GΨ

(
1− ps(·) + ps(·)

∫
h(y)m(y|·)dy

)
Gbirth(h). (2.67)

Similarly the “cardinality only” PHD, the p.g.fl.s allowed us to produce a full description of the
predicted targets Φ without computing its probability density pΦ(ϕ) for every possible sequence
ϕ ∈ X .

Data update step

The modelling assumptions are as follows:

1. The measurements are produced independently;

2. A target with state x ∈ X is detected with probability pd(x) and produces a single mea-
surement z ∈ Z distributed acc. to `(z|x), is undetected otherwise;

3. A number of clutter measurements “enter the scene”, independently from the target mea-
surements, following a clutter mechanism described by a point process Ξclutter with known
characteristics (p.g.fl. Gclutter).

The update step can be represented as follows:

Exploiting the results established in sections 2.5 and 2.6, we can then say that:
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1. Since a target with state x ∈ X is detected with probability pd(x) and produces a mea-
surement z ∈ Z dsitributed acc. to `(z|x), the “observation” point process Ξobs.|x in the figure
above is Bernoulli with parameter pd(x) and spatial distribution `(·|x):

Gobs.(g|·) = 1− pd(·) + pd(·)
∫
g(z)`(z|·)dz. (2.68)

2. The target measurements are described by a point process Ξtarget which is the result of a
branching with parent process Φ and transition process Ξobs.:

GΞtarget,Φ(g, h) = GΦ(hGobs.(g|·)). (2.69)

3. The collection of all measurements, described by Ξ, is the superposition of the target mea-
surements and the clutter measurements:

GΞ,Φ(g, h) = GΞtarget,Φ(g, h)Gclutter(g). (2.70)

In consequence, the joint p.g.fl. of the measurements and targets is given by:

GΞ,Φ(g, h) = GΦ

(
h(1− pd(·) + pd(·)

∫
g(z)`(z|·)dz)

)
Gclutter(g). (2.71)

So far, the structures of the prediction and update steps have been remarkably similar and have
led to identical results. The main difference is that we are not interested, at least as a final re-
sult, in marginalizing (2.71) over the predicted targets Ξ in the same way as (2.67) is (implicitly)
marginalized over the prior targets Ψ. Nor are we interested in marginalizing (2.71) over the
measurement process Ξ; we know with certainty that the sensor system produced the measure-
ment set Z = (z1, . . . , zm) and we wish to estimate the multi-target configuration conditioned
on the realization Ξ = Z.

In order to do this, we will use the multi-object Bayes’ rule for conditional probabilities which
states that

pΞ|Φ(ϕ|Z) =
pΞ,Φ(Z,ϕ)

pΞ(Z)
, (2.72)

that is, the probability that the multi-target configuration in the scene is Ξ = ϕ, given that the
collected measurement set is Ξ = Z, is the joint probability that the multi-target configuration
is Φ = ϕ and the multi-measurement configuration is Ξ = Z, over the probability that the
multi-measurement configuration is Ξ = Z.

If we multiply both sides of (2.72) by
∏
x∈ϕ h(x) and integrate over all possible realizations

of Φ we get

∫
X

(∏
x∈ϕ

h(x)

)
pΦ|Ξ(ϕ)dϕ =

∫
X

(∏
x∈ϕ h(x)

)
pΞ,Φ(Z,ϕ)dϕ

pΞ(Z)
. (2.73a)

Using (2.10) and (2.46a), (2.73a) is equivalent to

GΦ|Ξ(h|Z) =
GΞ=Z,Φ(s)

pΞ(Z)
, (2.73b)



44 CHAPTER 2. POINT PROCESSES

where (2.46b) and (2.43) yield

GΦ|Ξ(h|Z) =

1
m!δ

m GΞ,Φ(g, h; δz1 , . . . , δzm)|g=0
1
m!δ

m GΞ(g; δz1 , . . . , δzm)|g=0

. (2.73c)

Finally, the denominator of Bayes’ rule being the probability that the collected measurements
are Ξ = Z marginalized over all the possible multi-target configurations, GΞ(g) = GΞ,Φ(g, 1) and
thus 1

m!δ
m GΞ(g; δz1 , . . . , δzm)|g=0 = 1

m!δ
m GΞ,Φ(g, 1; δz1 , . . . , δzm)|g=0. Thus (2.73c) becomes

GΦ|Ξ(h|Z) =
δm GΞ,Φ(g, h; δz1 , . . . , δzm)|g=0

δm GΞ,Φ(g, 1; δz1 , . . . , δzm)|g=0

. (2.73d)

With (2.71) and (2.73d), we have now produced the p.g.fl. form of the data update step of the
PHD filter:

GΦ|Ξ(h|Z) =
δm GΞ,Φ(g, h; δz1 , . . . , δzm)|g=0

δm GΞ,Φ(g, 1; δz1 , . . . , δzm)|g=0

,

where GΞ,Φ(g, h) = GΦ

(
h(1− pd(·) + pd(·)

∫
g(z)`(z|·)dz)

)
Gclutter(g). (2.74)

As for the prediction step, working with the p.g.fl.s allowed us to produce a full description of
the updated targets Φ|Ξ without computing the probability density pΦ|Ξ(ϕ|Z) for every possible
sequence ϕ ∈ X .

2.7.2 Differentiation phase

Prediction step

Exploiting (2.43) we can extract the first-order moment density µΦ from the first derivative of
the p.g.fl. GΦ:

µΦ(x) = δGΦ(h; δx)|h=1 (2.75a)

Substituting the expression of the p.g.fl. GΦ (2.67) yields

µΦ(x) = δ (GΨ(Gs(h|·))Gbirth(h); δx)|h=1 (2.75b)

Using the product rule (2.19) then gives

µΦ(x) = δ (GΨ(Gs(h|·)) ; δx)|h=1 Gbirth(h)|h=1︸ ︷︷ ︸
=Gbirth(1)=1

+ GΨ(Gs(h|·))|h=1︸ ︷︷ ︸
=GΨ(Gs(1|·))=GΨ(1)=1

δGbirth(h; δx)|h=1 (2.75c)

Exploiting again the relation between the first-order moment density and the first differentiation
of the p.g.fl. (2.43) then yields

µΦ(x) = δ (GΨ(Gs(h|·)) ; δx)|h=1 + µbirth(x). (2.75d)

We now have to solve the composition δ (GΨ(Gs(h|·)) ; δx)|h=1 in (2.75d). This is the challenging
part, because we have not assumed any particular form for the prior process Ψ. If we were to
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assume that Ψ was Poisson, for example, we could exploit the special composition rule (2.36);
however, the PHD filter does not assume such thing and we have to resolve the composition in
the general case. Quite fortunately, Campbell’s theorem (2.45) will help us in this task. Starting
from the definition of the p.g.fl. (2.10) we can write down explicitly the outer functional:

δ (GΨ(Gs(h|·)) ; δx)|h=1 = δ

(∫
X

(∏
x̄∈ϕ
Gs(h|x̄)

)
pΦ(ϕ)dϕ; δx

)∣∣∣∣∣
h=1

(2.76a)

Using (2.33) we can swap the differentiation and integral:

δ (GΨ(Gs(h|·)) ; δx)|h=1 =

∫
X
δ

(∏
x̄∈ϕ
Gs(h|x̄); δx

)∣∣∣∣∣
h=1

pΦ(ϕ)dϕ (2.76b)

The derivative can now be expanded using the product rule:

δ (GΨ(Gs(h|·)) ; δx)|h=1 =

∫
X

∑
x̄∈ϕ

δGs(h|x̄; δx)|h=1

∏
¯̄x∈ϕ\{x̄}

Gs(h|¯̄x)|h=1︸ ︷︷ ︸
=Gs(1|¯̄x)=1

 pΦ(ϕ)dϕ (2.76c)

=

∫
X

(∑
x̄∈ϕ

δGs(h|x̄; δx)|h=1

)
pΦ(ϕ)dϕ (2.76d)

Given the simple structure (2.64) of the inner functional Gs, the derivation in (2.76d) can now
be solved:

δGs(h|x̄; δx)|h=1 = δ

(
1− ps(x̄) + ps(x̄)

∫
h(y)m(y|x̄)dy; δx

)∣∣∣∣
h=1

(2.76e)

= ps(x̄) δ

(∫
h(y)m(y|x̄)dy; δx

)∣∣∣∣
h=1

(2.76f)

Where (2.28) gives

δGs(h|x̄; δx)|h=1 = ps(x̄)

∫
δx(y)m(y|x̄)dy (2.76g)

= ps(x̄)m(x|x̄). (2.76h)

Substituting (2.76h) into (2.76d) gives

δ (GΨ(Gs(h|·)) ; δx)|h=1 =

∫
X

(∑
x̄∈ϕ

ps(x̄)m(x|x̄)

)
pΨ(ϕ)dϕ (2.76i)

And, finally, Campbell’s theorem (2.45) yields the desired result

δ (GΨ(Gs(h|·)) ; δx)|h=1 =

∫
ps(x̄)m(x|x̄)µΨ(x̄)dx̄. (2.76j)
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Substituting (2.76j) into (2.75d) yields the final result for the predictions step:

µΦ(x) =

∫
ps(x̄)m(x|x̄)µΨ(x̄)dx̄+ µbirth(x). (2.77)

Similarly to the “cardinality only” PHD filter, no filtering approximations were necessary to
produce this result, which means that the validity of the prediction step is not limited to a
particular model for the prior targets Ψ and/or the newborn targets Φbirth. We have seen that
the general expression had a cost as the construction of the prediction equation (2.77) was
significantly more involved than its “cardinality only” counterpart (1.59g). On the other hand,
we will see in the next section that the construction of the update equation for the PHD filter is
almost identical to its “cardinality only” counterpart.

Update step

Again, it is straightforward to write the first-order moment of the posterior targets µΦ|Ξ=Z ,
given that the sensor system produced the observation set Z = {z1, . . . , zm}, as the first order
derivative of the p.g.fl. GΦ|Ξ(·|Z):

µΦ|Ξ(x|Z) = δGΦ|Ξ(h|Z)|h=1 (2.78a)

Substituting the expression of the p.g.fl. GΦ|Ξ(h|Z) (2.74) yields

µΦ|Ξ(x|Z) =
δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

∣∣
g=0,h=1

δmGΞ,Φ(g, 1; δz1 , . . . , δzm)|g=0

(2.78b)

The previous result (2.74) provides an expression of the joint p.g.f. GΞ,Φ w.r.t. the predicted
p.g.fl. GΦ and the clutter p.g.fl. Gclutter, but at this point we have not made any assumptions on
the predicted targets Φ or the clutter process Ξclutter and their respective p.g.fl.s. If we attempt
to proceed with the derivation in (2.78b) without assuming any particular forms for the p.g.fl.s
GΞ and Gclutter, we will end up with a very general but intractable result. We will thus assume
that:

1. The predicted targets Φ is a Poisson process;

2. The clutter Ξclutter is a Poisson process.

Using the expression of a Poisson process w.r.t. its first-order moment density (2.63), we can
rewrite the joint p.g.fl. GΞ,Φ (2.71) as follows:

GΞ,Φ(g, h) = GΦ

(
h(1− pd(·) + pd(·)

∫
g(z)`(z|·)dz)

)
Gclutter(g) (2.79a)

= e
∫

(h(y)(1−pd(y)+pd(y)
∫
g(z)`(z|y)dz)−1)µΦ(y)dye

∫
(g(z)−1)µclutter(z)dz (2.79b)

= e
∫

[h(x)(1−pd(y)+pd(y)
∫
g(z)`(z|y)dz)−1]µΦ(x)dx+

∫
[g(z)−1]µclutter(z)dz (2.79c)

= eF (g,h), (2.79d)

where we defined the inner bivariate functional

F (g, h) =

∫ [
h(y)(1− pd(y) + pd(y)

∫
g(z)`(z|y)dz)− 1

]
µΦ(y)dy +

∫
[g(z)− 1]µclutter(z)dz.
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We can now proceed to the derivation of the joint p.g.fl. in its new form (2.79d), for its exponential
form makes the derivation easier exploiting the composition rule (2.36). Indeed, resolving the
first-order derivative yields immediately:

δGΞ,Φ(g, h; δz1) = δ(eF (g,h); δz1) (2.80a)

= δF (g, h; δz1)eF (g,h). (2.80b)

Now, the resolution of δF (g, h; δz1) is straightforward if we first swap the integral and the dif-
ferentation using (2.31), then resolve the differentiation using (2.28):

δF (g, h; δz1) =

∫
h(y)pd(y)δ

(∫
g(z)`(z|y)dz; δz1

)
µΦ(y)dy + δ

(∫
g(z)µclutter(z)dz; δz1

)
(2.81a)

=

∫
h(y)pd(y)

(∫
δz1(z)`(z|y)dz

)
µΦ(y)dy +

∫
δz1(z)µclutter(z)dz (2.81b)

=

∫
h(y)pd(y)`(z1|y)µΦ(y)dy + µclutter(z1). (2.81c)

And thus the first-order derivative (2.80b) reads:

δGΞ,Φ(g, h; δz1) =

[∫
h(y)pd(y)`(z1|y)µΦ(y)dy + µclutter(z1)

]
eF (g,h). (2.82a)

Since the multiplicative term in front of the exponential is independent of g, it is straightforward
to write the m-th order derivative of the joint p.g.fl. w.r.t. the function g:

δmGΞ,Φ(g, h; δz1 , . . . , δzm) =

m∏
i=1

[∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi)

]
eF (g,h). (2.82b)

For the numerator in (2.74), we need to differentiate (2.82b) once w.r.t. h. This is a simple task
using first the product rule (2.19):

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

=

m∑
i=1

[
δ

(∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi); δx

) m∏
j=1
j 6=i

[ ∫
h(y)pd(y)`(zj |y)µΦ(y)dy + µclutter(zj)

]]
eF (g,h)

+

m∏
i=1

[∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi)

]
δ(eF (g,h); δx) (2.83a)
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Where (2.28) in the first summand and the composition rule (2.36) in the second summand give

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

=

m∑
i=1

[∫
δx(y)pd(y)`(zi|y)µΦ(y)dy

m∏
j=1
j 6=i

[ ∫
h(y)pd(y)`(zj |y)µΦ(y)dy + µclutter(zj)

]]
eF (g,h)

+

m∏
i=1

[∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi)

]
δF (g, h; δx)eF (g,h) (2.83b)

=

m∑
i=1

[
pd(x)`(zi|x)µΦ(x)

m∏
j=1
j 6=i

[ ∫
h(y)pd(y)`(zj |y)µΦ(y)dy + µclutter(zj)

]]
eF (g,h)

+

m∏
i=1

[∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi)

]
δF (g, h; δx)eF (g,h) (2.83c)

Again, the resolution of δF (g, h; δx) is straightforward using (2.28):

δF (g, h; δx) =

∫
δx(y)

(
1− pd(y) + pd(y)

∫
g(z)`(z|y)dz

)
µΦ(y)dy (2.84a)

=

(
1− pd(x) + pd(x)

∫
g(z)`(z|x)dz

)
µΦ(x). (2.84b)

Substituting (2.84b) in (2.83c) yields the desired numerator

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

=

m∑
i=1

[
pd(x)`(zi|x)µΦ(x)

m∏
j=1
j 6=i

[ ∫
h(y)pd(y)`(zj |y)µΦ(y)dy + µclutter(zj)

]]
eF (g,h)

+

m∏
i=1

[∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi)

](
1− pd(x) + pd(x)

∫
g(z)`(z|x)dz

)
µΦ(x)eF (g,h)

(2.85)

Dividing the numerator (2.85) by the denominator (2.82b) finally yields:

δm+1GΞ,Φ(g, h; δz1 , . . . , δzm , δx)

δmGΞ,Φ(g, h; δz1 , . . . , δzm)
=

n∑
i=1

pd(x)`(zi|x)µΦ(x)∫
h(y)pd(y)`(zi|y)µΦ(y)dy + µclutter(zi)

+

(
1− pd(x) + pd(x)

∫
g(z)`(z|x)dz

)
µΦ(x) (2.86a)

At this point we just have to set h = 1 and g = 0 to produce the desired result (recall the general
expression (2.78b)):

µΦ|Ξ(x|Z) =
∑
z∈Z

pd(x)`(z|x)µΦ(x)∫
pd(y)`(z|y)µΦ(y)dy + µclutter(z)

+ (1− pd(x))µΦ(x).

(2.86b)
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2.7.3 Filtering equations

We have now succeeded in producing the filtering equations of the PHD filter [11] with equations
(2.77) and (2.86b), repeated here:

µΦ(x) =

∫
ps(y)m(x|y)µΨ(y)dy + µbirth(x),

µΦ|Ξ(x|Z) = (1− pd(x))µΦ(x) +
∑
z∈Z

pd(x)`(z|x)µΦ(x)∫
pd(y)`(z|y)µΦ(y)dy + µclutter(z)

.
(2.87)

If we compare the equations of the “cardinality only” PHD filter (1.66) with those above, we
can remark that they have a remarkably similar structure.
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Chapter 3

Point processes and higher order
moments

This chapter explores the concept of higher-order moments for point processes, and provides
the tools for their practical derivation using the functional derivatives introduced in Chap. 2.
The construction of the PHD filter with variance in target number, an example of application of
higher-order moments for target detection and tracking problems, is introduced. A more detailed
construction is given for the PHD and the CPHD filters in [8].

3.1 Defining moments for point processes: first attempt

We have seen in Chap. 1 that statistical moments are readily available for integer-valued random
variables. Inspired by the expression of the kth order moment in (1.3), we may be want to produce

the kth order moment µ
(k)
Φ of a point process Φ as

µ
(k)
Φ = E

[
Φk
]

=

∫
X
pΦ(ϕ)ϕkdϕ. (3.1)

Then, what is wrong with the result above? Suppose, for example, that Φ is a very simple point

process on X such that p
(2)
Φ (x1, x2) = p

(2)
Φ (x2, x1) = p

(1)
Φ (x3) = 1

3 , where x1, x2, x3 ∈ X. If we
exploit (3.1) then the 1th order moment µΦ is

µ
(1)
Φ =

1

3
(x1, x2) +

1

3
(x1, x2) +

1

3
(x3). (3.2)

Does the result above denote some kind of “average behaviour” of the point process, as we would
expect from the 1st order moment of a random variable? We may say that “on average, the popu-
lation of targets has a size of 5

3”, but what can we say about the “average state” of those targets?

In turns out that summing sequences of points makes little sense, neither would multliplying
them if we were to consider higher-order moments through our first attempt of definition (3.1).
Integer-valued random variables take, by definition, values in the set of non-negative integers N;

51
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this a very convenient space as the operations of sum and multiplication are well-defined and we
can thus produce expressions for statistical moments (1.3), (1.4). The point process Φ, however,
is a random variable with values in the space X of finite sequences of points on X; this space
has a much more complicated structure on which the operations of sum and multiplication make
little sense. In order to define statstical moments on a point process, then, we shall try first to
characterize a point process with integer-valued random variables, then produce the moments of
the said random variables.

3.2 Point processes and counting measures

Statistical moments are readily available for
integer-valued random variables. In our case,
we need to build an integer-valued random
variable, providing a description of the target
population, from a point process Φ.

Point processes are random variables whose
realizations are sequences of points in the target
state space X . A point process is not a real (or
complex) valued random variable and moments
cannot be directly defined from point processes
– the expression E [Φ] has no mathematical
sense, since realizations can be sequences of dif-
ferent sizes for which no sum operator is defined.

Let us fix a suitable region B ⊆ X 1. One can
map any realization ϕ of the point process to the
number of elements in ϕ belonging to B, that is:

Nϕ(B) =
∑
x∈ϕ

1B(x), (3.3)

where 1B is the indicator function on B, i.e.

1B(x) =

{
1, x ∈ B
0, otherwise.

(3.4)

1Recall from Chap. 2 that B belongs to B(X), the Borel σ-algebra on the target space X.
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If we compose the point process with the map-
ping defined above in (3.3), we get the integer-
valued random variable

NΦ(B) =
∑
x∈Φ

1B(x), (3.5)

which provides a description of the number of
targets within B acc. to the point process Φ.

Let us have a look at the nature of the different mathematical objects involved in the construction
we have just illustrated.

1. Nϕ(B) is the number of elements of the realization ϕ belonging to the fixed region B; it is
an integer ;

2. NΦ(B) maps an outcome ω ∈ Ω to the number of elements of the realization Φ(ω) belonging
to the fixed region B; it is an integer-valued random variable;

3. Nϕ(·) maps a suitable region B ⊆ X to the number of elements of the realization ϕ that
it contains; it is an integer-valued measure called a counting measure;

4. NΦ(·) maps an outcome ω ∈ Ω to the counting measure NΦ(ω)(·); it is a integer-valued
random measure.

We have now built a integer-valued random variable NΦ(B) for any suitable region B ⊆ X,
and it can be shown that these random variables characterize the point process Φ when all the
suitable regions of the target state space are considered. We can now focus on the construction
of the moments of these random variables.

3.3 Defining moments for point processes: second attempt

Since NΦ(B) is a random variable for any suitable region B ⊆ X, inspired from (1.3), we can
build the kth order non factorial moment of the point process Φ as the joint expectation

µ
(k)
Φ (B1 × . . .×Bk) = E [NΦ(B1) · · ·NΦ(Bk)] (3.6a)

= E

[∑
x∈Φ

1B1(x) · · ·
∑
x∈Φ

1Bk(x)

]
(3.6b)

= E

 ∑
x1,...,xk∈Φ

1B1(x1) · · · 1Bk(xk)

 , (3.6c)

for any suitable regions Bi ⊆ X, 1 ≤ i ≤ k. We can make two important remarks about

the structure of the kth order non factorial moment µ
(k)
Φ above. First, we see that it takes as

argument a suitable region of Xk; it is actually a measure on Xk and its full name is the kth order
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non factorial moment measure of the point process Φ. Second, equation (3.6b) provides some
insight on the physical meaning on the non factorial moment measure: it assesses the number of
targets falling jointly in regions Bi of the state space, and includes events where a single target
belongs to several of these regions. If we wish to exclude the latter possibility, we obtain the
kth order factorial moment measure of the point process Φ, defined as the joint expectation

α
(k)
Φ (B1 × . . .×Bk) = E

 ∑ 6=

x1,...,xk∈Φ

1B1(x1) · · · 1Bk(xk)

 , (3.7)

where the 6= sign indicates that the selected points in the sequence are all distinct. We may
see from (3.6) and (3.7) that the 1st order moment measures, factorial and non factorial, are
equal; the 1st order moment measure is also called the intensity measure of the point process
and simply denoted by µΦ.

Remark 4. For the sake of simplicity, we have adopted the same notation for the moment
measures in this chapter and the moment densities in Chap. 2. In particular, we use the notation
µΦ for both the intensity measure of Φ and the density of the intensity measure, also called the
Probability Hypothesis Density or intensity of the point process Φ.

Similarly as we have seen in (1.5) for integer-valued random variables, it is interesting to define
the central second moment or variance of the point process Φ as

varΦ(B) = µ
(2)
Φ (B ×B)− [µΦ(B)]

2
, (3.8)

for any suitable region B ⊆ X. The regional statistics (µΦ(B), varΦ(B)) of the point process Φ
can then be interpreted as follows [8]

• µΦ(B) is the mean value of the random variable NΦ(B), i.e., the average number of targets
within B;

• varΦ(B) quantifies the spread of the random variable NΦ(B) around its mean value, i.e.,
the spread of the estimated number of targets within B around its mean value.

In detection and tracking problems, these statistics allow us to estimate the average number of
target in any suitable region B ⊆ X of the state space, with associated uncertainty. They can be
used, for example, in a sensor scheduling policy focussing on the regions where the uncertainty
in the target number is the highest [1].

Remark 5. Even if the variance is a function defined on the Borel σ-algebra B(X) associated to
the state space X, it is not a measure on X. In particular, it can be shown that the variance is
not additive, i.e. B1 ⊆ B2 does not imply that varΦ(B1) ≤ varΦ(B2) (this will be the topic of an
exercise in Ex 4.3.3). An important consequence is that the variance does not admit a density,
in the general case; i.e., there does not exist a density vΦ on X, such that

varΦ(B) =

∫
B

vΦ(x)dx, (3.9)

for any suitable region B ⊆ X.
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Other meaningful statistical quantities about a point process can be defined from its moment
measures, though they are out of the scope of this lecture. Suppose that one wish to study the
correlation between the number of targets in suitable regions B1, B2 ⊆ X according to some
point process, then similarly to (3.8) one can define the covariance

covΦ(B1, B2) = µ
(2)
Φ (B1 ×B2)− µΦ(B1)µΦ(B2). (3.10)

3.4 Computing the moment measures

At this stage, we can make two important remarks regarding the moment measures for point
processes, through a direct analogy with the moments for integer-valued random variables stud-
ied in Chap. 1. First, the central moments are the most interesting to us as we can provide a
meaningful physical interpretation for them – at least for the lower orders! – and exploit them
to study the point process, as we have just seen with the variance in (3.8). Second, the central
moments can be easily written through the non factorial moment measures – again, we have
just illutrated this point with the variance in (3.8).

Our next task, then, it to find a convenient way to produce the kth order moment measure µ
(k)
Φ

of a point process Φ. We have already seen in Chap. 2 that the 1th order moment density µΦ can
be retrieved in any x ∈ X with one functional differentation in (2.43); in fact, all the derivation
rules presented for densities in Chap. 2 extend naturally to measures when indicator functions
are substituted to Dirac delta functions, i.e.

1

k!
δkGΦ(h; 1B1

, . . . , 1Bk)
∣∣
h=0

= P
(k)
Φ (B1 × · · · ×Bk)

(
=
J

(k)
Φ (B1 × · · · ×Bk)

k!

)
,

δGΦ(h; 1B)|h=1 = µΦ(B).

(3.11)

The question is, can we differentiate k times the p.g.fl. GΦ to produce the kth order moment

measures µ
(k)
Φ ? Unfortunately for us, as suggested by the similar result for integer-valued random

variables in (1.31), this operation yields the factorial moment measure α
(k)
Φ , i.e.

δkGΦ(h; 1B1
, . . . , 1Bk)

∣∣
h=1

= α
(k)
Φ (B1 × . . .×Bk). (3.12)

Can we, then, find a simple expression of the non factorial moment measures exploiting the
factorial ones? Let us have a look at the case k = 2. Starting from the definition (3.6) we can
write:

µ
(2)
Φ (B1 ×B2) = E [NΦ(B1)NΦ(B2)] (3.13a)

= E

 ∑
x1,x2∈Φ

1B1
(x1)1B2

(x2)

 (3.13b)

= E

 ∑6=

x1,x2∈Φ

1B1
(x1)1B2

(x2)


︸ ︷︷ ︸

=α
(2)
Φ (B1×B2)

+E

[∑
x∈Φ

1B1
(x)1B2

(x)

]
︸ ︷︷ ︸

=µΦ(B1∩B2)

(3.13c)
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That is, the 2nd order moment measure µ
(2)
Φ can be retrieved from the 2nd order factorial moment

measure α
(2)
Φ and the intensity µΦ. Since α

(2)
Φ can be computed with a second-order derivative

of the p.g.fl. with (3.12), µ
(2)
Φ can be expressed as a combination of differentiated p.g.fl.s. While

a relation between factorial and non factorial moments such as (3.13c) exists for higher orders,
it becomes increasingly complicated and tedious to write in order to produce the expression of
non factorial moment measures of increasing order.

So why can’t we write µ
(2)
Φ (B1 ×B2) directly as the derivative of a single p.g.fl.? Since we need

to consider the occurrence of a single point of the point process falling in the intersection of the
two regions, the quantity

1B1(x)1B2(x), (3.14)

among others, must appear somewhere during the derivation process. Let us differentiate twice
the p.g.fl. in the directions 1B1

and 1B2
and see what we get. Recall from the previous chapter

in (2.10) that the p.g.fl. of a process Φ is given by

GΦ(h) =
∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
P

(n)
Φ (d(x1, . . . , xn)). (3.15)

Thus, the differentiated p.g.fl. reads

δ2GΦ(h; 1B1
, 1B2

)
∣∣
h=1

= δ2

∑
n≥0

∫
Xn

(
n∏
i=1

h(xi)

)
P

(n)
Φ (d(x1, . . . , xn)); 1B1

, 1B2

∣∣∣∣∣∣
h=1

. (3.16a)

=
∑
n≥0

∫
Xn

δ2

(
n∏
i=1

h(xi); 1B1
, 1B2

)∣∣∣∣∣
h=1

P
(n)
Φ (d(x1, . . . , xn)). (3.16b)

Let us expand a derivation term in (3.16b), say n = 3. If we differentiate h(x1)h(x2)h(x3) once
in the direction 1B1 using the product rule (2.19) we get:

δ(h(x1)h(x2)h(x3); 1B1)

= δ(h(x1); 1B1)h(x2)h(x3) + h(x1)δ(h(x2); 1B1)h(x3) + h(x1)h(x2)δ(h(x3); 1B1) (3.17a)

= 1B1(x1)h(x2)h(x3) + h(x1)1B1(x2)h(x3) + h(x1)h(x2)1B1(x3) (3.17b)

We see in (3.17b) that h is not “available” at a given point xi once it has been differentiated –
for example, the first term does not contain h(x1) anymore. If we differentiate a second time in
the direction 1B2

, then set h = 1, we get:

δ2(h(x1)h(x2)h(x3); 1B1
, 1B2

)
∣∣
h=1

= 1B1
(x1)1B2

(x2) + 1B1
(x1)1B2

(x3) + 1B2
(x1)1B1

(x2)

+ 1B1
(x2)1B2

(x3) + 1B2
(x1)1B1

(x3) + 1B2
(x2)1B1

(x3) (3.18)

Because the test function h “disappeared” in the simple derivation terms such as δ(h(x1); 1B1
),

the desired products such as 1B1
(x1)1B2

(x1) do not appear in (3.18): in other words, the p.g.fl.
is not adapted to the production of non factorial moment measures.
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Let us consider the transformation h→ e−f and consider f as the new test function. Using the
property (2.36), one can show that

δ(e−f(x1); 1B1
) = −1B1

(x1)e−f(x1). (3.19)

This result is left as an exercise in Ex. 4.3.1.

Remark 6. The result above may look familiar to the reader; indeed, if we consider functions
rather than functional, we have the well-known result(

e−f(x1)
)′

= −f ′(x1)e−f(x1). (3.20)

This time, the test function f did not disappear in the derivation process (3.19); differentiating
a second time in direction 1B2 yields

δ2(e−f(x1); 1B1
, 1B2

) = −1B1
(x1)δ(e−f(x1); 1B2

) (3.21a)

= 1B1(x1)1B2(x1)e−f(x1), (3.21b)

and the desired product 1B1(x1)1B2(x1) do appear.

The transformation h→ e−f is a promising lead to solve our problem at hand; if we apply it to
the p.g.fl., we obtain the Laplace functional

LΦ(f) = GΦ(e−f ) (3.22a)

= E

[∏
x∈Φ

e−f(x)

]
(3.22b)

=

∫
X

(∏
x∈ϕ

e−f(x)

)
PΦ(dϕ) (3.22c)

=
∑
n≥0

∫
Xn

(
n∏
i=1

e−f(xi)

)
P

(n)
Φ (d(x1, . . . , xn)). (3.22d)

As the developments above suggest, the Laplace functional is well-adapted to the production of
non factorial moment measures; one can show that

(−1)k δkLΦ(f ; 1B1 , . . . , 1Bk)
∣∣
f=0

= µ
(k)
Φ (B1 × . . .×Bk). (3.23)

In particular, the quantity µ
(2)
Φ (B × B) in the expression of the variance (3.8) is given by the

second-order derivative δ2LΦ(f ; 1B , 1B)
∣∣
f=0

.

We now have all the tools to produce the various statistical quantities of a point process, repeated
here: 

P
(k)
Φ (B1 × · · · ×Bk) =

1

k!
δkGΦ(h; 1B1

, . . . , 1Bk)
∣∣
h=0

,

α
(k)
Φ (B1 × · · · ×Bk) = δkGΦ(h; 1B1 , . . . , 1Bk)

∣∣
h=1

,

µ
(k)
Φ (B1 × · · · ×Bk) = (−1)k δkLΦ(f ; 1B1

, . . . , 1Bk)
∣∣
f=0

.

(3.24)
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We know from the definition of the moment measures in Sec. 3.3, that the intensity measure µΦ

is the 1st order non factorial moment measure µ
(1)
Φ by definition, but it also equals the 1st order

factorial moment measure α
(1)
Φ by construction. From the result above, it follows that we should

find be able to find the intensity measure µΦ from the 1st order derivative of either the p.g.fl. or
the Laplace functional; this is left as exercise in Ex. 4.3.2.

3.5 Example: Poisson process and regional statistics

We have seen in Chap. 2 that Poisson point processes are very important in the modelling
and derivation of multi-object filters, because their p.g.fl. has a very simple structure that is
particularily easy to differentiate (see Section 2.6.2). Let us recall the definition (2.59) of a
Poisson point process with rate λΦ ≥ 0 and spatial distribution sΦ:∀n ≥ 0, |Φ| = n with probability e−λΦ

λnΦ
n!
,

The object states are i.i.d. according to sΦ.
(3.25)

We have also established in (2.61g) that µΦ(x) = λΦsΦ(x); as all the results expressed with
densities in Chap. 2 it extends to the corresponding measures, i.e.

µΦ(B) = λΦsΦ(B), (3.26)

for any suitable region B ⊆ X. Likewise, the p.g.fl. of Φ that we obtained for densities in (2.63)
becomes

GΦ(h) = exp

[∫
(h(x)− 1)µΦ(dx)

]
. (3.27)

As seen in (3.25), a key element in the construction of a Poisson point process is to assume
that the cardinality distribution of the process is itself distributed according to a scalar Poisson
distribution, i.e.

ρΦ(n) = e−λΦ
λnΦ
n!
. (3.28)

As you may know, the variance of a Poisson variable equals its mean (left as exercise in Ex. 4.1.2).
It suggests that a Poisson random variable is “flexible” and allows a great variability along its
mean – the greater the estimated mean is, though, the greater is the uncertainty associated to
the estimation.

Assume that the information we maintain about the population of targets in the scene is de-
scribed by a Poisson point process Φ. Since the size of the population is described by a Poisson
distribution (3.28), we conclude that the estimated target number in the whole surveillance
scene has a mean µΦ(X) equal to its variance varΦ(X). We may wonder, however, whether this
property holds locally, i.e., whether

µΦ(B) = varΦ(B), (3.29)

for any suitable region B ⊆ X. The fact that the targets’ states are i.i.d. suggests that the
property (3.29) might be true, and we shall now proceed to compute the regional statistics
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(µΦ(B), varΦ(B)) in order to check if it is the case.

Since our goal is to find the expression of the variance varΦ, following the definition (1.5) we

need to find the expression of the 2nd order moment measure µ
(2)
Φ first, and we have just seen

(Section 3.4) that we can compute this quantity from the Laplace functional LΦ of the point
process. From the general expression of the Laplace functional (3.22) and the p.g.fl. of a Poisson
point process (3.27) we get

LΦ(f) = exp

[∫
(e−f(x) − 1)µΦ(dx)

]
. (3.30)

Let us fix some suitable region B ⊆ X. Using the relation between moment measures and
derivatives of the Laplace functional (3.23) we can write:

µ
(2)
Φ (B ×B) = δ2LΦ(f ; 1B , 1B)

∣∣
f=0

(3.31a)

= δ2

(
exp

[∫
(e−f(x) − 1)µΦ(dx)

]
; 1B , 1B

)∣∣∣∣
f=0

(3.31b)

= δ2 (exp ◦F ) (f ; 1B , 1B)
∣∣
f=0

, (3.31c)

where the inner functional F is defined as F (f) =
∫

(e−f(x)−1)µΦ(dx). The derivation in (3.31c)
can be easily expanded with Faà di Bruno’s formula (2.21), and it yields

µ
(2)
Φ (B ×B) = δ2 exp(F (f); δF (f ; 1B), δF (f ; 1B))

∣∣
f=0

+ δ exp(F (f); δ2F (f ; 1B , 1B))
∣∣
f=0

.

(3.31d)

Let us have a look at the increment δF (f ; 1B) in (3.31d). We can write

δF (f ; 1B) = δ

(∫
(e−f(x) − 1)µΦ(dx); 1B

)
(3.32a)

=

∫
δ(e−f(x) − 1; 1B)µΦ(dx) (3.32b)

=

∫
δ(e−f(x); 1B)µΦ(dx) (3.32c)

Then, using the previously established rule (3.19):

δF (f ; 1B) =

∫
(−1B(x))e−f(x)µΦ(dx). (3.33)

As expected, the test function f has not “disappeared” and thus δF (f ; 1B) can be differentiated
another time without vanishing. Following the same reasoning that led to (3.33), we can write
the expression of the second-order derivative of the inner function F :

δ2F (f ; 1B , 1B) =

∫
(−1B(x))2e−f(x)µΦ(dx) (3.34a)

=

∫
1B(x)e−f(x)µΦ(dx). (3.34b)
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Now that the increments δF (f ; 1B) and δ2F (f ; 1B , 1B) are known, let us resolve the outer
differentiation in (3.31d). At this stage, the expression (3.31d) looks rather involved; however, the
only derivatives left involve exponentials differentiated in the directions δF (f ; 1B), δ2F (f ; 1B , 1B)
which are real-valued numbers, and evaluated at the real-valued number F (f). Resolving this
type of differentiation is particularly easy, as we have seen in Chap. 2; using (2.35), the expression
(3.31d) then becomes

µ
(2)
Φ (B ×B) = (δF (f ; 1B))

2
exp(F (f))

∣∣∣
f=0

+ δ2F (f ; 1B , 1B)) exp(F (f))
∣∣
f=0

. (3.35)

We can then substitute in (3.35) the values of the increments which have been determined in
(3.33) and (3.34b):

µ
(2)
Φ (B ×B)

=

(∫
(−1B(x))e−f(x)µΦ(dx)

)2
∣∣∣∣∣
f=0

exp(F (f))|f=0 +

(∫
1B(x)e−f(x)µΦ(dx)

)∣∣∣∣
f=0

exp(F (f))|f=0

(3.36a)

= (−µΦ(B))
2 × 1 + (µΦ(B))× 1 (3.36b)

= (µΦ(B))
2

+ µΦ(B). (3.36c)

Now that the second moment measure has been determined in (3.36c), we can produce the
variance varΦ of the Poisson process Φ from the definition (1.5):

varΦ(B) = µ
(2)
Φ (B ×B)− (µΦ(B))

2
(3.37a)

= (µΦ(B))
2

+ µΦ(B)− (µΦ(B))
2

(3.37b)

= µΦ(B). (3.37c)

We have thus proved that property (3.29) holds: the mean and the variance in the number of
targets in any suitable region B ⊆ X of the state space are always equal when the population
of targets is estimated with a Poisson point process. This result, of course, does not hold in the
general case!

An interesting consequence to (3.37c) is that the variance of a Poisson process in any region B
is bounded by the mean target number in the state space since

varΦ(B) = µΦ(B) ≤ µΦ(X). (3.38)

This means that the local behaviour of a Poisson process with “reasonable global average be-
haviour” – i.e. with a finite mean target number in the whole state space µΦ(X) – can be
estimated in any region B with “some accuracy” since the variance of the target number in B
is finite as well according to (3.38). We will see in an exercise 4.3.5 that this is not necessarily
true for other point processes.



Chapter 4

Exercises

4.1 Integer-valued random variables

4.1.1 Chain rule for ordinary differentiation

Prove the chain rule when the outer function is the exponential (1.24), i.e.

(exp ◦f)′(x) = f ′(x)(exp ◦f)(x). (4.1)

(Hint) Use the Taylor expansion of the exponential (1.25) and the power rule (1.21).

4.1.2 Poisson random variable

Assume X is a Poisson random variable with parameter λX , i.e.

pX(n) = exp(−λX)
λnX
n!
. (4.2)

Prove that its variance varX equals its mean µX .

(Hint) Use the differentiation rule (1.31) to extract the factorial moment α
(2)
X from the p.g.f.

GX , then use the definitions (1.3), (1.4) to find the expression of the non factorial moment µ
(2)
X

w.r.t. to α
(2)
X and µX . Conclude using the definition of the variance (1.5).

Remark 7. Alternatively, cecause a Poisson random variable has a simple structure, the non

factorial moment µ
(2)
X can be computed directly from its definition (1.3).

61
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4.2 Point processes

4.2.1 Functional differentiation of linear functionals

A linear functional is a functional L such that for any functions f , g, and for any scalars α, β:

L(αf + βg) = αL(f) + βL(g). (4.3)

Let L be a continuous linear functional. Prove that, for any functional F , any test function h
and any admissible direction η:

δ(L ◦ F )(h; η) = L(δF (h; η)). (4.4)

(Hint) Use the definition of the chain differential (2.16).

This result tells us, loosely speaking, that we can “swap” a linear continuous functional and
a derivative. It is very useful for practical derivations, and we sometimes apply the rule on
expressions where the linear continuous functional does not appear explicity. The most common
example is perhaps the rule (2.33) allowing us to swap the integral and derivative, which is a
particular case of the rule (4.4) above.

4.2.2 Functional differentiation of exponential

Prove the chain rule when the outer function is the exponential (2.36), i.e.

δ(exp ◦F )(h; η) = δF (h; η)(exp ◦F )(h). (4.5)

(Hint) Use the chain rule (2.20), then write the outer differentation using the definition of the
chain differential (2.16). Use the Taylor expansion of the exponential (1.25) to conclude.

4.3 Higher-order moments for point processes

4.3.1 Functional differentiation of exponential (cont.)

Let f be some suitable function on X, and B some suitable region of X, and x some point of X.
Prove the equality (3.19), i.e.

δ (exp(−f(x)); 1B) = −1B(x) exp(−f(x)). (4.6)

(Hint) Find the“cumbersome” expression of the left-hand side, i.e., find the functional F such
that δ(exp(−f(x)); 1B) = δ(exp ◦F )(f ; 1B). Then, use the result (2.36) (repeated in (4.5) in
Ex. 4.2.2) to resolve the composition. Use the definition of the chain differential (2.16) on
δF (f ; 1B) to conclude.
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4.3.2 p.g.fl. and Laplace functional

Let Φ be a point process with p.g.fl. GΦ and Laplace functional LΦ. Prove that:

δGΦ(h; 1B)|h=1 = − δLΦ(f ; 1B)|f=0 , (4.7)

for any suitable region B ⊆ X.

What can we conclude on the first moment µ
(1)
Φ and first factorial moment α

(1)
Φ of Φ?

4.3.3 Variance and additivity

Let B1, B2 ⊆ X be two suitable regions of the state space such that B1 ∩ B2 = ∅. Let Φ be a
point process whose target number is decribed by the cardinality distribution

ρΦ(n) =

{
1, n = 1,

0, otherwise,
(4.8)

and whose targets’ states are i.i.d. according to some spatial distribution sΦ such that sΦ(B1) =
sΦ(B2) = 1

2 . The point process Φ describes a very simple situation where the number of target
is the scene is 1 with certainty, and this target is within B1 or B2 with equal probability.

a) Prove that µΦ(B1) = µΦ(B2) = 1
2 , and µΦ(B1 ∪B2) = 1.

b) Prove that varΦ(B1) = varΦ(B2) = 1
4 , and varΦ(B1 ∪B2) = 0.

Since, according to Φ, there is one and only one target in the scene, and it is either in B1 or B2,
the results above make sense. There is uncertainty whether the target is in B1 or B2, and thus
both varΦ(B1) and varΦ(B2) are non-zero. However the target is in B1 ∪B2 with certainty, and
thus µΦ(B1 ∪B2) = 1 and varΦ(B1 ∪B2) = 0.

This simple example, however, show that the variance is not additive, since varΦ(B1 ∪ B2) ≤
varΦ(B1) and yet B1 ⊂ B1 ∪ B2. Therefore, the variance is not a measure, and does not admit
a density.

4.3.4 PHD filter and variance

We have seen in Chap. 2 that the intensity measure of the updated process Φ|Ξ, propagated by
the PHD filter, is given by (see (2.87)):

µΦ|Ξ(B|Z) =

∫
B

(1− pd(x))µΦ(dx) +
∑
z∈Z

∫
B
pd(x)`(z|x)µΦ(dx)∫

X
pd(y)`(z|y)µΦ(dy) + µclutter(z)

. (4.9)
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Show that the variance of the updated process is given by

varΦ|Ξ(B|Z) =

∫
B

(1− pd(x))µΦ(dx)

+
∑
z∈Z

∫
B
pd(x)`(z|x)µΦ(dx)∫

X
pd(y)`(z|y)µΦ(dy) + µclutter(z)

(
1−

∫
B
pd(x)`(z|x)µΦ(dx)∫

X
pd(y)`(z|y)µΦ(dy) + µclutter(z)

)
. (4.10)

We know that the predicted process Φ is assumed Poisson in the case of the PHD filter, and thus
µΦ(B) = varΦ(B). What does the comparaison of (4.9) and (4.10) tell us about the updated
process Φ|Ξ?

4.3.5 i.i.d. cluster processes

A i.i.d. (cluster) process Φ is a generalization of a Poisson process which plays an important
role in the construction of the CPHD filter [12], characterized by a spatial distribution sΦ and a
cardinality distribution ρΦ. It is defined as follows:{

∀n ≥ 0, |Φ| = n with probability ρΦ(n)

The object states are i.i.d. according to sΦ.
(4.11)

Just as for the Poisson point process, the spatial distribution is the normalized intensity measure

sΦ(·) = µΦ(·)
µΦ(X) . Also, it holds that

∑
n≥0 nρΦ(n) = µΦ(X).

Let Φ be a i.i.d. process, with intensity measure µΦ and cardinality distribution ρΦ.

a) Find the expression of the p.g.fl. of the point process.
(Hint) You should find

GΦ(h) =
∑
n≥0

ρΦ(n)

(∫
h(x)µΦ(dx)

µΦ(X)

)n
. (4.12)

b) In the special case where the cardinality distribution is a Poisson random variable with rate
λΦ = µΦ(X), prove that Φ is a Poisson process.

(Hint) Show that if ρΦ(n) = exp(−λΦ) (λΦ)n

n! , then the p.g.fl. (4.12) reduces to the p.g.fl. of a
Poisson process (2.60).

c) Show that the variance of Φ in any suitable region B ⊆ X is equal to

varΦ(B) = µΦ(B) + (µΦ(B))
2

∑n≥2 n(n− 1)ρΦ(n)[∑
n≥1 nρΦ(n)

]2 − 1

 . (4.13)
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What happens if the cardinality distribution is Poisson?

d) (Advanced) i.i.d. cluster processes have a less intuitive behaviour than Poisson processes and
can yield surprising results. Prove that, for any mean target number 0 < µ < ∞, any constant
0 < C <∞, there exists a i.i.d. point process ΦC such that:

•
∫
µΦC (dx) = µ;

• ∀B ∈ B(X), B 6= ∅, varΦC (B) > µΦC (B) + C[λ(B)]2;

where λ is the dimensionless Lebesgue measure on X.

(Hint) Produce a sequence of i.i.d. point processes {Φm}m≥0 such that:

• ∀m ∈ N,
∫
µΦm(dx) = µ;

• ∀B ∈ B(X), limm→∞
varΦm (B)−µΦm (B)

λ(B)2 =∞.

That is, contrary to a Poisson process (see Section 3.5), one can always find a i.i.d. process
Φ with a “reasonable average behaviour” – i.e. a finite global mean target number µΦ(X) – and
yet an arbitrary high variance in any non-empty region B – the information on the local target
number in B is “completely unreliable”.
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