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Reporting to Sponsors in Year IV 

The fourth year of the operation of the LSSCN consortium as part of UDRC II has been very 

successful.  Our progress is recorded jointly in the 11th progress report which was provided 

to Dstl and EPSRC in September 2016 and this fourth-year annual report which is again 

delivered ahead of the 31st March 2017 deadline. 

Earlier in March 2017 we were also required by the EPSRC to update Researchfish with our 

outputs for the last year.  We are pleased to report that it is now populated with 131 published 

outputs for the first four years of UDRC II, composed of some 40 journal articles, 85 

conference works, 1 book chapter and 5 PhD theses completed by UDRC graduates.  It is 

particularly noteworthy that the world-class training provided to these UDRC PhD graduates 

has resulted in them progressing to new academic and industrial career positions both in the 

UK and internationally.  

In terms of academic staff and research assistants the consortium has been essentially stable 

over the last year.  However, Dr Miao Yu (L_WP2) has recently accepted a permanent 

lectureship in Machine Learning at the University of Lincoln, and so we are in the process of 

recruiting a replacement for the final year of UDRC II.  We wish Miao every success in this 

new role and thank him for his major contributions over the last four years. 

The LSSCN consortium has continued to contribute to all activities forming UDRC II, 

including the annual SSPD conference and vacation school, together with knowledge transfer 

and themed days, and challenges.  Moreover, building upon the success of the new PEVD 

MATLAB toolbox for polynomial matrix eigenvalue decompositions generated from within 

our consortium, we are indebted to Professor John McWhirter FRS and Dr Stephan Weiss for 

running a unique workshop on Polynomial Matrix Decompositions and their Applications at 

The Royal Society, Kavli International Research Centre, Chicheley Hall, 25th-26th August 

2016 which benefitted both academic and industrial delegates.  We have also played a major 

part in running the 11th IMA Mathematics in Signal Processing Conference at the IET Austin 

Court, Birmingham, 12th-14th December 2016, in order that a wider community benefits 

from the progress in UDRC II. 

Our consortium also continues to enjoy excellent support from our industrial partners 

including Atlas Elektronik, Leonardo, Mathworks, QinetiQ, and Thales, and we wish to thank 

them all for their outstanding commitment to ensuring the success of our consortium.  We 

also welcome Kaon Ltd who have also formally joined the LSSCN consortium in 2016.   

We remain very grateful to the Dstl team for their help; of particular value this year has been 

in working with researchers on L_WP1 to provide access to the WASABI and related 

datasets, and guidance in network anomaly and surveillance tasks.  The generosity of the 

national and international independent experts within the consortium has also been invaluable. 

In conclusion, we are very much looking forward to the fifth and final year of our operation, 

and pushing further for the exploitation of our findings, thereby benefiting the technical 

advantage of our armed services and the security of the UK. 



4 
 

Technical Highlights for Year IV 

Full details can be found in ensuing workpackage reports: 

 L_WP1 (Anomaly Detection) 1) anomaly detection in ship behaviour using a 

displacement model based on Gaussian processes; 2) cyber port scanning attack 

detection based on exploiting contextual information in the form of a pattern of life 

model; 3)  human activity recognition using a novel temporal hierarchy model to 

represent complex activities in video. 

 

 L_WP2 (Handling Uncertainty and Domain Knowledge) 1) ballistic missile 

tracking with a generalized state-dependent interactive multiple model based particle 

filter; 2) chemical, biological and radiological (CBR) dispersion source estimation 

using a new information theoretic search strategy "Entrotaxis", exploiting maximum 

entropy sampling principles; 3) multistatic radar resource allocation based upon a 

Bayesian Game Theoretic approach; 4) robust waveform design for multistatic 

cognitive radars.  

 

 L_WP3 (Source Separation and Broadband Beamforming) 1) a novel proof to better 

understand the second order sequential best rotation algorithm for diagonalising Para-

Hermitian polynomial matrices; 2) minimising the sensors in hydrophone arrays through 

compressed sensing; 3) overcoming sensor failures in hydrophone arrays through 

sparsity promoting optimisation; 4) acoustic reflector localisation and it exploitation 

in acoustic source separation. 
 

 L_WP4 (MIMO and Distributed Sensing) 1) ambiguity function for MIMO radar 

systems; 2) prototype and experimental evaluation of a fractional Fourier based 

waveform for a joint radar-communication system and comparison with OFDM; 3) a 

new space debris detection and monitoring system based on a bistatic passive radar 

deployed on a CubeSAT flying in low earth orbit; 4) GUAPO - GNSS based UAV 

monitoring system using passive radar observations. 

  

 L_WP5 (Efficient Implementation) 1) improved computational performance and 

algorithm speed-up of the PEVD algorithms; 2) multiple shift algorithms for 

polynomial matrices such as a multiple-shift QR decomposition for polynomial 

matrices; 3) exploiting parallelisation through partitioning of covariance matrices to 

handle BIG PEVDs such as in towed sonar array applications; 4) linking with L_WP1 

to provide an FPGA implementation of an evolving GMM for image segmentation. 

 

 Premier journal outputs for example in IEEE Trans. Aerospace and Electronic 

Systems, Multimedia and Signal Processing continue to be generated and 

presentations are being delivered at leading international conferences such as ICASSP 

and Radar 2017. 
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Vision Statement for Consortium  

The future battlespace will be a complex environment characterised by known and unknown 

threats, modern and legacy sensor systems, a congested RF spectrum, and mobile and static 

forces.  Information is key in warfare but future conflicts are likely be characterised by an 

increased level of complexity in intelligence gathering and analysis. Unless such complexity 

can be overcome, the effectiveness of critical decision making and operational actions will be 

reduced. 

Legacy, current and future sensor systems will provide ever more data for subsequent 

analysis hence advances in technology will be essential to ensure that they can be optimally 

exploited. The outputs of sensors of different modalities, capabilities and locations within 

the battlespace will need to be combined in multiple ways so that such optimal exploitation 

can be ensured in a wide variety of operations at all levels of conflict. However, at the same 

time, the electronic environments in which such conflicts will take place are likely to 

pose greater problems as the availability of bandwidth becomes ever more restricted. 

On the basis of a unique consortium of academic experts from Loughborough, Surrey, 

Strathclyde, Cardiff and Newcastle Universities, we will provide transformational new signal 

processing solutions which exploit multi-sensor and multimodal data, whilst retaining 

bandwidth and computational efficiency, to maximize the UK’s defence capabilities and its 

broader academic and industrial skill-base in signal and data processing.  In particular, we 

believe that networked-enabled distributed sensing might provide new capabilities such as 

combating stealth. However this potentially increases the complexity of the processing task. 

This might be mitigated by new signal-separation/beamforming algorithms possibly utilising 

sparsity concepts. Control of distributed sensors could be costly in terms of network traffic so 

systems that are able to interact without central control would be preferable. Networking also 

allows for new types of data to be available such as GIS data in a tracking problem. This 

could be used to enhance sensor processing but requires a new approach to handling 

uncertainly.  Increased information implies the need for something like anomaly detection in 

order to reduce operator work load.  Finally, in order to protect this new networked-enhanced 

sensing paradigm, aspects of cyber-security will be important. 
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Sub-Tasks and Main Research Staff for each Work Package 

 

WPs, PDRAs & PSs Sub-Tasks 

WP1 Anomaly Detection 
NU-PDRA1*, 

SU-PDRA4,              

CU-PDRA8,  

LU-PS1, 

                        

1.1-1 Baseline system (and adaptation to any new datasets, e.g. the Wasabi 

dataset); 1.2-1 Contextual model inference (and adaptation to any new 

datasets, e.g. the Wasabi dataset) 

1.1-2 Radar SAM mode change detection (and Ballistic missile detection); 

1.2-2 Data quality modelling 

1.1-3 Discriminative anomaly detection; 1.2-3 Incongruence detection 

1.1-4 Fusion of multiple anomaly detectors; 1.2-4 System integration 

1.1-5 Adv. anomaly detect. sys. design; 1.2-5 Comp. netwk. anomaly 

detect. 

WP2 Handling Uncertainty 

LU-PDRA2,  

LU-PDRA3,  

LU-PS2 

2.1-1 World modelling; 2.2-1 Convex optimization and robust SP 

2.1-2 Pooling data sources; 2.2-2 Radar and sensor applications 

2.1-3 New adaptive algorithms; 2.2-3 Dynamic modelling of 

uncertainty 

2.1-4 Bayesian inference; 2.2-4 Game theory; 

2.1-5 Multiple sensor platforms; 2.2-5 Bayesian games 

WP3 Signal Sep. & BF 

SU-PDRA5,  

CU-PS7, 

NU-PS3, 

SU-PS4, 

SU-PS5, 

3.1-1 Multichan. SS with PEVD; 3.2-1 Sparse recovery and comp. 

sensing 

3.1-2 Low-rank approx. IC in BF; 3.2-2 Adaptive dictionary learning 

& SS 

3.1-3 PM-SVD & Sparse PEVD; 3.2-3 Noise robust T-F masking 

3.1-4 Semi-blind SS & domain know.; 3.2-4 Variational Bayesian 

modelling 

3.1-5 Complex applications and evaluations; 3.2-5 Multimodal signals 

WP4 MIMO & 

Distributed Sensing 

ST-PDRA6,  

ST-PS6,  

ST-PS7, 

ST-PS8 

4.1-1 Waveform design for DMRS; 4.2-1 Ballistic missile 

classification; 

4.1-2 Sparsity in DMRS; 4.2-2 DMRS based clutter mitigation;  

4.1-3 Pruned OMP; 4.2-3 Information fusion in DMRS;  

4.1-4 Complexity reduction; 4.2-4 Advanced ATR for DMRS  

4.1-5 Passive DMRS; 4.2-5 Decentralised processing for DMRS 

WP5 Efficient 

Implementation. 

ST-PDRA7 

5.1 Polynomial matrix decompositions;  

5.2 Computationally efficient realizations 

*  PDRA1 was based in Loughborough in the first three years, and then in Newcastle in the final 

two years. 
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Fourth-Year Gantt Chart (following the Jan 2017 CMT Meeting) 

This will be refined following the March 2017 CSG Meeting in Strathclyde. 

WPs Tasks Year 

1 2 3 4 5 

WP1 1.1-1; 1.2-1                     

1.1-2; 1.2-2                     

1.1-3; 1.2-3                     

1.1-4; 1.2-4                     

1.1-5; 1.2-5                     

WP2 2.1-1; 2.2-1                     

2.1-2; 2.2-2                     

2.1-3; 2.2-3                     

2.1-4; 2.2-4                     

2.1-5; 2.2-5                     

WP3 3.1-1; 3.2-1                      

3.1-2;3.2-2                     

3.1-3;3.2-3                     

3.1-4; 3.2-4                     

3.1-5; 3.2-5                     

WP4 4.1-1;4.2-1                     

4.1-2;4.2-2                     

4.1-3;4.2-3                     

4.1-4;4.2-4                     

4.1-5;4.2-5                     

WP5 5.1; 5.2                      
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L_WP1 (AD) Automated Statistical Anomaly Detection and Classification 

in High Dimensions for the Networked Battlespace  

1 Staffing 

Work Package Leaders: Prof. Josef Kittler (SU), Prof. Jonathon Chambers (NU) and Dr. 

Yulia Hicks (CU)  

Research Associates: Dr. Cemre Zor (SU), Dr.  Francisco Aparicio-Navarro (LU),  

Dr. Ioannis Kaloskampis (CU)  

Lead Project Partner: Mr. Angus Johnson (Thales)  

Other Project Partners: Mr. John Griffin and Mr. George Matich (Leonardo)  

Dstl contacts: Mr. Alasdair Hunter, Mr. Richard Green,  Dr. Stephen Barrington, Mr. 

Matthew Rixson, and Dr Jordi Barr 

2 Aims and Introduction  

Work Package 1 (L_WP1) is concerned with the development of algorithms for automatic 

detection of anomalies from multidimensional, under-sampled, non-complete datasets and 

unreliable sources. 

The aim is to advance the state of the art in anomaly detection by developing a methodology 

that is not only effective and computationally efficient, but also provides insight into the 

nature and statistical characteristics of the detected anomalies in complex high-dimensional 

network environments, which include interference, communications and video signals and 

cyber-attacks. 

3 Data 

Currently, we have access to the following data sets: 

 Portsmouth harbour ship monitoring data (Thales)  

 Tank and helicopter data (DSTL)  

 Wright-Patterson dataset (DSTL) 

 WASABI dataset  

 Video segmentation VSB100 benchmark  

 Breakfast dataset  

 Engineering activities dataset  

 Glucometer calibration dataset 

 IEEE 802.11 network traffic dataset (LU) 

 Netflow measurements from a virtual network testbed (LU) 

 LTE emulation measurements collected at Cobham/Aeroflex (Aeroflex, 2017) (LU) 

 Netflow measurements from a partly virtualised network (DSTL) 

 Ethernet traffic measurements from a real Local Area Network testbed (LU) 
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 4    Outline of the Research Approach  

We proposed a comprehensive methodology for anomaly detection, which builds on 

mechanisms that would enhance the efficiency of the detection, and allow various types of 

anomaly and their nuances to be identified and distinguished. The proposed mechanism 

includes sub-units responsible for data quality assessment, classifier outlier detection, 

classifier decision confidence assessment, model-drift detection and classifier incongruence 

detection in addition to the main operational system. In our case, the main operational system 

is a machine perception system interpreting input sensor data in a hierarchical manner by 

engaging non-contextual and contextual labelling processes. 

The methodological advances in anomaly detection offered by the proposed anomaly 

detection system architecture are expected to be validated on diverse applications. These 

applications include: 1) Detection of anomalous ship behaviour using information retrieved 

from Automated Identification System (AIS) to aid maritime traffic control, safety and 

surveillance in Portsmouth harbour. 2) Network anomaly detection with the aim to increase 

the efficiency of flagging network intrusion. 3) Anomaly detection in surveillance videos 

with the objective of developing an accurate, data-driven methodology which is 

computationally efficient and can incorporate domain knowledge. 

L_WP1 has two strands as given in Table 1. 

1.1-1 Baseline system 1.2.-1 Contextual model inference 

1.1-2 Radar SAM mode 1.2-2 Data quality modelling 

1.1-3 Discriminative AD 1.2-3 Incongruence detection 

1.1-4 Fusion of ADs 1.2-4 System integration 

1.1-5 Advanced AD system 1.2-5 Communications network AD 

Table 1 Two strands of L_WP1 

5 Overview of the Technical Progress in Years 1-3 

The advances on the baseline systems concerning anomaly detection applications and the 

contributions in terms of theoretical foundations, which took place in the first three years of 

the project, can be summarised as follows: 

 A novel anomaly detection system architecture has been proposed which includes 

several distinct mechanisms such as classifier incongruence detection, data quality 

assessment, classifier confidence gauging, model-drift detection to detect anomalous 

events and facilitates their characterisation.  

 

 As a part of the anomaly detection framework, three novel measures to be used in 

detecting incongruence, namely  ,  and  have been sequentially proposed. 

The comparisons of the proposed measures with some baseline methods are carried 

out, and the superiority of the delta divergence ( is experimentally demonstrated. 

Theoretical analyses including error sensitivity have also been performed and the 

results have led to guidelines on determining an appropriate threshold for 

incongruence detection. 
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 For maritime anomaly detection application, an initial methodology developed for 

detecting anomalies in ship behaviour exhibited in the main shipping lanes has been 

extended to cover other vessels including ferries. The initial technique is based on 

Gaussian Mixture Models (GMMs), whereas the extended methodology employs 

Markov chains based on spatial grids. Both methods utilize the sailing direction 

information. 

 

 For the network anomaly detection system, the focus was to develop methods to 

automatically generate labelled network traffic datasets. We developed a novel 

approach, based on the outcome of an anomaly-based Intrusion Detection System 

(IDS), to automatically label frames as malicious and non-malicious within the 

analysed network traffic datasets. Work was also undertaken to implement an 

automatic feature selection process for metric selection. A genetic algorithm based 

approach was developed to select the set of metrics that provide the best intrusion 

detection results, using the resulting labelled datasets. All these activities are in line 

with objectives of this project defined in the sub-task 1.2-2 Data Quality Modelling. 

 

 The effort during the second and third year concentrated on developing different 

approaches to incorporate contextual information, user’s cognitive information, and 

Situational Awareness (SA) into the intrusion detection process to increase the 

efficiency of the developed anomaly-based IDS. We proposed three approaches, 

based on the use of a Fuzzy Cognitive Map (FCM) in conjunction with our anomaly-

based IDS. The activities carried out during the second year tackled the objectives 

defined in the sub-task 1.2-1 Contextual Model Inference, contributed in the ongoing 

sub-task 1.1-3 Discriminative Anomaly Detection defining novel algorithms to 

effectively differentiate between malicious and non-malicious information in 

communication networks. 

 

 In the area of anomaly detection in surveillance videos, an accurate, data-driven and 

computationally efficient system was developed, which can handle heterogeneous 

spatio-temporal data and can incorporate domain knowledge to detect anomalies. The 

proposed system features: i) a low-level feature extraction component; ii) a mid-level 

feature representation component which organises the extracted features in an 

efficient manner, incorporating techniques such as dimensionality reduction, feature 

clustering (depending on the application, video segmentation, bag-of-words, or Fisher 

vectors may be used); iii) a situational assessment component which fuses low and 

mid-level feature representations from various sources and infers the current system 

state (ontologies and sequence formulation techniques may be utilised); iv) a high-

level inference model which encodes the temporal dependencies between different 

system states, characterises the event underlying the input data (event/activity 

recognition and anomaly detection) and predicts the future system states.       

 

 As part of the system’s mid-level feature representation component, a video 

segmentation algorithm has been developed. The algorithm can handle the research 

problems of spatial coherence in segmentation, high dimensionality and exploiting 

motion in video segmentation.  

 

 A situational assessment component based on ontologies to detect anomalous 

behaviour in videos of road scenes was proposed, where anomalies are related to the 
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degree of risk of collision. In this case, mid-level feature representations extracted 

with our video segmentation algorithm were used as input.  

 

 As part of the system’s high-level inference model, a new temporal model capable of 

recognising complex human behaviour has been developed and successfully tested 

with high dimensional low-level video features. 

 

 The system has been evaluated using standard, publicly available datasets. The 

developed algorithms have also been applied to several defence-related datasets, 

including video streams from UAVs (in collaboration with WP2 - Loughborough) and 

the tank dataset provided by DSTL. 

 

6 Technical Progress in Year 4 

6.1 Overview 

Within the fourth year of the project, the progress taken place for each sub-task annotated in 

Table 1 can be summarised as follows: 

a) 1.1-1 Baseline system  

Progress has been made on the anomaly detection systems used in communication 

networks, spatio-temporal video datasets and AIS maritime monitoring. 

For anomaly detection in maritime data, new features such as displacement over time 

have been taken into consideration in addition to the already utilized sailing direction 

information. The new features are modelled using Gaussian Processes (GPs) to form up 

the final decision mechanism together with the existing Markov chain classification 

information. GP regression is performed together with Median Absolute Deviation to 

account for contaminated training data. The proposed method is applicable to ferries, with 

a potential extension to generic vessel types. 

For anomaly detection in video, the novel framework for complex human activity 

recognition and anomaly detection in heterogeneous streams was finalised. The main 

component of the framework is the temporal hierarchy model (THIM), a formal 

mathematical model which represents complex activities. Highlights from the 

framework’s final development stage are: (i) an efficient parameter learning algorithm for 

THIM based on sampling from the Dirichlet distribution was proposed, (ii)  the 

framework can work with the state-of-the-art improved dense trajectory features and also 

STIP features, (iv) the state-of-the-art Fisher vector mid-level representation was 

integrated into the  framework, (v) the framework is suitable for work with large datasets 

(>1500 videos), where the localisation and recognition of primitive actions is hard and 

there is a large number of missing, unrecognised or incorrectly recognised actions. Due to 

these improvements, the framework currently achieves state-of-the-art performance in 

three publicly available datasets featuring complex human behaviour.  

The developed algorithms were applied to defence-related datasets, including the 

WASABI dataset (DSTL) and the Wright-Patterson Air Force Base 2009 (WPAFB09) 
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dataset. The preliminary results for WASABI were presented in the project meeting on 5 

October 2016, held in Newcastle. As there were trajectory registration issues in the 

WASABI dataset, which will be resolved by the DSTL scientists, the algorithms are 

currently being applied to the WPAFB09 dataset. 

b) 1.2-1 Contextual model inference 

Progress has been made at Newcastle in the context of anomaly detection in 

communication networks to improve the detection performance of our unsupervised 

anomaly-based IDS. We have used Fuzzy Cognitive Maps (FCMs) in conjunction with 

our IDS to add contextual information into the intrusion detection process. The work 

conducted during the fourth year extended the analysis of the methodology that we 

previously proposed last year for the use of FCMs to add contextual information into the 

intrusion detection process. In particular, we have implemented a novel scheme to 

construct the FCM using high-level information extracted from the network users, with a 

process that is completely transparent to them. We have made use of the Pattern-of-Life 

(PoL) of the network usage as the main source of contextual information.  

 

Secondly, as part of the collaboration between WP1-Cardiff and WP2-Surrey, a 

contextual classifier for human action and activity recognition was developed by Cardiff 

based on the Cardiff framework for anomaly detection in video and the HTK stream 

analysis system. The classifier is capable of outputting confidence scores for multiple 

classes both for action and activity recognition. This output will be further utilised by the 

components of the proposed anomaly detection system (i.e. contextual decision 

confidence assessment, contextual model outlier detector and incongruence detector). 

 

Recent advances in autonomous vehicle technology pose an important problem of 

anomaly detection in videos of road scenes. In our work anomalies are related to the risk 

of collision, which are detected using a novel framework based on ontologies developed 

in the third year of the project (Mohammad et al., 2015). In the fourth year, the 

framework was improved by integrating a novel algorithm for automatic road detection 

from video, building on the video segmentation algorithm developed previously 

(Kaloskampis & Hicks, ISCCSP 2014). The new algorithm is described in (Kaloskampis 

et al. 2016). 

c) 1.1-2 Radar SAM mode change detection (discontinued at the start of the project) 

 

 

 

d) 1.2-2 Data quality modelling 

Earlier work on data quality modelling was carried out at Loughborough in the context of 

anomaly detection in communication networks. During this reporting period the focus of 

the work at Surrey was on using signal quality measurements as a basis for detecting 

spoofing attacks on biometric security systems. The following table lists the image 

quality measures used as features for decision making using different classification 

methods, including sparse representation based classification. The security system attack 
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was formulated as an anomaly detection problem using quality measurements as features. 

The solution based on this formulation was then compared with conventional system 

attack approaches formulated as two or multiclass classification problems, relying on 

training data being available for each type of attack. The anomaly detection performance 

achieved using one class classifiers using the image quality features for outlier detection 

is promising. The study showed that signal quality can serve multiple purposes. In 

addition to identifying the situations where it may not be sensible to attempt to detect 

anomalies, image quality measurements may also be relevant as a source of 

discriminatory information for anomaly detection. This has implications on the anomaly 

detection framework investigated by the project. 

 
 

 

e) 1.1-3 Discriminative anomaly detection 

Progress has been made at Newcastle in the context of anomaly detection in 

communication networks to improve the detection performance of our IDS. We have 

developed and evaluated a novel scheme to construct the FCM using contextual 

information extracted from the PoL of the network usage. The results confirm that the use 

of the contextual information improves the effectiveness of the IDS, and indicate that by 

utilising only measureable information from the network without considering the 

available contextual information, the IDS may reach a wrong conclusion, leading to an 

overall low accuracy. We have used different modes of port scanning attacks to evaluate 

the approaches that we propose. This task will continue with the development of the 
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detection system throughout the project duration, as new functionalities are proposed and 

evaluated. 

As for the progress in Cardiff, anomaly detection is handled by the high-level inference 

THIM model. The proposed model possesses discriminative feature capabilities, as it 

discovers recurring actions in discrete time sequences representing activities.   

The framework’s discriminative capabilities were enhanced with the inclusion of the 

Fisher vectors, a mid-level representation which discovers underlying patterns within the 

extracted features. 

The properties of the combination of discriminative and generative classifiers for the 

bridge design dataset were investigated in (Kaloskampis & Hicks, 2016) and 

improvement of performance was demonstrated when these two types of classifiers were 

combined.   

f) 1.2-3 Incongruence detection 

Although this task is now considered completed, the work on incongruence detection 

continued via a collaborative activity carried out by a visitor to CVSSP, Surrey, Dr. 

Moacir Ponti from the University of Sao Paulo in Brazil and his student. We developed a 

variant of the Kullback-Leibler divergence, named Decision-Cognizant Kullback-Leibler 

(DC-KL). The proposed measure reduces the impact of the minority classes, which 

obscure the true degree of classifier incongruence. The amount of clutter of the non-

dominant hypotheses is reduced by merging them into a single event.  

The properties of DC-KL have been analytically and experimentally investigated and the 

measure has been demonstrated to be more robust to minority class clutter than the 

classical KL divergence. Moreover, its sensitivity to estimation noise is also shown to be 

considerably lower than that of the KL divergence.  

Concerning the application of incongruence detection within a generic domain anomaly 

detection framework, a collaboration between University of Surrey (SU) and Cardiff 

University (CU) has been set up. The aim is to use the surprise measures proposed by SU 

within the baseline video anomaly detection framework proposed by CU, where 

contextual and non-contextual classifiers are being used for the detection of activities and 

actions. This work is currently in progress on the breakfast dataset.  

g) 1.1-4 Fusion of multiple anomaly detectors 

 

In collaboration with a Brazilian visitor, Surrey worked on motion anomaly detection 

using the University of California San Diego Ped 2 dataset (video of pedestrians passing a 

pedestrian area). A novel representation of optical flow features based on empirical mode 

decomposition has been developed. This particular signal processing approach has the 

advantage that it is applicable to non-periodic, non-stationary signals, and does not 

assume linearity as do wavelets, PCA and Singular Spectrum Analysis. The 

representation achieved improved anomaly detection results. Currently this representation 
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is used in conjunction with other information (appearance) to develop an anomaly 

detection system exploiting incongruence detection and information fusion.  

 

h) 1.2-4 System Integration 

System integration activity takes place organically in connection with each of the 

anomaly detection applications described in the various workpackage tasks (ship 

behaviour anomaly, detection of anomalies in video, and detection of anomalies in 

communication networks). 

 

i) 1.1-5 Advanced anomaly detection system design 

The design of the advanced detection system is evolving in the context of anomaly 

detection in communication networks throughout the project duration. A single piece of 

software is being built as new functionalities are proposed and evaluated. All these 

functionalities have been implemented and incorporated into our unsupervised anomaly-

based IDS, initially at Loughborough University and now continues at Newcastle 

University. 

 

j) 1.2-5 Complex network anomaly detection 

During this fourth year, effort has been made to evaluate our anomaly-based IDS on 

networks comprising multiple and heterogeneous communication technologies. In 

particular, we have moved towards the detection of anomalies and attacks in wired 

Ethernet networks. On the one hand, we have gathered our own network traffic dataset 

comprising traces of different modes of port scanning attacks in an Ethernet Local Area 

Network (LAN) testbed. On the other hand, Dstl have shared with us a Netflow dataset, 

generated in a partly virtualised wired network. This dataset contains traces of different 

type of attacks, such as Denial-of-Service (DoS) attacks and scanning attacks. The 

efficiency of our IDS detecting attacks in wired environment complements to the efficient 

results that we previously obtained detecting attacks in wireless networks. This is an 

ongoing task. 

6.2 Technical Highlights 

 

In this section, technical highlights concerning the sub-tasks 1.1-1 Baseline system and 1.1-3 

Discriminative anomaly detection will be provided. 

 

6.2.1 Anomaly Detection in Ship Behaviour in Portsmouth Area (Sub-task 1.1-1) 

As part of Task 1.1-1, the anomaly detection framework previously developed for maritime 

AIS data provided by Thales has been improved further.  

In the first three years of the project, a methodology for detecting anomalies in the tracks 

recorded by transport vehicles and ferries was implemented by making use of approaches 

such as Gaussian Mixture Models (GMMs) and Markov chains based on hierarchical spatial 
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grids. The framework was built by utilizing the sailing direction as the main information 

source.  

In the fourth year, we have expanded the framework by exploiting more features such as time 

and displacement in addition to the direction information. The modelling capacity and 

flexibility of the framework has been enhanced by adopting Gaussian Processes (GPs) model. 

A novel feature of our GP approach is the use of a training data-cleaning system. As the 

unlabelled training data may be corrupted by anomalies, it is purified from any outliers by 

using Median Absolute Deviation (MAD) based on time grids, prior to GP modelling. 

The output of the GP based anomaly detection system is combined with the decisions of the 

previously implemented Markov chain based classifier, such that if any of the two classifiers 

considers a track as anomalous, it is confirmed as anomalous. Experimental results 

summarised in terms of Receiver Operating Curves, show that the method can successfully 

detect all anomalies with a False Positive Rate of 6%.  

 

Although the approach is extendable to generic ship types, in this report we concentrate on 

ferry track anomaly detection. 

 

Displacement Model Based on Gaussian Processes – Technical Details 

In order to define the characteristics of a track, we exploit the displacement of a ferry from its 

departure port, over the total time it takes for the trip. This way, it becomes possible to map 

the tracks into a unified form, where three critical features: time, displacement and therefore 

speed are taken into account jointly. 

 

The input data for anomalous ship movement detection is expected to be composed of 

location information reported in the form  for a given ship at any time, where  

denotes the longitude and   the latitude. Given that a ferry operates between the ports  

and  we initially carry out an automatic extraction of the so-called “one-way trips” between 

any combination of these ports. (Any trip where the ferry is coming back to the departure port 

without visiting the destination is considered to be anomalous, and such trips are left out from 

the training set.) 

 

Without loss of generality, we can define a ferry's displacement from the departure port O1 

for a given trip , as a function of the time it spent after the departure:   

 

    Equation 1 

where O
1

k
 and O

1

l
 are the latitude and longitude coordinates for O1 and  is the elapsed time. 

If the duration of the whole journey is given by tl, then the displacement over normalized 

time becomes  
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     Equation 2 

where 0≤s≤1. From Equation 2, it can be observed that for each value of s, fa(s) takes 

different values depending on a. This scenario can be interpreted as having a function f(s) 

whose value at each s is a random variable. 

Gaussian Process regression is a method for stochastically modelling the target value of a 

variable, by employing a function drawn from a probability distribution. Using s as the 

variable, the function f can then be denoted as  

     Equation 3 

where b ( )s  is the mean of the probability distribution at a given realization of s and  is 

the covariance function which represents the similarity between two different realizations, 

such that 

      Equation 4 

Equation 4 shows that the covariance between the outputs is given as a function of the inputs. 

The choice of the covariance matrix should be made according to the requirements of the 

system. In our approach, we use the squared exponential function. Under the assumption of 

having observations corrupted by independently and identically distributed Gaussian noise 

with zero mean and σ
2

c
 variance, the noisy target values can be denoted with variable ω such 

that ω=f(s)+ε. This corruption changes the covariance function into  

     Equation 5 

with δ being the Kronecker delta function which is one if and only if p=q.  

Let us denote the vector of means belonging to the distributions at each element of the 

training set, S, by B(S); and the matrix obtained after applying the covariance function to all 

pairs of elements within S as K(S,S). Accordingly, we denote the vector of covariances 

calculated between a single test point, s*, and S as  Then, given S, the distribution 

informing the prediction at s*, namely f(s*), can be gauged as a Gaussian distribution with 

the mean and variance  

      Equation 6 

     Equation 7 

where the vector of target values is denoted by Ω and I is the identity matrix. The parameters 

h, σ
2

f
 and σ

2

c
 are called the hyper-parameters and need to be estimated from the anomaly-free 

training data. As our training set may be contaminated by anomalies, its initial cleaning has to 
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be carried out before modelling normality, from which deviations will be classified as 

anomaly. 

The cleaning is applied using Median Absolute Deviation from Median (MAD). While 

dealing with sampled data which is prone to outliers, MAD allows to robustly estimate the 

standard deviation of the underlying distribution, i.e. it is more resilient to outliers compared 

to the standard deviation computed from the sampled population space. In our strategy, we 

discretize the input domain sε[0,1] into 200 cells, and apply MAD on the target values falling 

within each cell. MAD is calculated as the median of the absolute differences between the 

points and their median:  

 Equation 8 

where Ωe is the vector of target variables in a given cell, e, and c is the consistency constant 

that is equal to 1.4826 when the underlying distribution function is assumed to be Gaussian 

(as in our case). By setting a cut-off value, v, any corrupted data point, ω
c

e
, which satisfies 

 is removed from the training set. 

After the application of MAD followed by GP regression, the testing of anomaly for s* is 

carried out by setting a multiplier r for the desired confidence interval such that  

     Equation 9 

where g is the flag for anomaly, ω* is the target value for the test sample and r=2.57 for 99% 

confidence interval. An input trip a is labelled as anomalous if more than p% of its time 

stamps are detected as anomalous, where p is a suitable threshold. 

 

 

Experimental Results 

The experimental study has been conducted on the AIS dataset collected by Thales UK Ltd. 

at the Solent area between 20/07/2012 and 19/08/2012. For each ferry, the dataset is split into 

training and test at a rate of 1:6 respectively, via randomly choosing 4 days for training and 

24 for test, and this sampling procedure is repeated. 

Initially, we note that after the application of MAD cleaning by setting the confidence 

constant c=1.4826, 3.4% of the training data has been detected as anomalous/corrupted. 

By using the cleaned training dataset, we carry out an assessment of the tracks that are 

classified as anomalous together with those that are labelled normal by the proposed 

algorithm. As given in in Figure 1, for an example test set, the tracks labelled anomalous are 
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provided in dark shade (red) whereas the normal tracks are given in lighter colour (yellow). 

Using a 90% confidence interval during the GP regression, a threshold of r=0.0005 for the 

MC direction classifier, and an anomaly threshold of p =30 for both classifiers, we obtain a 

93% detection rate for anomalies, and 2% false positive rate (FPR). It is also possible to 

detect all anomalies with FPR=6%. The ROC curve using confidence intervals 

[1, 0.99, 0.95, 0.90, 0.85, 0.80, 0.75, 0.50] is given in Figure 2. 

 

 

Figure 1: Detected anomalies plotted on top of normalities (dark shade on light)  

  

 

 

Figure 2: ROC analysis for the proposed methodology 

 

 

 

6.2.2 Network Anomaly Detection (Sub-task 1.1-3) 

Contextual Information & Port Scanning Attack Detection 

The focus of the work during the fourth year was to continue developing and evaluating 

novel algorithms to efficiently differentiate between malicious and non-malicious 

information in communication networks. We have extended the analysis of the methodology 
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that we previously proposed in (Aparicio-Navarro, 2016) for the use of FCMs to add high-

level information into the intrusion detection process. This methodology builds upon the 

design of the unsupervised anomaly-based IDS that we previously presented in 

(Kyriakopoulos, 2014). The outcome of the FCM is used to fine-tune the techniques used by 

the anomaly-based IDS to assign evidence of attack at different stages of the detection 

process. 

We have implemented a novel scheme to construct the FCM using high-level information 

extracted from the network users, with a process that is completely transparent to them. We 

have made use of the PoL of the network usage as the main source of contextual information. 

The concept of PoL refers to the information generated by observing repeated behaviours 

over an extended period of time. In order to characterise the PoL of the network usage and to 

generate useful contextual information, we have correlated the number of researchers present 

in the monitored offices with the time of the day and the usage of the network resources. 

In order to allow the FCM to adapt to changes in the network usage, depending on the time of 

the day, different timeframes were defined, which define some of the concepts that compose 

the modelled FCM. Similarly, in order to characterise the usage of the network, a number of 

thresholds that define levels of normal usage of the network resources are defined. Since the 

network traffic would present variable levels of usage depending on the PoL (i.e. the cycles 

of the PoL), the defined thresholds allow the system to adapt to changes in the network usage. 

In turn, each of these thresholds also defines some of the concepts that compose the modelled 

FCM. Finally, two additional concepts are defined as the two possible outcomes of the FCM 

(i.e. Normal and Abnormal). The FCM weight values associated with the last two concepts 

are used to incorporate the contextual information into the detection process of our IDS. 

We have evaluated three different approaches that employ an FCM to incorporate the PoL of 

the network usage into the detection process. Figure 3 shows the schematic representation of 

the structure of the IDS, including the extraction of the different metrics, the automatic 

generation of the BPA values and the data fusion process. Additionally, the figure also 

indicates the different stages at which each of the proposed approaches adds the contribution 

of the FCM into the detection process. 
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Figure 3 Schematic structure of the IDS, including the extraction of the metrics, the 

generation of the BPAs, the data fusion process and the addition of contextual 

information into the detection process by using an FCM. 

 

a) BPA Adjustment Using the FCM Prior Data Fusion 

The first approach is based on the adjustment of the BPA values assigned prior to the data 

fusion process, by using the outcome of the FCM. This is represented by the red channel (a) 

in Figure 3. Once the BPA values have been computed as explained in (Kyriakopoulos, 

2014), the outcome of the FCM will be used to adjust these accordingly. Once the FCM 

process has ended, the outcome weights associated to FCM concepts Normal and Abnormal 

are used to adjust the BPA values assigned to the D-S hypotheses Normal and Abnormal. 

Then, the adjusted BPA values in Normal and Abnormal are used to compute the new BPA 

value in Uncertainty. After all the BPA values have been adjusted, the data fusion process is 

carried out using the Dempster’s rule and the final decision is taken. It is worth noting that, 

although the same weight values are used to adjust all of the considered metrics, it is unlikely 

for these metrics to have the same BPA value. Therefore, the adjustments would impact each 

of the metrics differently. 

b) Extra BPA Values Using the FCM 

The second approach, represented by the green channel (b) in Figure 3, is based on the use of 

the output of an FCM to construct an additional metric to be fused by D-S. The outcome 

weights associated to the FCM concepts Normal and Abnormal are used to provide the BPAs 

for the hypotheses Normal and Abnormal, respectively, to yield an extra metric to be fused. 

These values are then used to infer the BPA in the hypothesis Uncertainty. Once the three 

BPAs have been computed, these values are merged with D-S, along with the rest of the 

considered network traffic metrics, using the Dempster’s rule. It is worth noting that for this 

second approach, in contrast to the one that adjusts the BPAs prior to the fusion process, the 
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contextual information might have less influence over the final IDS decision, as its 

contribution is reduced to one set of BPAs to be fused. 

c) BPA Adjustment After Data Fusion Process 

The last approach, represented by the blue channel (c) in Figure 3, is based on the use of the 

outcome of the FCM to adjust the BPA values after the D-S data fusion process. The IDS 

carries out the detection process using solely the measurable information. The different BPA 

values are computed and fused using the Dempster’s rule. Only after the data fusion process 

has ended, the contextual information is used to adjust the resulting BPA values, by adding 

the outcome of the FCM. The adjustment is implemented over the final outcome of the IDS, 

hence the addition of the outcome of the FCM is prone to dominate the entire detection 

decision. 

New network traffic has been collected from a larger and more complex network than the one 

use in (Aparicio-Navarro, 2016). We have collected data traffic from our own LAN testbed. 

Figure 4 shows the logical topology of the testbed LAN. The PCs in two distinct labs are 

connected to the same office LAN. In addition, two additional PCs have been connected to a 

testbed LAN in order to implement the attacks: an attacker launches the attack using the 

network mapping tool Nmap (Lyon, 2016), and a victim is in charge of gathering all the 

network traffic using the network packets analyser Tcpdump (Jacobson, 2016) in pcap 

format. 

 

 

Figure 4 Logical topology of the testbed LAN; PCs on the left generate the background 

traffic, while those on the right are involved in the port scanning attacks 

implementation, and detection process. 

In total, 160 GBytes of network traffic have been gathered during the 9 days that the 

experiment lasted. This traffic dataset comprises 99.40% of non-malicious traffic (i.e. 696638 

data instances) and 0.60% of malicious traffic (i.e. 4220 data instances). Four different 

metrics have been computed from the dataset. These metrics are Communication Rate 

(COM), the number of frames transmitted per second; Throughput (THR), the number of 

transmitted bytes per second; Destination Port Distribution (DPD), the number of unique 
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destination ports per second; and Source Port Distribution (SPD), the number of unique 

source ports per second. These metrics are represented in Figure 5-Figure 7. The figures 

present cyclic patterns in the metric measurements. These cycles correspond to the PoL and 

the time of the day at which the network is being utilised by more users. The section in blue 

corresponds to the non-malicious traffic, while the section in red corresponds to the traces of 

port scanning attacks. Additionally, a zoomed in representation of the day 1 of the THR is 

shown in Figure 8. We can differentiate the different PoL depending on the time of the day, 

and we can also see that the traces of port scanning attack could not be easily identified by 

using a simple signature or threshold in all the instances. 

 

Figure 5 COM- Communication Rate (number of transmitted frames per second) 

collected over 9 days. 

 

 

 

Figure 6 DPD- Destination Ports Distribution (number of unique destination ports per 

second) collected over 9 days. 
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Figure 7 THR- Throughput (bytes per second) collected over 9 days. 

 

 

Figure 8 THR- Throughput gathered over 1 day, showing a zoomed in representation 

the normal traffic and malicious traffic, as well as the PoL. 

 

The effectiveness of the IDS has been evaluated using four well-known parameters, True 

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN). These 

parameters are essential to calculate the following performance metrics, which quantify the 

effectiveness of the IDSs: Detection Rate (DR), which is the proportion of anomalies 

correctly classified among the anomalous data; False Positive Rate (FPr), which is the 

proportion of normal data misclassified among all the data; and Overall Success Rate (OSR), 

which is the proportion of all the data correctly classified among all the data. The 

experimental results are presented in the form of bar charts, in Figure 9-Figure 14. The 

dataset has been analysed for all the possible combinations of metrics. The Y-axis of the 

graphs represents the results in percentage, while the X-axis of the graphs represents the 

index of the used metrics. Each index corresponds to one possible combination of metrics, 

with #1 being a single metric set and #15 the set that combines all the considered metrics. 

Therefore, the overall best results are to be expected from the set index #15. The indexes of 

all the possible combinations of metrics are presented in Table 2. 
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1 – DPD 6 – THR-DPD 11 – THR-SPD-DPD 

2 – SPD 7 – THR-SPD 12 – CON-SPD-DPD 

3 – THR 8 – COM-DPD 13 – COM-THR-DPD 

4 – COM 9 – COM-SPD 14 – COM-THR-SPD 

5 – SPD-DPD 10 – COM-THR 15 – COM-THR-SPD-DPD 

Table 2 Index of the Combination of Metrics 

The DR results of the IDS without the use of an FCM and with the application of all the 

proposed approaches are compared in Figure 9. The metric used to construct the FCM for 

these results was the THR. As we can see, with regards to the DR, there is no evident 

difference between all the approaches, using similar combination of metrics. It is worth 

noting that the approach that adjusts the BPA values prior to the fusion process using the 

FCM (i.e. FCM01) produces the highest DR in most of the cases. However, the maximum 

difference with the rest of DR results is only ~2%. One undesirable phenomenon that is 

shown in Figure 9 is that the DR decreases as the number of fused metrics increases, which is 

in contrast to what is expected from cross-layer IDSs. In our experiments, this phenomenon is 

caused by the automatic BPA methodology and the way the SW slides. When multiple 

metrics are used, the reference of normality in the BPA methodology becomes wider over 

time. Hence, the IDS becomes less sensitive and more malicious instances are misclassified 

as non-malicious. Nonetheless, as the OSR results show in Figure 11, this phenomenon also 

leads to an increase in the number of non-malicious instances correctly classified. 

The FPr results of our IDS with and without the use of an FCM are compared in Figure 10. 

Again, the metric used to construct the FCM for these results was the THR. In contrast to the 

DR results, we can see that the use of FCM actually outperforms the FPr results produced by 

the IDS alone, for all the evaluated approaches. Among the three FCM approaches, FCM01 is 

the one that always produces the lowest FPr, when two or more metrics are combined. 

Focusing upon the evaluations of the two approaches, FCM01 and No FCM, for the set #3 

(THR), the difference between the two approaches is over 35%. The largest difference for all 

the sets that combine two metrics is obtained in #10 (COM-THR), where the difference is 

27.82%. Among the sets that combine three metrics, the largest FPr difference is obtained in 

#14 (COM-THR-SPD), where the difference is 17.15%. When all the metrics are combined, 

the difference between the two approaches is over 9.68%. This clear improvement is constant 

for all the combinations of metrics. Also, the set of metrics #15 is the one that produces the 

best FPr (i.e. the lowest FPr) results, only 6.33%. With respect to the three approaches that 

use an FCM, FCM01 outperforms the FPr results generated by the other two approaches in 

~5% for all the combination of metrics; and a peak improvement of up to 8.05%, for the set 

#10 (COM-THR). 

The final performance metric that we have used is the OSR, which represents all the instances 

that have been correctly classified, regardless of whether these are malicious or not. Figure 11 

presents the OSR results comparison between all the approaches. Similar to the FPr, the use 

of FCM in conjunction with the IDS outperforms the OSR results produced by the IDS 

without FCM, for all the evaluated approaches. Additionally, once again, FCM01 is the one 

that always produces the best results among all the approaches. Focusing upon the evaluation 
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of the two approaches, FCM01 and No FCM, for the set #3 (THR) the improvement in the 

OSR between the two methods is 35.64%. The largest improvement in all the sets that 

combine two metrics is obtained in #10 (COM-THR), where the difference between the two 

approaches is 27.38%. Among the sets that combine three metrics, the largest OSR 

improvement is obtained in #14 (COM-THR-SPD), where the difference is 17.15%. And 

finally, when all the metrics are combined, the difference between the two approaches is over 

9.68% of improvement. This improvement is constant for all the combinations of metrics, and 

shows once more that the use of contextual information improves the detection capabilities of 

our anomaly-based IDS. Again, the set of metrics #15 is the one that produces the best OSR 

(i.e. the highest OSR) results, 93.19%. The results show that, although less malicious 

instances are correctly classified, more normal instances are correctly classified as normal as 

more metrics are combined. With respect to the three approaches that use an FCM, once 

again, FCM01 outperforms the OSR results generated by the other two approaches. The 

average improvement is ~6% for all the combination of metrics; and a peak improvement of 

up to 8.06%, for the set #10 (COM-THR). 

These results indicate that by utilising only measureable information from the network 

without considering the available contextual information, the IDS may reach a wrong 

conclusion, leading to an overall low accuracy. Also, from the presented results, we can infer 

that the most efficient approach is to adjust the BPA values prior to the data fusion process. 

This is because the approach FCM01 adjusts all of the considered metrics individually. 

Hence, the contribution of the contextual information adapts according to the BPA values 

given by the IDS for each individual metric, and would impact each of the metrics 

differently. Also, the contribution of the contextual information through the approach that 

constructs an additional metric, FCM02, decreases as the number of metrics being fused 

increases. This is because generally, after a number of consecutive D-S fusions, the BPA 

value given to one of the hypotheses will be largely higher than the rest of the BPAs. 

Therefore, the fusion of the metric computed from the FCM may not reverse the decision of 

the IDS. Only in cases in which the BPA values of both hypotheses, Normal and Attack, are 

close to each other, could the addition of the new metric have an evident effect on the final 

IDS decision. In the case of the approach that adjusts the BPA values after the data fusion 

process, FCM03, is prone to dominate the entire decision. On the one hand, in cases in which 

the BPA values of both hypotheses, Normal and Attack, are close to each other, the addition 

of the contextual information could greatly influence the final IDS decision. On the other 

hand, even if one of the hypotheses receives a largely higher BPA value than the rest, the 

addition of the contextual information could overturn the final IDS decision if the outcome of 

the FCM is larger than the resulting BPA values given by the IDS. 
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Figure 9 DR comparison: Three approaches that use an FCM (designed based on the 

THR) in conjunction with IDS, and the IDS without FCM 

 

 

Figure 10 FPr comparison: Three approaches that use an FCM (designed based on the 

THR) in conjunction with IDS, and the IDS without FCM 

 

 

Figure 11 OSR comparison: Three approaches that use an FCM (designed based on the 

THR) in conjunction with IDS, and the IDS without FCM 
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We have also compared the detection results generated by our IDS when each of the 

considered metrics are used to design the modelled FCM, as well as the results of the IDS 

without an FCM. Since the most efficient approach of the three proposed is FCM01, only this 

approach is considered in the results presented in Figure 9-Figure 14. The DR results of the 

IDS are compared in Figure 12. The most noticeable characteristic that we can see in the 

results is the drastic improvement provided by the use of the metrics COM and DPD in the 

design of the FCMs. For almost all the possible combination of metrics, both approaches 

provide over 99% of DR. In particular, for the set #15 (COM-THR-SPD- DPD) the DR 

reaches 99.76%, which improves the DR results provided by the IDS in 80.94% without the 

use of an FCM. Also, in contrast to the results generated when the THR is used, the DR does 

not decrease as the number of fused metrics increases. This phenomenon manifests that the 

contribution of the contextual information tends to dominate the detection. 

The FPr results of our IDS are compared in Figure 13. In contrast to the DR results, we can 

see that the use of the metrics COM and DPD to design the FCMs produces a slightly higher 

number of false alarms, in comparison with the use of the THR. For the set #15 (COM-THR-

SPD-DPD) the FPr reaches 26.42% and 25.42% for the COM and DPD, respectively. This 

represents an increase in the number of false alarms of approximately 20% (i.e. ~140800 

normal data instances misclassified). In comparison with not using an FCM, the increase in 

the number of false alarms reaches approximately 10% (i.e. ~73000 normal data instances 

misclassified). As these results suggest, the use of the metric THR to construct the FCM 

produces the best detection results overall in terms of FPr. Also, similarly to the DR results 

presented in Figure 12, the FPr does not decrease as the number of fused metrics increases. 

Figure 14 presents the OSR results comparison of our IDS. Similar to the DR and FPr results, 

the OSR results generated when the metrics COM and DPD are used to construct the FCM 

remain almost unchanged regardless of whether the number of fused metrics increases or not. 

As in the previous two cases, this phenomenon manifests that the contribution of the FCM 

tends to dominate the intrusion detection process. Considering the evaluation of the other 

results, the design of the FCM based on the metrics COM and DPD produces less effective 

detection results overall than the use of the THR for almost all the combinations of metrics. 

For the set #15 (COM- THR-SPD-DPD), which is the set index expected to produce the best 

results overall, the OSR reaches 73.58% and 74.58% for the COM and DPD, respectively. 

This represents a decrease of approximately 20% of OSR with respect to the use of THR, and 

a decrease of approximately 10% of OSR with respect to the IDS without an FCM. As these 

results suggest, once again, the use of the metric THR to construct the FCM produces the best 

detection results overall. 
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Figure 12 DR comparison: Adjustment of BPAs prior to the fusion process; FCM 

designed based on the THR, COM or DPD, and the IDS without FCM. 

 

 

Figure 13 FPr comparison: Adjustment of BPAs prior to the fusion process; FCM 

designed based on the THR, COM or DPD, and the IDS without FCM 
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Figure 14 OSR comparison: Adjustment of BPAs prior to the fusion process; FCM 

designed based on the THR, COM or DPD, and the IDS without FCM 

 

Different conclusions could be extracted from the presented results. First, these results 

empirically confirm that the use of the FCM provides improvement to the effectiveness of the 

IDS. Also, the presented results ratify that adjusting the BPAs prior to the data fusion 

provides the best use of the PoL in the detection process. However, the number of false 

alarms may not be low enough to be acceptable and make the IDS usable in practice in 

multiple scenarios. Additionally, it is clear the important role played by the metric selection 

to design the modelled FCM (i.e. THR, COM and DPD) in the effectiveness of the IDS. 

Based on the 99% of DR obtained when either the metric COM or DPD is used in the design 

of the FCM, we might incorrectly assume that these are the best selection of metrics. An IDS 

that triggers ~140800 false alarms during the 9 days that the experiment lasted would make 

the network administrator ignore the generated alarms. A tradeoff between the DR and the 

false alarms should be found, based on the needs of the protected network. The metric 

selection should be based on whether we prioritise a system that detects most of the attacks 

regardless of the number of false alarms, or whether we prioritise reducing the number of 

misclassifications. 

Man-in-the-Middle Proxy 

We have also implemented a Man-in-the-Middle (MitM) proxy to intercept the network 

traffic generated by WiFi devices. We designed the WiFi monitoring platform for the 

interception, decryption and analysis of encrypted network traffic communications. The 

MitM proxy has been set up using the software tools Mallory (Bitbucket, 2016) and 

mitmproxy (Cortesi, 2016), which intercept and decrypt the communication in a transparent 

manner to the network users. The experimental WiFi, depicted in Figure 15, includes one 

Access Point (AP) connected to the Internet, one laptop acting as the MitM monitoring 

machine running the MitM proxy and a rogue AP tool, and various WiFi devices acting as 

clients. The MitM monitoring machine is connected wirelessly to the AP, and provides access 

to the Internet to all associated devices through a rogue AP service. One of the crucial steps 
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during our experiments was to provide access to the Internet to the wireless clients, through 

the MitM monitoring machine, in a transparent manner to them. The monitoring machine can 

create its own rogue AP by using several publicly available softwares, such as HostAPd 

(Malinen, 2016) and Airbase-ng (Aircrack, 2016). Airbase-ng and HostAPd are tools for 

turning a Linux wireless NIC into an AP. Another essential step was to consider the selection 

of the MitM proxy. Mallory allows the implementation of an extensible TCP/UDP MitM 

proxy that is designed to run as a communication gateway, and can listen to SSL/TLS 

encrypted network traffic from/to the WiFi devices. Unfortunately, Mallory was discarded at 

a later stage because it was unable to unencrypt correctly the SSL/TLS intercepted network 

traffic in our bespoke setup. It was also necessary to run the DHCP server and assign firewall 

rules using the iptables tool. There was also the need for port redirection and port 

masquerading while running mitmproxy. By default, mitmproxy listens on TCP port 8080, 

and, in order to permit interception of HTTP and HTTPS, ports 80 and 443 had to be 

forwarded to port 8080. 

 

 

Figure 15 Schematic design of the IEEE 802.11 network used for monitoring and 

interception of the encrypted network traffic communications generated by the WiFi 

devices. 

 

The technical advancement that we have conducted on setting up the active monitoring 

platform has allowed us to be able to implement MitM attacks in a WiFi network. As for 

future work, we wish to use this platform to enhance our understanding of MitM attacks and 

thereby assess the possibility of extending and complementing this type of attack with 

injection capabilities, and to develop a detection mechanism that would accurately identify 

the presence of these attacks. 

One-Class and Two-Class Support Vector Machine Comparison 

We have also conducted a comparison study between a two-class Support Vector Machine 

(SVM) and a one-class SVM as classification techniques for intrusion detection in a WiFi 

network environment. The comparison study is based on the efficiency of the classification 

techniques, as well as the processing time required to conduct the training and classification. 
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These techniques have been tested on a number of network traffic datasets gathered from a 

live operational IEEE 802.11 network testbed at Loughborough University, comprising two 

different types of injection attacks. 

The two-class SVM is a supervised machine learning technique which uses two different 

types or classes of samples to construct an accurate classification model during the training 

process. On the other hand, one-class SVM is a semi-supervised technique that constructs the 

classification model of normal behaviour during the training process using only one class of 

samples. Unfortunately, collecting labelled network training datasets is highly complicated, 

and in many cases, impossible. Training datasets are currently generated by implementing a 

previous off-line forensic analysis. The aim of this comparison analysis is to evaluate if the 

we are able to generate a robust one-class SVM as classification technique that outperforms a 

two-class SVM. In that case, we would reduce the need for a thorough off-line dataset 

labelling process. Only a training dataset containing non-malicious data would be required. 

6.2.3 Anomaly Detection in Video (Sub-task 1.1-1 and 1.1-3) 

During last year, the novel framework for complex human activity recognition and anomaly 

detection in heterogeneous streams was enhanced and finalised.  

As part of our framework the temporal hierarchy model (THIM) was developed to represent 

complex activities. THIM is a hierarchical probabilistic state model capable of encoding both 

short- and long-term temporal dependencies between an activity’s constituent actions. An 

efficient parameter learning algorithm for THIM based on sampling from the Dirichlet 

distribution was also proposed. THIM is capable of learning directly unobservable transitions 

between actions in the training set. This property enables THIM to work efficiently with 

noisy and incomplete data.  

THIM’s inference time complexity is less than that of previous hierarchical models as shown 

in Figure 16 and equal to that of non-hierarchical models (Kaloskampis & Hicks, 2017).  

 

Figure 16 Comparison of inference complexity for different models. λ is the length of 

the input action sequence and M is the number of the model’s states. In the case of 

SCFG, G is the number of non-terminal symbols of the normal grammar. 

 

The proposed framework was tested with the state-of-the-art improved dense trajectory 

features (Wang and Schmid, 2013), using the Breakfast dataset (Kuehne et al., 2014). 
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A mid-level representation discovers underlying patterns within the extracted features and 

usually results in representations with enhanced discriminative properties compared to the 

original extracted features. For this reason, the state-of-the-art Fisher vector mid-level 

representation was integrated into the framework (Kaloskampis & Hicks, 2017). 

The framework is also suitable for work on large datasets (>1500 videos), where the 

localisation and recognition of primitive actions is hard and there is a large number of 

missing, unrecognised or incorrectly recognised actions as shown by applying the framework 

to the breakfast dataset, where state-of-the-art results in activity recognition were 

demonstrated. 
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Experimental results – anomaly detection and activity recognition 

Bridge design dataset: To demonstrate the efficiency of the proposed framework in anomaly 

detection, its performance is estimated for the bridge design dataset (Kaloskampis et al., IMA 

2014). This dataset features 3 classes of correctly executed activities and 3 classes of 

erroneously executed activities which are considered as anomalies. The framework’s 

performance is compared to that of several methods, such as the flat HMM (popular in 

activity analysis), RF, HHMM and Suffix Trees. The following algorithm combinations are 

also tested: RF+HMM, HHMM+SVM, RF+HHMM, KAD+HHMM and DeRFHHMM. The 

results are presented in Figure 17, where it is shown that our framework exhibits higher or 

equal accuracy in activity recognition and anomaly detection than the other tested methods. 

The low scores of non-parametric approaches (e.g. RF) in certain activities are attributed to 

the fact that they do not encode temporal dependencies. On the other hand, models following 

Markovian properties (e.g. HHMM) face difficulties in representing long term temporal 

relations accurately. Similarly, Suffix Trees encode neighbouring temporal dependencies but, 

as they do not encode long-term temporal dependencies explicitly, there are a few cases in 

which they encounter adversities.  

  

Figure 17 Comparative performance of the proposed framework (THIM) for the six 

activities of the bridge design dataset. Activities 1.1, 2.1, 3.1 illustrate normal 

behaviours and activities 1.2, 2.2, 3.2 illustrate anomalous behaviours.  
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Breakfast dataset 

The Breakfast dataset is currently the largest activity recognition dataset, consisting of ~1700 

videos of everyday activities. These activities do not fall in the category of composite 

prolonged activities as the number of each activity’s constituent actions is small. 

The framework’s strength is in the analysis of long sequences. For shorter sequences it may 

not always offer a performance increase in terms of classification accuracy as simpler models 

are often adequate for such tasks. Nevertheless, the breakfast dataset presents several 

important challenges: it consists of a large number of videos recorded in real-world 

environments from multiple viewing angles, rendering the tasks of action localisation and 

recognition hard.  

For this dataset low-level features with improved dense trajectories (iDTFs) were extracted. 

Their size was reduced to half (from 426 to 213 elements) with PCA. Then the reduced size 

features were converted to Fisher vectors, as follows: first, 260000 features were selected at 

random from the training dataset and  clustered to 16 clusters using the GMM algorithm. 

using these clusters, all reduced-size features were encoded to Fisher vectors; finally, L2 and 

power normalisations were applied to the resulting vectors. The resulting Fisher vectors are 

of size 2*K*D, where K is the number of clusters of the GMM and D the dimensions of the 

reduced size iDTF descriptor; in this case, for K = 16 and D = 213 the size of each Fisher 

vector is 6816 dimensions. This size was reduced to 64 dimensions with a second PCA. 

Having obtained the reduced Fisher vectors, the actions in the dataset were recognised with 

the HTK toolkit. The resulting action sequences are then passed to the framework. The 

framework achieved an accuracy of 76.2% in activity recognition. The obtained result is 

compared to that of the state-of-the-art framework from (Kuehne et al., 2016). The reported 

performance in (Kuehne et al., 2016) is 75.4% accuracy in activity recognition. For fair 

comparison, this algorithm was implemented. An accuracy of 73.4% was achieved after 

many trials, which is below the accuracy the proposed framework algorithm achieves. Figure 

18 shows the results of several algorithms for this dataset. 

 

Figure 18  Breakfast dataset, accuracy in activity identification. For the method from 

(Kuehne et al., 2016) we also report in italics the result we obtained when testing this 

method with the same action sequences we used to acquire our method’s result. 

7 Future Work  

The plans for future work can be summarized as follows: 

 The generic domain anomaly detection framework will be demonstrated on anomaly 

detection in videos in collaboration between Surrey and Cardiff Universities. 
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 Example scenarios which resemble pattern of life exhibited by agents in the Wright-

Patterson dataset will be identified in the maritime AIS dataset, and the AIS anomaly 

detection system developed to date will be adapted to detect any pattern of life anomalies 

as a precursor to detecting anomalies in the WASABI data set.  

 As for future work in network anomaly, we will investigate the efficiency of our 

anomaly-based IDS detecting multi-stage attacks. This process will require the 

implementation of realistic multi-stage attacks that could be replicated in our 

experimental testbed. The network traffic that we may be able to generate will allow us to 

identify metrics that would help manifest the presence of this type of attacks. We will also 

focus our work on the complementing our IDS with machine learning and data mining 

techniques to improve the overall efficiency of the system. 

 Further work will utilise the technical advancement that we have conducted on setting up 

the active MitM attacks in a WiFi network. We wish to use this platform to enhance our 

understanding of MitM attacks and thereby assess the possibility of extending and 

complementing this type of attack with injection capabilities, and to develop a detection 

mechanism that would accurately identify the presence of these attacks. 

 We will continue with the development, in the C programming language, of the advanced 

detection system throughout the project duration. A single piece of software is being built 

as new functionalities are proposed and evaluated. 

 In the area of anomaly detection in surveillance videos and heterogeneous spatio-

temporal data, the work will focus on anomaly detection and activity recognition in multi-

camera scenarios and quality assessment of video streams.    

 The framework for activity recognition and anomaly detection accuracies will be 

improved with the integration of deep learning techniques for action recognition. 

 

 Regarding the collaboration between Cardiff and Surrey, work will focus on applying the 

incongruence measures proposed by Surrey on the video data processed by Cardiff.  

 

 The work on application of the anomaly detection framework to the Wright-Patterson 

dataset supplied by DSTL will continue and will be switched to the WASABI dataset 

once the problems identified with this dataset are resolved. 
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L_WP2 (HU) Handling uncertainty and incorporating domain knowledge 

1. Staffing 

 

Work Package Leaders: Prof. Lambotharan (EESE, LU) and Prof. Wen-Hua Chen (AAE, LU) 

Research Associates:  Dr. Tasos Deligiannis (EEE, LU), Dr. Miao Yu (AAE, LU) 

Affiliated PhD Students:   Mr. Abdullahi Daniyan, Ms. Gaia Rossetti   and Mr. Michael 

Hutchinson.   

Lead Project Partner: Prof. Malcolm Macleod (QinetiQ) 

Dstl contact:  Dr. Jordi Barr (Sensors & Countermeasures Department). 

 

2. Aims and the lists of the original L_WP2 in the case for support: 

 

Aims: To develop a generic learning framework for handling uncertainties in the 

measurements acquired in the networked battlespace environment. Links to WP1 through 

domain knowledge; and WP3 & WP4 in handling incomplete sensor information & achieving 

robustness to jamming. (T3,T5) 

 

This WP  exploits the world model of the networked battlespace to improve performance and 

confidence and to reduce uncertainty to an unprecedented level. Due to the abundance of 

previously collected information of a battlespace and increasing availability of mobile 

communication and storage, rich information may be available for sensor platforms when 

performing signal processing as they operate in a networked battlespace. Examples for such 

information are digital maps about terrain and layout of the field, historical data about the site, 

geometric relations between platforms, and operational conditions such as weather (e.g. the 

influence of shadowing on optical sensors). 

 

WP2.1 Reducing uncertainty by incorporating domain knowledge using Bayesian 

inference, adaptive signal processing and sparse sampling [PDRA2]  

 

We will consider how to quantify the information in the world model and express it in a 

probabilistic statement; for example, how to synthesize the information in the prior of the 

world model (e.g. geometric constraints) with the prior of the state variables obtained in the 

previous time steps to form a combined prior probability function, and how to pool different 

sources of information measured via different types of sensors or provided by other resources 

(e.g. digital maps) for statistical inference. New signal processing algorithms offering 

adaptivity to operational environments will also be developed by exploiting the domain 

knowledge. Various parameters in these algorithms (e.g. the threshold for detection) or 

different types of signal processing models/algorithms will be selected based on the domain 

information (e.g. the change of the operation conditions when the sensor platforms move, or 

what decisions follow from the signal processing results and their consequence). Historical 

data will be used to build up the priors in Bayesian inference for different objects of interest 

and different scenarios, which will reduce the reliance on real-time measurements in the 

battlespace. New sparse sampling measurements will be not only used to update the priors 

but also to confirm or reject the previous priors selected for the Bayesian learning (hypothesis 

tests) with the help of domain knowledge (e.g. how likely it could be that an object of interest 

occurs based on domain knowledge). The Bayesian inference framework will also be 

extended from a single to multiple sensor platforms operating in a networked environment, 

by fusing all the information, including the sensory capabilities and constraints (e.g. angle of 

field view) and geometric relationships between different sensor platforms. One research 
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challenge here is to create a joint model for multiple sensor platforms with heterogonous 

attributes to gather intelligence of an object of interest (e.g. a threat), where information 

synthesis is of particular importance.  
 

WP2.2: Robust signal processing techniques under uncertainty, modelling uncertainty with 

stochastic dynamic processes, and characterization of uncertainty with a game theoretic 

framework [PDRA3]  

 

Robust signal processing techniques based on convex optimizations will be developed to 

tackle uncertainty. Mathematical models and approximation techniques will be developed to 

model an uncertainty region as a convex hull so that low complexity algorithms can be 

developed. Robust techniques based on both a probabilistic approach and worst case 

optimizations will be developed. The application scenario will include distributed/networked 

beamformer design under manifold uncertainty, imperfect sensor measurements and radar 

clutters. Instead of treating uncertainty as caused by a static collection of events and 

associated relationship, the uncertainty will be investigated within the framework of 

dynamically evolving phenomena. In this framework, uncertainty will be considered as 

caused by dynamic entities having states and transitions from one state to another resulting 

from actions in the battlespace. Both hidden Markov model and Bayesian networks will be 

used to characterise uncertainty. To enhance characterization of uncertainty and to understand 

the underlying mechanisms further, this WP will consider uncertainty as caused by 

dynamically varying actions created by various players in the battlespace, e.g. coalitional 

forces and enemies. Hence a game theoretical framework will be developed. The work will 

start with a non-cooperative game theoretical framework and will be extended to Bayesian 

games to account for incomplete information. The framework will then be extended to 

stochastic games (Markov games) to model dynamically changing actions and evolution of 

uncertainty. The possible battlespace scenarios that will be considered within this framework 

will include air formation to ground attack-defence system, defence against jamming in 

radars (linked to WP 4.1) and counteracting uncertainty created by deception by enemies, for 

example fake RF signal injection. 

 

3. Progress made in the fourth year in addressing the original objectives 

 

3.1 Overview 

 

The original aim of this work package is “to develop a generic learning framework for 

handling uncertainties in the measurements acquired in the networked battlespace 

environment”. There has not been any significant change on this stated aim, and the focus 

remains on the development of signal processing algorithms for handling uncertainties by 

incorporating domain knowledge, convex optimizations and game-theoretical methods. Two 

postdoctoral research associates and three PhD students work on this work package.  

 

3.2 Engagement with partners 

 

The leading industrial contact for this work package is Prof. Malcolm Macleod from QinetiQ. 

We have also discussed with Paul Westoby and his colleague in Dstl on how to exploit the 

prior information for more efficient hazardous source term estimation and Alasdair Hunter on 

the application of the developed particle filtering algorithms for the software demonstration. 
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The current technical contact for WP2.1 and WP2.2 is Dr. Jordi Barr from the Sensors & 

Countermeasures Department in Dstl. Dr. Barr is an experienced signal processing expert and 

has provided a number of very insightful comments and suggestions to this work package.  

 

3.3 Overview of progress  

A number of achievements have been made for WP2 in the fourth year.  

 

1. Ballistic missile tracking (highlighted technical output, related to Tasks 2.1-1 

World modelling, 2.1-3 New adaptive algorithms and 2.1-4 Bayesian inference) 

 

We have proposed a new method for ballistic missile tracking. Firstly, state dependent hybrid 

modelling is used to reflect the realistic missile movement where multiple models are applied 

for three different flight phases (boost, coast and re-entry). In particular, the transition 

probabilities between models are defined in a state dependent way according to the domain 

knowledge of flight phases’ dependence on the altitude. We consider a more realistic scenario 

by considering both miss detection and false alarms in the measurements, which are modelled 

by the random finite set (RFS). Based on the state dependent multiple modelling and RFS 

measurement model, a generalized state dependent interactive multiple model particle 

filtering (G-SD-IMMPF) has been developed for the missile state estimation. 

 

2. Chemical, Biological and Radiological (CBR) dispersion source estimation 

(highlighted technical output, related to Tasks 2.1-1 World modelling, 2.1-3 New 

adaptive algorithms and 2.1-4 Bayesian inference) 

 

A new strategy for performing an efficient autonomous search has been proposed to find a 

source of unknown strength, releasing particles into the atmosphere. The proposed search 

strategy, which we have named `Entrotaxis', is based on maximum entropy sampling 

principles. Bayesian inference is used to update approximate posterior probability 

distributions of the source location and strength. Posterior sampling is used to approximate a 

reward function for searching. We compared the performance and search behaviour of 

Entrotaxis with the state of the art in the literature, for searching in sparse and turbulent 

conditions. Whilst outperforming previous methods in most scenarios by achieving a faster 

mean search time, the strategy is also more computationally efficient during the decision-

making process. The current work focused on the search for a weak emitting source 

undergoing turbulent atmospheric transport, it is envisaged that the strategy would be more 

effective in search scenarios where a model incorporating more comprehensive information 

can be provided. 

 

3. Particle filtering tracking in videos (related to 2.1-3 New adaptive algorithms 

and 2.1-4 Bayesian inference) 

 

The developed particle filtering algorithm is tested on the tracking application for real data. 

Video sequences have been recorded by a moving camera mounted on an unmanned aerial 

vehicle (UAV). We target to design tracking approaches for tracking vehicles in the recording. 

To achieve it, a dynamic model is used to represent the vehicle movement in the image while 

colour and gradient information is extracted to construct the measurement model. Based on 

the dynamic/measurement models, a particle filtering approach is developed for the vehicles 

tracking. This work will be a potential software demonstration for the application of the 

developed particle filtering algorithm in the real dataset. 
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4. Game Theory for Distributed Optimizations and Tracking (contributes to Tasks, 

2.2-1 Convex optimisation and robust SP, 2.1-3 New adaptive algorithms, 2.2-2 

Radar and sensor applications and 2.2-4 Game Theory, highlighted technical 

output relates to 2.2-5 Bayesian Games) 

 

We have proposed and analysed game theoretic optimization techniques for a wide range of 

problems including waveform design, power allocation, beamforming and electronic 

countermeasures within the context of multi-static radars [10-12, 15, 18]. This work is 

significant due to completion of rigorous mathematical analyses for establishing existence 

and uniqueness of the Nash equilibrium for various classes of game theoretic methods [10-

12]. Particularly, for power allocation in a multi-static radar setup, we demonstrated through 

Nash equilibrium analysis and Karush–Kuhn–Tucker (KKT) conditions that certain radars 

may opt to be inactive, but use illuminations of other radars as the signals of opportunity [12].    

Distributed beamformer design techniques using non cooperative games and interference 

mitigation methods for the co-existence of a surveillance radar with tracking radars using a 

Stackelberg game were also developed [11].  Power allocation techniques in the presence of 

uncertainty have been developed using Bayesian game theoretic framework in [18]. We have 

also developed a correlated equilibria based data association techniques for multiple target 

tracking which outperforms the probabilistic data association (PDA) technique and joint-PDA 

[14, 17]. 

5. Robust waveform design for cognitive radars  (highlighted technical output 

relates to Tasks,  2.2-1 Convex optimisation and robust, 2.1-3 New adaptive 

algorithms, 2.2-2 Radar and sensor applications) 

 

Convex optimization techniques for designing optimal waveforms within the context of 

multistatic cognitive radars have been proposed [16, 19]. The method aims to maximise 

signal to interference plus noise ratio (SINR) of principal radar while satisfying constraints 

on the transmission power, orthogonality between waveforms and minimum required SINR 

for secondary radars. The method assumed certain second order statistics of the clutter return. 

As the estimate of the clutter statistics may have errors, the convex optimization method was 

extended to consider uncertainty on the clutter parameters. Worst case robust optimization 

and stochastic robust optimisation techniques have proposed that assumed error in the 

covariance matrix of the clutter return. Finally, a stochastic optimization that considers 

uncertainty directly on the clutter radar cross section and clutter Doppler was proposed using 

Taylor series approximation and convex optimizations. The robust methods are able to 

achieve the SINR target with a specific outage probability [20]. 

6. New Algorithms for Multi-target Tracking and Extended Target Tracking 

(highlighted technical output relates to Tasks,  2.1-3 New adaptive algorithms, 

2.1-4 Bayesian inference, 2.2-2 Radar and sensor applications) 

 

A new Kalman-gain aided particle probability hypothesis density (PHD) filter for multi-target 

tracking has been proposed [13]. The method aims to apply particle state 

correction/improvement using the Kalman-gain to guide validated particles in the sequential 

Monte Carlo  PHD (SMC-PHD) filter to the region of higher likelihood to better approximate 

the posterior at each time step. The proposed method outperforms the Gaussian mixture (GM) 

PHD filter, the GM-unscented-SMC-PHD filter and the auxiliary particle (AP) PHD filter in 

terms of high track continuity and optimal sub-pattern assignment (OSPA) distance.  For 
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extended target tracking, a new MCMC variational Bayesian (VB) approach has been 

proposed to estimate the measurement rates and number of measurements per rate for 

multiple extended targets having Poisson distributed measurements. The proposed approach 

offers efficient clustering of multiple extended target measurements in the case of large 

measurement sets. It provides improved performance and accuracy in jointly estimating both 

measurement rates and number of measurements for multiple extended targets [21].  

 

4. Technical details 

 

4.1 Work package 2.1 

          

4.1.1. Ballistic missile tracking 
 

We have proposed a new method for tracking the entire trajectory of a ballistic missile from 

launch to impact on the ground. A state dependent hybrid modelling system is proposed 

where multiple state models are used to represent the different ballistic missile dynamics in 

different flight phases: boost, coast and reentry. In particular, the transition probabilities 

between state models (i.e. flight phases) are represented in a state dependent way by 

exploiting domain knowledge (e.g. the correlation between the flight phase and the missile 

altitude). Both the miss detection and false alarms are considered for a realistic scenario. 

Random finite set (RFS) is applied to model miss detections/false alarm and a generalized 

measurement likelihood function is constructed through the RFS theory.  Based on the hybrid 

modelling system and generalized measurement function, a generalized state-dependent 

interactive multiple model based particle filtering (G-SD-IMMPF) approach is developed to 

accurately estimate the ballistic missile information such as the flight phase, position and 

velocity.  

 

                                    
Fig. 1 Simulated BM trajectory and radar position in the ECEF coordinate system 
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Fig. 2 Position/velocity RMSEs comparisons for different methods 

 

Comprehensive numerical comparisons are made between the proposed method and 

traditional approaches for a simulated scenario as in Fig. 1.  100 Monte Carlo simulations are 

made and the comparison results on the averaged root mean square errors (RMSEs) for both 

the position and velocity are shown in Fig. 2, from which we can see that the proposed 

method achieves much better performance than the traditional SD-IMMPF one [1], during 

different BM fight phases. The reason behind it is that for the proposed method, the miss 

detection, object measurement and false alarms are comprehensively considered and 

modelled in a theoretical way by the RFS theory. However, in the traditional SD-IMMPF 

method, only one measurement is chosen for updating in an empirical way. When the object 

is not detected, some false alarm may be chosen for updating, which may lead to poor 

estimation results. 

 

 The mode estimation comparisons of different methods (including the proposed method 

using a state dependent transition probabilities (SDPT) model and traditional ones adopting 

constant transition probabilities (CTP) model ([2] and [3])) are shown in Fig. 3. It is shown 

that the mode estimation results better coincide with the ground truth ones by the SDTP 

Model approach thanks to the domain knowledge aided transition probabilities.  
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Fig. 3 Flight mode probabilities estimation by different modelling approaches 

 

4.1.2. Chemical, Biological and Radiological (CBR) dispersion source estimation 

 

A new strategy for performing an efficient autonomous search has been proposed to find a 

source of sporadic cues of noisy information. We focused on the search for a source of 

unknown strength, releasing particles into the atmosphere where turbulence can cause 

irregular gradients and intermittent patches of sensory cues. We proposed a new information 

theoretic search strategy (otherwise known as cognitive search), which we have named 

`Entrotaxis'. The approach is based on maximum entropy sampling principles. Bayesian 

inference, implemented via the sequential Monte Carlo method using a particle filter, is used 

to update approximate posterior probability distributions of the source location and strength. 

The posterior is updated recursively, in response to the stochastic process of particle 

encounters with a sensor. A Markov Chain Monte Carlo move step is used to avoid particle 

degeneracy. The reward function, which is defined as the entropy of the predictive 

measurement distribution, is approximated by the samples representing the Posterior 

distribution and used for searching. We compare the performance and search behaviour of 

Entrotaxis with the popular Infotaxis algorithm [4], for searching in sparse and turbulent 
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conditions where typical gradient based approaches become inefficient or fail. The algorithms 

are assessed via Monte Carlo simulations with simulated data and an experimental dataset.  

A typical run of the Entrotaxis algorithm using the experimental dataset is shown in the 

Figures below. The source, located at [xs ys] = [2:935 2:935], is represented by a large black 

dot (a). Green dots represent the random samples of the particle filter, the lines in (b) and (c) 

indicate the estimated trajectories for searching, while red dots denote zero sensor 

measurements and black crosses non-zero measurements. The greyscale shading depicts the 

instantaneous concentration field at the current time step k. The histogram in Fig. d displays 

the posterior distribution of the source release rate at the end of the search. Although true 

release rate was unknown, the result was consistent with others in the literature. 

Fig. 4 Searching trajectory and posterior estimation by the Entrotaxis algorithm 

Quantitative results of our approach (Entrotaxis) compared to the current state of the art 

(Infotaxis) using the experimental dataset are given in the Table below. We compare the 

effect of different priors (the first line in the Table) on the source release rate on the search 

performance. Throughout the simulations, the Entrotaxis algorithm achieved a higher success 

rate. With regards to search time, the Infotaxis algorithm was slightly more robust, however, 

with less prior information, the Entrotaxis approach showed significant improvements in the 

mean search time (as in the last column). Future works will relax assumptions made about the 

quality of meteorological information considering an urban domain, and extend the approach 

to a multi vehicle collaborative search. 

Table Comparison of the search performance under different priors  
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4.1.3. Particle filter tracking in videos 

 

We developed the particle filtering tracking approach for vehicles tracking in the video 

sequence for a potential software demonstration. In this work, real video recordings are taken 

from a moving camera mounted on a UAV platform. We apply the Browian motion model to 

represent the vehicle movement in the 2-D image. Both the gradient and colour histogram 

information are extracted, which is combined to construct the measurement model to evaluate 

the likelihood that a patch in the image is the object of interest. Based on the dynamic model 

and colour measurements, particle filtering is developed for tracking. Selective tracking 

results are shown in the following figure.  

 

 
(a)                                                                                  (b) 

Fig. 5 Vehicle tracking results in selective frames 

4.2. Work package 2.2 

          

4.2.1. Bayesian Game Theoretic Resource Allocation for Multistatic Radars 

 

We have proposed a Bayesian game-theoretic power allocation technique based on SINR 

maximization for multistatic tracking radars. The primary goal of each radar is to maximize 

its signal to interference plus noise ratio (SINR), within the constraint of its maximum 

transmission power and in the presence of uncertainty of other radar’s channel parameters. 

There is no communication presumed between the radars, hence we utilize a noncooperative 

game-theoretic approach. The channel gain between a radar and the target is assumed to be 

private information to the corresponding radar. However the other radars do not have this 

private information but they know its probability distribution, which characterizes the type of 

the player (i.e. radar). The radars aim to allocate power to maximise SINR knowing their own 

private information and with only the probability of type of the other radars. We have 

examined and proven the existence and the uniqueness of the Bayesian Nash equilibrium 

(BNE) for the aforementioned game by exploiting geometric programming techniques. 

 

To demonstrate the convergence of the algorithm to the unique solution, we considered a 

bistatic tracking radar network consisting of two radars. We assumed that a particular radar 

knows only the probability of the type of the other radar, i.e. the other radar could induce two 

possible cross-channel interference states namely g- = 1 and g+ = 4, whose probability 

distribution is known (in our case we assumed Bernoulli distribution with equal probabilities).   

Fig.6 shows the allocated power for each radar for two different initializations (i.e. subplot 1 
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and 2 respectively). For both the initialisations, the power allocations converge to a unique 

solution.   

 

 
Fig. 6: Convergence of the power allocation for two different initialisations. 

 

4.2.2. Robust Waveform Design for Multistatic Cognitive Radars 
 

We have developed robust waveform techniques for multistatic cognitive radars in a signal-

dependent clutter environment. In cognitive radar design, certain second order statistics such 

as the covariance matrix of the clutter, are assumed to be known. However, exact knowledge 

of the clutter parameters is difficult to obtain in practical scenarios. Hence we considered the 

case of waveform design in the presence of uncertainty on the knowledge of the clutter 

environment and developed both the worst-case and the probabilistic robust waveform design 

techniques. As existing methods in the literature appeared to be over conservative and generic, 

we proposed a new approach where we assumed uncertainty directly on the radar cross-

section and Doppler parameters of the clutters. Using Taylor series approximation, we 

developed a clutter-specific stochastic optimization that, while maximising the SINR of 

particular radar, is able to ensure the other radars in the network achieve a desired SINR with 

certain probability. 

 

Performance of all three optimization techniques was evaluated for the case of two radars. 

For the worst case robust optimization, we aimed to maximise the SINR of the first radar 

while ensuring a desired SINR is achieved for the second radar for all possible errors in the 

clutter covariance matrix. As expected, non-robust optimization method was unable to 

achieve the required SINR all the time. On the other hand, the worst-case robust optimization 

achieved the goal SINR; however, with a value considerably higher than the desired SINR, 

hence this method is over-conservative. For the stochastic optimizations, the aim is to 

maximise the SINR of the first radar while ensuring the goal SINR (9.03dB in our simulation) 

of the second radar is achieved with a specific probability. We evaluated the performance in 

the presence of uncertainty on the clutter covariance matrix for two different success 

probabilities of 70% and 90%. As seen in Figure 7, the non-robust scheme achieved the goal 

SINR only 50% of the time while stochastic robust optimization is able to achieve the goal 

SINR with the required probabilities. Finally, we considered uncertainty directly on the 

clutter parameter such as radar cross section and Doppler and compared the performance with 

the ordinary stochastic optimization scheme that assumes uncertainty on the clutter 

covariance matrix. The proposed method outperforms the ordinary stochastic optimization for 

the same amount of uncertainty as shown in Figure 8. 
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Fig. 7: Comparison between the stochastic (robust) optimization and the non-robust 

optimization. The required SINR of 9.03 dB was achieved with the desired probabilities 

for the stochastic optimization but with only 50% success rate for the non-robust 

optimization. 

 

 
Fig. 8: Comparison between ordinary stochastic optimization and clutter-specific 

stochastic optimization. The required success rate was achieved with approximately 1% 

error due to Taylor series approximations for the case of clutter-specific optimization. 

However, for the same amount of uncertainty, the ordinary stochastic optimization 

resulted in poor performance in terms of achieving the success rate. 

 

4.2.1. Bayesian Multiple Extended Target Tracking 
 

In target tracking, it is a common assumption that one target produces one measurement per 

time step. Tracking more than one of such target is known as point multi-target tracking. Due 

to high resolution sensors etc., a target can occupy more than one resolution cells and this 

could be modelled by a cluster of points giving rise to an extended target (ET) scenario. We 

have developed multiple-extended-target tracking (METT) algorithms for tracking more than 
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one of such targets. We modelled measurements as an inhomogeneous Poisson distribution 

and applied a joint Markov Chain Monte Carlo (MCMC) and Poisson mixture variational 

Bayesian (PMVB) technique to estimate extended target measurement rates and the number 

of measurements. In order to extract information about the target such as shape, size, 

orientation etc, we proposed a B-spline approach that can characterise any arbitrary 

geometrical, numerical or statistical function.  

 

The proposed algorithm is based on MCMC-PMVB, B-spline and a newly introduced 

generalized labelled multi-Bernoulli (GLMB) filter. The GLMB filter has the advantage of 

creating and maintaining target labels during tracking hence avoiding the need for any post 

processing to achieve data association. Fig. 9 confirms that the proposed technique gives a 

better estimate when compared to the Bayesian rate estimator (BRE) even for a large window 

length for the forgetting factor. As seen in Figure 9, BRE gives poor estimate for both the 

targets in the first few time steps. Figure 10 demonstrates that the proposed MCMC-PMVB 

technique is able to estimate the number of measurements for two different measurement 

rates. The estimation results improve as the time progresses. This is because more samples 

are available for the VB clustering. Figure 11 shows that incorporating the MCMC-PMVB 

technique and the B-spline approach in the existing ET-GLMB filter offers an improved 

performance in terms of a lower optimal sub pattern assignment (OSPA) distance. 

 

 

 
Fig. 9 Estimation results for two different true fixed measures λ  =  15 and 30 using both  

BRE (window length=100) and the MCMC-PMVB methods. 

 
Fig. 10 True number of measurements for two distinct rate parameters and the estimate 

of this by MCMC-PMVB. 
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Fig. 11 OSPA distance plot of the proposed ET-GLMB and the ET-GLMB 

 

5. Plan for the next year 

 

For WP2.1, the focus is on: 

1. Extending our current ballistic missile tracking work to the areas of joint tracking 

and missile types identification, as well as  missile trajectory prediction;  

2. Chemical, Biological and Radiological (CBR) dispersion source estimation with the 

aid of local domain knowledge. 

3. Software demonstration of the proposed particle filtering approaches 

 

For WP2.2, the focus is on: 

1. Extension of Bayesian game theoretic framework for the inclusion of uncertainty on 

clutter parameters. 

2. Convex optimisation based resource allocation for communication radars in the 

presence of eavesdroppers.  

3. Developing a Bayesian framework for multiple target tracking, possibly 

incorporating cognitive radar environment.  

 

6. Outputs during the last year: 

 

1. M. Yu, C. Liu, WH. Chen and B. Li, “An enhanced particle filtering method for 

GMTI radar tracking”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 

52, No. 3, pp. 1408-1420, 2016. 

2. M. Yu, H. Oh, WH. Chen and J. A. Chambers. “An improved multiple model particle 

filtering approach for manoeuvring target tracking using airborne GMTI with 

geographic information”, Aerospace Science and Technology, vol. 52, pp.62—

69,2016. 

3. M. Yu, Y. Xue, R. Ding, H. Oh, WH. Chen and J. A. Chambers. “New environmental 

dependent modelling with Gaussian particle filtering based implementation for 

ground vehicle tracking”, Sensor Signal Processing for Defense, Edinburgh, UK, 

2016.  

4. M. Yu, WH. Chen and J. A. Chambers, “State Dependent Multiple Model-Based 

Particle Filtering for Ballistic Missile Tracking in a Low-Observable Environment”, 

submitted to Aerospace Science and Technology, major revision. 
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5. M. Yu, H. Oh, WH. Chen and J. A. Chambers, “Multiple Model Ballistic Missile 

Tracking with State-Dependent Transitions and Gaussian Particle Filtering”, 

submitted to IEEE Transactions on Aerospace and Electronic Systems, major revision. 

6. R. Ding, M. Yu, H. Oh and WH Chen, “New Multiple Target Tracking Strategy 

Using Contextual Information and Optimization”, IEEE Transactions on Systems, 

Man and Cybernetics: Systems. DOI:10.1109/TSMC.2016.2615188. 

7. Hutchinson, M., Oh, H. and Chen, W.H., 2017. A review of source term estimation 

methods for atmospheric dispersion events using static or mobile sensors. Information 

Fusion, Vol.36, pp.130-148. 

8. Hutchinson, M., Oh, H., and Chen, W., 2017. Adaptive Bayesian Sensor Motion 

Planning for Hazardous Source Term Reconstruction. The 20th World Congress of 

the International Federation of Automatic Control, 9-14 July 2017, (under review). 

9. Hutchinson, M., Oh, H., and Chen, W., 2017. Entrotaxis as a strategy for autonomous 

search and source reconstruction in turbulent conditions, (to be submitted to 

Information Fusion). 

10. A. Panoui, S. Lambotharan and J.A. Chambers, “Game Theoretic Distributed 

Waveform Design for Multistatic Radar Networks,” IEEE Transactions on Aerospace 

and Electronic Systems, vol. 52(4), pp. 1855 – 1865, Nov. 2016. 

11. A. Deligiannis, S. Lambotharan, and J.A. Chambers, “Game Theoretic Analysis for MIMO 

Radars with Multiple Targets,” IEEE Transactions on Aerospace and Electronic 

Systems, , vol. 52(6), pp. 2760 - 2774, February 2017. 

12. A. Deligiannis, A. Panoui, S. Lambotharan, and J.A. Chambers, “Game Theoretic 

Power Allocation and the Nash Equilibrium Analysis for a Multistatic MIMO Radar 

Network,” IEEE Transactions on Signal Processing, submitted, February 2017. 

13. A. Daniyan, Y. Gong, P. Feng, J.A. Chambers, and S. Lambotharan, “Kalman-Gain 

Aided Particle PHD Filter for Multitarget Tracking,” IEEE Transactions on 

Aerospace and Electronic Systems, under second review, Nov 2016. 

14. A. Daniyan and S. Lambotharan “Game Theoretic Data Association for Multi-target 

Tracking with Varying Number of Targets,” IEEE Radar Conference, Philadelphia, 

May 2016. 

15. A. Deligiannis, G. Rossetti, A. Panoui and S. Lambotharan, and J.A. Chambers, 

“Power Allocation Game Between a Radar Network and Multiple Jammers,” IEEE 

Radar Conference, Philadelphia, May 2016. 

16. G. Rossetti, A. Deligiannis and S. Lambotharan, “Waveform Design and Receiver 

Filter Optimization for Multistatic Cognitive Radar,” IEEE Radar Conference, 

Philadelphia, May 2016. 

17. A. Daniyan, S. Lambotharan, "Data Association Using Game Theory for Multi-Target 

Tracking in Passive Bistatic Radar", IEEE Radar Conference, Seattle, May 2017. 

18. A. Deligiannis and S. Lambotharan, "A Bayesian Game Theoretic Framework for 

Resource Allocation in Multistatic Radar Networks", IEEE Radar Conference, Seattle, 

May 2017. 

19. G. Rossetti and S. Lambotharan, “Coordinated Waveform Design and Receiver Filter 

Optimization for Cognitive Radar Networks,” IEEE Sensor Array and Multichannel 

Signal Processing Workshop (SAM), Rio de Janeiro, July 2016. 

20. G. Rossetti and S. Lambotharan, “Robust Waveform Design for Multistatic Cognitive 

Radars,” IEEE Transactions on Aerospace and Electronic Systems, April 2017. 

21. A. Daniyan, S. Lambotharan, " Bayesian Multiple Extended Target Tracking Using 
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Labelled Random Finite Sets and Splines", to be submitted to IEEE Transactions on 

Signal Processing, April 2017. 

 

7. List of affiliated PhD students 

 

WP2.1: 

 Affiliated PhD student: Mr. Michael Hutchinson 

           PhD title: Autonomous search and source term reconstruction of hazardous,   

           atmospheric releases using unmanned aerial vehicles. 

WP2.2: 

Affiliated PhD students:  

Mr. Abdullahi Daniyan, PhD title: Multiple target tracking. 

Ms. Gaia Rossetti, PhD title: Convex optimization techniques for cognitive radar 

networks.  

 

 

References: 

[1] H. Blom and E. Bloem, "Exact Bayesian and particle filtering of stochastic hybrid 

systems”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, no.1, pp. 55–70, 

2007. 

 [2] W. Farrell. “Tracking of a ballistic missile with a-priori information”, IEEE 

Transactions on Aerospace and Electronic Systems, Vol. 44, no. 2, pp.418–426, 2008. 

[3]. H. Song and Y. Han, “Comparison of space launch vehicle tracking using different types 

of multiple models”, 19th International Conference on Information Fusion (FUSION), 

Heidelberg, Germany, 2016. 

[4]. B. Ristic, A. Skvortsor and A. Gunatilaka, “A study of cognitive strategies for an 

autonomous search”, Vol. 28, pp. 1–9, 2016. 

 
  



54 
 

 

L_WP3: (SS) Signal Separation and Broadband Distributed Beamforming 

 

3.1 Staffing 

 

Work Package Leaders: Dr Wenwu Wang (SU) and Prof John McWhirter (CU) 

Other Academics Involved: Prof. Ian Proudler, Prof. Jonathon Chambers, Dr. Philip 

Jackson, Prof. Josef Kittler, Dr. Stephan Weiss, Dr. Yulia Hicks, and Dr Syed Mohsen Naqvi  

Research Associates: Dr Mark Barnard 

Research students: Mr Luca Remaggi (SU), Miss Jing Dong (SU), Mr Zeliang Wang (CU), 

Waqas Rafique (NU), Pengming Feng (NU), Mingyang Chen (SU) 

Lead Project Partner: Macleod Malcolm (QinetiQ), and Richard Brind (Atlas Electronik) 

Dstl contact: Julian Deeks (Naval Systems Dept), Nick Goddard (Naval Systems Dept), and 

Alan Johnson (Sensors & Countermeasures Dept) 

 

3.2 Aims and Introduction 

 

This work package is concerned with the development of low-complexity robust algorithms 

for underdetermined and convolutive signal separation, broadband distributed beamforming, 

facilitated by low-rank and sparse representations, and their fast implementations, and the 

application of these techniques to defence related problems, especially for processing 

underwater acoustic and sonar data, such as for signal denoising, source localisation, 

separation, extraction and tracking.  

 

We aim at proposing novel methods to address the challenges in source separation in dense 

signal environments. This includes extracting signals of interest and suppression of 

interference from corrupted sensor measurements, e.g. for the problems of convolutive 

mixing (i.e. multipath signal propagation), underdetermined mixing (i.e. more sources than 

sensors), and unknown number of target signals. This work package links to L_WP1 in weak 

signal detection; L_WP2 in unknown number of targets and order selection; L_WP4 in 

MIMO signal detection; and L_WP5 in data reduction. 

 

L_WP3.1 is devoted to the problem of multichannel convolutive source separation and 

broadband distributed beamforming, with a focus on polynomial matrix decomposition 

techniques and their variants. L_WP3.2 focuses on reverberant, underdetermined and noisy 

source separation, with particular techniques such as robust statistics and bootstrapping, time-

frequency masking, sparse representation, and Bayesian estimation. Both L_WP3.1 and 

L_WP3.2 have focussed on the underwater acoustic data e.g. the Portland 3 sonar datasets, 

with additional data including SAR image data and video datasets.  

 

3.3 Available Datasets 

 

Currently we have access to the following datasets: 

 Portland 3 dataset 

 An underwater acoustic channel simulator 

 Surrey’s BRIR datasets 

 Surrey’s RIR datasets 

 CAVIAR datasets 

 PETS2009 datasets 

 TUD datasets 

http://www.see.ed.ac.uk/drupal/udrc/people/lssc-consortium/professor-ian-proudler
http://www.see.ed.ac.uk/drupal/http%3A/%252Fwww.eng.ed.ac.uk/drupal/udrc/people/lssc-consortium/professor-jonathon-chambers
http://www.eng.ed.ac.uk/drupal/udrc/people/lssc-consortium/professor-philip-jackson
http://www.eng.ed.ac.uk/drupal/udrc/people/lssc-consortium/professor-philip-jackson
http://www.see.ed.ac.uk/drupal/udrc/people/lssc-consortium/professor-josef-kittler
http://www.see.ed.ac.uk/drupal/udrc/people/lssc-consortium/professor-josef-kittler
http://www.eng.ed.ac.uk/drupal/udrc/people/lssc-consortium/dr-stephan-weiss
http://www.see.ed.ac.uk/drupal/udrc/people/lssc-consortium/dr-yulia-hicks
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3.4 Overview of Technical Progress 

 

We have made a number of advancements in the past year, which are summarized as follows. 

 We have developed a new method for controlling the order growth of polynomial 

matrices in the multiple shift second order sequential best rotation (MS-SBR2) 

algorithm and used it for calculating the polynomial eigenvalue decomposition 

(PEVD) for para-Hermitian matrices. In the proposed method, we introduced a new 

elementary delay strategy to keep all the row (column) shifts in the same direction in 

each iteration. This gives us the flexibility to control the polynomial order growth by 

selecting the shifts that ensure non-zero coefficients are kept closer to the zero-lag 

coefficient matrix. The details about the methods and results can be found in (Wang et 

al. 2016). 

 We have taken a fresh look at the SBR2 algorithm in terms of its potential for 

optimising the subband coding gain. It is demonstrated how every iteration of the 

SBR2 algorithm must lead to an increase in the subband coding gain until it comes 

arbitrarily close to its maximum possible value. Since the algorithm achieves both 

strong decorrelation and optimal subband coding, it follows that it must also produce 

spectral majorisation. A new quantity associated with the coding gain optimization is 

introduced, and its monotonic behaviour brings a new insight to the convergence of 

the SBR2 algorithm, leading to a first proof that it must also achieve spectral 

majorization. A detailed account of this proof can be found in (McWhirter and Wang, 

2016). 

 We have performed an investigation into sparse sensor configurations in hydrophone 

arrays. We use Compressive sensing (CS) for the design of sparse arrays by trying to 

match the response of the array to a desired/reference response for a given direction of 

arrival (DOA) angle. This is achieved by minimizing the ℓ0 norm, or relaxed as the ℓ1 

norm of the weighting coefficients, subject to the error between the desired and 

designed responses being below a predefined level. We have also shown that it is 

possible to improve the sparseness of a solution by considering a re-weighted ℓ1 

minimization problem. The aim of these methods is to bring the minimization of the 

ℓ1 norm of the weight coefficients closer to that of the minimization of the ℓ0 norm, 

by solving a series of re-weighted ℓ1 minimizations, where locations with small 

weight coefficients are more heavily penalized than locations with large weight 

coefficients. The details of this work were summarised in an internal report (shared 

with both Dstl and the industrial partner Atlas).  

 We have also investigated a related problem to sparse array optimisation in the 

context of dealing with sensor failures in the array. To this end, we take a given array 

configuration with missing sensors and then optimise the response for this 

configuration.  Sensor arrays operating in difficult environments can suffer from high 

failure rates of components or blocks of components. It can also be very difficult and 

expensive to replace those damaged sensors. Therefore a method of improving the 

robustness of these arrays to sensor failure by optimising the weighting on each sensor 

to give the best possible response given the missing sensors would be valuable. A 

conference draft was written based on this work (Barnard et al., 2017). 

 We have proposed a method of joint optimisation of sparse array and spatial sparsity, 

to achieve source detection in a subset of space with as few sensors as possible. The 

method is operated in a two-step iterative process, where the first step is to find the 
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minimum number of sensors to be used in the array and the second step is to perform 

source localisation based on the least absolute shrinkage and selection operator 

(LASSO) algorithm with the selected sensors. This method is potentially useful for 

joint source localisation and sensor selection. The details about this method can be 

found in (Chen et al., 2016). 

 We have developed a new method for detecting acoustic reflectors/boundaries from 

acoustic impulse response, using a multistage method including epoch detector, image 

source reversion, and a times of arrival (TOAs) estimator. This method has been 

evaluated using several room impulse responses (RIRs) datasets. The details and the 

results can be found in (Remaggi et al., 2017). The acoustic reflector has also been 

incorporated into a blind source separation as side information for further improving 

the performance of source separation in a reverberant environment.  

 We proposed a novel method to address the challenges within the prediction stage of 

Bayesian filtering algorithm based on probability hypothesis density (PHD) filtering 

with a Markov chain Monte Carlo (MCMC) implementation. More specifically, a 

novel social force model (SFM) for describing the interaction between the targets is 

used to calculate the likelihood within the MCMC resampling step in the prediction 

step of the PHD filter, and a one class support vector machine (OCSVM) is then used 

in the update step to mitigate the noise in the measurements, where the SVM is 

trained with features from both colour and oriented gradient histograms. The details 

about the methods and results can be found in (Feng et al. 2016). 

 In order to achieve more observable measurements, we employed a forward-backward 

filtering algorithm in the framework of particle PHD filtering, which provides 

backward estimation from the aid of delayed measurement set. Moreover, the forward 

and backward processes were combined with an adaptive weight which is calculated 

by the similarity of the observed measurement from forward and backward process 

(Feng et al. 2016). 

 We studied and proposed new methods to improve the separation performance of the 

independent vector analysis (IVA) algorithms, especially on how to better preserve 

the inter-frequency dependency. We have introduced a new mixed source prior to be 

used in both the IVA and the fast fixed point IVA (FastIVA) algorithm, based on a 

mixture of multivariate Student’s t and the super Gaussian distribution. In order to 

further enhance separation performance of the mixed multivariate source prior, the 

ratio of the Student’s t distribution and the super Gaussian source prior were adjusted 

automatically according to the energy of the source signals. This work is published in 

(Rafique et al., 2015) and (Rafique et al., 2016). A new Student’s t mixture model 

(SMM) is also proposed and an expectation maximisation algorithm is developed for 

this new model.  

 

3.5 Technical Details 

 

3.5.1 New MS-SBR2 and SBR2 Algorithms 

 

1) Order-Controlled MS-SBR2 Algorithm for PEVD 

One common feature among the existing PEVD algorithms is that the order of polynomial 

matrices continuously increases with each iteration. This is problematic, as such order growth 
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will lead to a significant increase in computational cost. During the last year, we have 

developed a new method for controlling the order growth of polynomial matrices in the 

multiple shift second order sequential best rotation (MS-SBR2) algorithm which has been 

used for calculating the polynomial eigenvalue decomposition (PEVD) for para-Hermitian 

matrices. In effect, the proposed method introduces a new elementary delay strategy which 

keeps all the row (column) shifts in the same direction in each iteration, which therefore gives 

us the flexibility to control the polynomial order growth by selecting the shifts that ensure 

non-zero coefficients are kept closer to the zero-lag coefficient matrix. Simulation results 

confirm that further order reductions of polynomial matrices can be achieved by using this 

direction-fixed delay strategy for the MS-SBR2 algorithm. 

 

 
Fig. 3.1.  Illustration of the two different elementary delay strategies in the MS-SBR2 

algorithm. 

 

 
(a)       (b) 

Fig. 3.2. The resulting polynomial order comparison after diagonalising para-Hermitian 

matrices using different versions of SBR2. Sub-figure (a) shows the average order of the 

para-Hermitian matrix         at     iteration with the truncation parameter         , and sub-

figure (b) shows the average order of the paraunitary matrix         at     iteration with the 

truncation parameter         . 
 

As shown in Fig. 3.2, the order-controlled MS-SBR2 (OC-MS-SBR2) has produced lower 

order para-Hermitian and paraunitary matrices than that of the MS-SBR2 algorithm. The 

reason why the SBR algorithm has been shown to produce much lower order is that within 

each iteration the SBR2 algorithm can only transfer a single off-diagonal element onto the 

diagonal, while for the multiple shift versions including MS-SBR2 and OC-MS-SBR2 the 

number is usually three times for this    para-Hermitian matrix example. This means that 

there are more paraunitary transformations involved, which can cause higher polynomial 
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order. More details about this work can be found in (Wang et al. 2016) that has been 

published in the 2016 IEEE SAM.  

 

2) A Novel Insight to the SBR2 Algorithm for Diagonalising Para-Hermitian Matrices 

Most of the work reported since then has focused on improving the performance or reducing 

the computational cost of the PEVD algorithms including the SBR2 (McWhirter et al. 2007) 

and SMD (Redif et al. 2015) algorithm families. The SBR2 algorithm was originally 

developed for achieving strong decorrelation of convolutively mixed sensor array signals. It 

was observed that the algorithm always seems to produce spectrally majorised output signals, 

but this property has not previously been proven. In this work, we have taken a fresh look at 

the SBR2 algorithm in terms of its potential for optimising the subband coding gain. It is 

demonstrated how every iteration of the SBR2 algorithm must lead to an increase in the 

subband coding gain until it comes arbitrarily close to its maximum possible value. Since the 

algorithm achieves both strong decorrelation and optimal subband coding, it follows that it 

must also produce spectral majorisation. A new quantity   associated with the coding gain 

optimization is introduced, and its monotonic behaviour brings a new insight to the 

convergence of the SBR2 algorithm. 

 

We have investigated the SBR2 algorithm in terms of optimizing the subband coding gain, 

leading to a first proof that it must also achieve spectral majorization. In addition, the 

monotonically increasing behaviour of the coding gain     has been exploited to obtain a 

more reliable test of convergence for the algorithm. A detailed account of this proof can be 

found in (McWhirter and Wang, 2016) that has been presented in the 2016 IMA conference. 

 

 
(a)                                                       (b)             (c) 

Fig. 3.3. Convergence of the SBR2 algorithm for diagonalising the space-time covariance 

matrix    , showing (a) the behaviour of     ; (b) behaviour of the coding gain     ; (c) 

behaviour of the off-diagonal element    
       . 

 

3.5.2 Sparse Array Design 

 

1) Compressed Sensing based Sparse Array Optimisation 

 

We have performed an investigation into sparse sensor configurations in hydrophone arrays. 

Compressive sensing (CS) has been employed in the design of sparse arrays by trying to 
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match the response of the array to a desired/reference response for a given direction of arrival 

(DOA) angle θ. This is achieved by minimizing the ℓ0 norm, or relaxed as the ℓ1 norm of the 

weighting coefficients, subject to the error between the desired and designed responses being 

below a predefined level. The ℓ1 norm is defined as the sum of the elements in a vector and 

for a vector with complex entries, this is the absolute value of the entries. The ℓ0 norm is 

defined as the number of non-zero entries in a given vector. Further work has also shown that 

it is possible to improve the sparseness of a solution by considering a re-weighted ℓ1 

minimization problem. The aim of these methods is to bring the minimization of the ℓ1 norm 

of the weight coefficients closer to that of the minimization of the ℓ0 norm, by solving a 

series of re-weighted ℓ1 minimizations, where locations with small weight coefficients are 

more heavily penalized than locations with large weight coefficients. 

In order to create a sparse sensor configuration we employ a weighting vector   of length M 

for the sensors in the array. We perform a convex optimisation to ensure a minimum error in 

the array response whilst ensuring sparsity in  . This convex optimisation is formulated as 

follows: 

                                                                                         (3.1) 

where      is the ℓ1 norm of  ,    is the vector holding the desired beam response at a 

particular frequency Ω and DOA angle θ, A is the matrix composed of the steering vectors at 

the corresponding frequency Ω and DOA  and α places a limit on the error between the 

desired and the designed responses. This minimisation was implemented using the CVX 

toolbox in Matlab. 

We also introduce here the measure of array gain which is the ratio of the overall signal to 

noise ratio (SNR) of the array and the SNR of an individual hydrophone. The array gain is 

calculated using the following formula 

       
        

             
  

      

    
                                                    (3.2) 

 

where R is the M × N (where M = N) noise coherence matrix for a particular frequency Ω. A 

particular choice of R is considered here to demonstrate the ability to treat arbitrary noise 

distributions. More specifically the mn-th entry Rmn is given by 

       
          

       
 

          

       
                                                   (3.3) 

where k is the wavefront number given by 
 

 
 (c being the speed of sound in water) and dmn is 

the distance between the nth and mth microphones. So each entry in R is the coherence 

between the nth and mth microphones. 

 

A second measure used in our experiments is the white noise gain (WNG) of the array and 

this measures the gain in the presence of incoherent noise between sensors. This is a measure 

of the robustness of the array to factors such as small changes in sensor position. The WNG 

of the array is given by 

    
      

   
                                                                              (3.4) 

For an unshaded array the WNG is equal to the number of sensors, Gw = M. 
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We initially test the effect of sparse optimisation on an array at a DOA of zero degrees, this 

corresponds to the direction of the main beam being perpendicular to the array. We then steer 

the array to -30 and -60 degrees where the array response is tested and array gain is measured 

for different numbers of elements selected by the sparse optimisation Equation (3.1). Initially 

we allow different sensor configurations for each different steering angle. We test the array 

first with the full 100 elements then this is reduced in steps of 10 sensors until we select only 

50 sensors (half of the elements in the array). 

 

In the first set of experiments we examine the performance of an unshaded array in which all 

the weights in w are set to 
 

 
. We also test the Dolph-Chebychev weighting configuration. 

This weighting is used to make all sidelobes the same height below the main lobe and in all 

our experiments the sidelobe level was set to 20dB below the peak of the main lobe. After the 

optimisation process a threshold of 0.001 on the real component of the weights is applied, 

thus adding to the sparsity of w. 
 

 

(a)                                                                  (b)  

Figure 3.4. Response from an unshaded array (a) at 0 degrees, and from a Dolph-Chebychev weighted 

array (b) steered to -30 degrees, both using 70 out of 100 sensors. 

It can be observed in Figure 3.4 that while the main beam is still narrow and the side lobes 

close to the main beam are low, almost immediately large sidelobes form toward -90 and +90 

degrees and quickly grow. The weighting pattern for 70 sensors at 0 degrees can be seen in 

Figure 3.5, which clearly shows that the weights in the centre of the array are maintained at 

the expense of those at either end of the array. This may be due to the fact that the 

optimisation in Equation (3.1) is based on minimising the total error between the desired and 

designed response. As the values of the response are much higher in the centre than at -90 and 

90 degrees, the optimisation allows the errors at -90 and 90 degrees to increase whilst a 

narrow beam width and low sidelobes are maintained in the centre as the number of sensors 

are decreased. 
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Figure 1.5. Weight configuration for an unshaded array using 70 out of 100 sensors. 

 

 

Table 3.1. Array gains for an unshaded array at 0 degrees and for a Dolph-Chebychev array at 

-30 degrees. 

 

 

Tables 3.1 shows respectively the array gain and WNG for an unshaded array with different 

numbers of sensors for both an unshaded and a Dolph-Chebychev array. This table shows 

how both measures, in general, decline as the number of sensors are reduced.  

 

We then look at controlling the size of the sidelobes of the array response. In order to achieve 

this we introduced additional constraints into Equation (3.1) to enforce a maximum value on 

the first two sidelobes of the response, as follows 

                                                                                           (3.5) 

                                            

                                        

Number of 

sensors 

Unshaded array at 0 degrees Dolph-Chebychev array at -30 degrees 

 Array gain WNG Array gain WNG 

100/100 66.86 

(18.25dB) 

100.00 (20.00 

dB) 

53.38 (17.27dB) 70.64 (18.49dB) 

90/100 62.80 

(17.98dB) 

90.00 (19.54dB) 49.64 (16.96dB) 64.54 (18.10dB) 

80/100 59.93 

(17.78dB) 

80.00 (19.03dB) 44.79 (16.51dB) 57.99 (17.63dB) 

70/100 58.00 

(17.63dB) 

70.00 (18.45dB) 39.57 (15.97dB) 50.88 (17.07dB) 

60/100 57.95 

(17.63dB) 

60.00 (17.78db) 34.04 (15.32dB) 43.34 (16.37dB) 

50/100 63.39 

(18.02dB) 

50.00 (16.99dB) 28.31 (14.52dB) 35.55 (15.51dB) 
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where    and   are steering vectors corresponding to the first two sidelobes on either side of 

the main beam and β is a threshold placed on the level of these sidelobes. In practice the 

values of α and β are a trade off between the sidelobe level controlled by β and the amount of 

overall error in the response of the array controlled by α. In order to incorporate these 

additional constraints into the minimisation, we need to relax the overall error to obtain a 

tractable solution. So in the following experiments we set α = 1 and β = 0. The problem of 

tractability with an increased number of constraints can also be addressed by using more 

sensors, as this is equivalent to adding parameters to the system. 

 

The results of applying the optimisation to a Chebychev weighted array can be seen in Figure 

3.6. It can be observed that the first two side lobes are significantly reduced, by at least 5 dB 

from the previous sidelobe level. As well as having to increase the error limit on the response, 

we also noted that with the additional constraints introduced to lower the first pair of 

sidelobes the array gain is reduced from 16.76 dB to 14.05 dB and the WNG from 15.08 dB 

to 13.37 dB. 

 
Figure 3.6. Response after imposing additional constraints on sidelobe levels. 

 

 

2) Dealing with Sensor Failures 

 

We have also proposed to approach the sparse array problem from the opposite direction. 

Instead of attempting to determine the array configuration that gives the optimal response, we 

take a given array configuration with missing sensors and then optimise the response for this 

configuration.  Sensor arrays operating in difficult environments can suffer from high failure 

rates of components or blocks of components. It can also be very difficult and expensive to 

replace those damaged sensors. This is particularly true in the case of underwater hydrophone 

arrays, whether mounted on vessels or placed on the sea floor. Therefore a method of 

improving the robustness of these arrays to sensor failure by optimising the weighting on 

each sensor to give the best possible response given the missing sensors would be valuable. 



63 
 

We can introduce additional constraints in the convex minimisation. Using additional 

constraints to Equation (3.1) we can include a specific arbitrary array configuration in the 

optimisation. This configuration could correspond, for example, to an array with damaged 

or missing sensors. More specifically the weight of any sensor that is not used is 

constrained to be zero, so effectively turning that sensor off. This is then used to optimise 

the array response in the event of sensor failure. We define the set of sensor indices to be I 

= {1,2,3,...M}, we then define the subset of failed sensor indices to be J ⊆I, where J = 

{wJ1,wJ2,...,wJk}. The optimisation equation with additional constraints is given by: 

                                                                                                    (3.6) 

 

                            

 

where k is the number of missing or damaged sensors {wJ1,wJ2,...,wJk} corresponding to the 

weights of the sensors that are set to zero. 

 

Losing individual sensors randomly from an array does not necessarily affect the array 

response. However in practice many sensor array systems, for example hull mounted 

hydrophone arrays, are modular in design so sensors often fail in blocks not individually. In 

the following set of experiments we simulate the failure of blocks of sensors in the array and 

show the response of the damaged array before and after the blocks of sensors are removed.  

Here we simulate failures in two types of modular array, the first with modules of 5 sensors 

and the second with modules of 15 sensors. In our first set of experiments, we simulate the 

failure of two blocks of five sensors and the pattern of this sensor loss is shown in Figure 3.7a 

(Failure mode 1). In the second set we simulate the failure of two blocks each containing 15 

sensors as shown in Figure 3.7b (Failure mode 2). 

 
(a)                                                       (b) 

Figure 3.7. Array configuration with (a) modules of five sensors and two modules failed, and  

(b) 15 sensors and two modules failed. 

 

The result of the first failure mode with 10 missing sensors is shown in Figure 3.8a and 

3.8b, it can be seen that for both the unshaded and the Dolph-Chebychev the optimisation 

taking into account the damaged array configuration generally improves the response of the 

array. This improvement is increased when the level of damage to the array is increased. 
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This can be seen when the number of missing sensors is increased to 30 as shown in Figure 

3.9a and 3.9b. 

 

 
(a)                                                          (b) 

Figure 3.8. Response of unshaded array (a) and Dolph-Chebychev array (b) in failure mode 1. 

 

 
(a)                                                                     (b) 

Figure 3.9. Response of unshaded array (a) and Dolph-Chebychev array (b) in failure mode 2. 

 

It should particularly be noted that in all cases the level of the sidelobes in the damaged 

array response is significantly increased, in the case of the array missing 30 sensors these 

rise to more than -10 dB below the main beam. In all cases the optimisation decreases these 

sidelobe levels to below -10 dB. 

In order to quantify the level of sidelobe reduction we measure the relative sidelobe level 

(RSLL) which is the maximum sidelobe level for a given response. We measured this level 

for steering angles from 0 degrees (beam on to the array) to 60 degrees in 10 degree 

increments and then took the mean of the levels for both the damaged array and the 

optimised array for the two failure modes shown in Figures 3.7. Table 3.2 shows the mean 

and variance of the RSLL for failure modes 1 and 2 respectively. It can clearly be seen in 

these results that optimising the array taking into account the damaged configuration 

significantly lowers the level of the sidelobes in the responses for both failure modes. 

 Damaged array Optimised array 

 Mode 1 Mode 2 Mode 1 Mode 2 

Dolph-Chebychev -13.80 dB (0.24) -8.55 dB (0.08) -19.02 dB (1.75) -13.32 dB (0.67) 

Unshaded -10.02 dB (0.06) -6.85 dB (0.23) -12.43 dB (0.61) -10.74 dB (0.59) 

Table 2.2. Average RSLL for both arrays in failure mode 1 with 10 sensors missing,  

and mode 2 with 30 sensors missing. 
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In our proposed method the configuration of the damaged array is used as a constraint in the 

optimisation, with the weights of missing sensors set to zero. This is an important problem as 

the replacement or repair of damaged sensors can be extremely difficult and expensive, 

particularly in the case of underwater hydrophone arrays. We demonstrate that in the 

challenging task of improving performance when blocks of sensors are missing from the 

array, our proposed optimisation improves the array response. 

 

3.5.3 Joint Sparsity Optimisation for Simultaneous Sensor Selection and DOA 

Estimation  

Source localisation, such as direction of arrival (DoA) estimation, is an important issue in 

applications such as underwater acoustic detection, target tracking and environmental 

monitoring (Benesty et al., 2008, Bai et al., 2013). Traditionally, DoA estimation is addressed 

by methods, such as Capon beamformer, high-resolution and multiple signal classification 

(MUSIC) algorithm (Handel et al., 1993, Totarong, and El-Jaroudi, 1992, Hakam et al. 2013). 

Recently, Spatial sparsity based optimisation, which aims at extracting meaningful lower-

dimensional information from high-dimensional data (Knee, 2012), has attracted great 

interests. A novel solution for spatial sparsity optimisation is to use a full array based 

compressive sensing (CS) theory (David, 2006), where the activity of source is assumed to be 

sparse and the sparsity is enforced by a constraint based on
1 norm of a vector of the 

coefficients corresponding to the source activities in the spatial domain (Malioutov et al., 

2005). However, in practical applications, only partial sensors from the array may be 

available due to the constraints induced by the manufacturing costs of the sensors, physical 

space limits and the problem of sensor failure.  

Motivated by the aforementioned problems, we have proposed a joint optimisation of sparse 

array and spatial sparsity, to achieve source detection in a subset of space with as few sensors 

as possible (Chen et al., 2016). The method is operated in a two-step iterative process, where 

the first step is to find the minimum number of sensors to be used in array and the second 

step is to perform source localisation based on the least absolute shrinkage and selection 

operator (LASSO) algorithm with the selected sensors. Both stationary and moving sources 

are considered as shown in Fig. 3.10. The approach can be initialised at a random direction 

and eventually find the DoA after it converges. An extension from narrowband to broadband 

has also been studied by reshaping the broadband signal in a narrowband-like manner, as well 

as the corresponding desired beam response and dictionary matrix. In Fig. 3.11, we show the 

spectrogram of wideband DoA estimates for the last frequency band and the 3D graph 

illustrates the simulations at the final time step where 69 of 300 sensors are used. 

        

(a)                                                              (b) 

Fig. 3.10. Narrowband DoA estimations for (a) stationary source (SNR=20dB) with 37/100 

active sensors and for (b) moving source (SNR=20dB) with 22/100 active sensors. 
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(a)                                                                 (b) 

Fig. 3.11. Wideband DoA estimations for the moving source, the 3D graph (a) illustrates the 

simulation result at the 20-th time step and the spectrogram (b) is the DoA estimation for the 

last frequency band, 69/300 active sensors. 

In order to further improve the DoA estimation result, we have considered the use of 

statistical constraints in joint array and spatial sparsity based optimisation framework, where 

the Fisher Information Matrix (FIM) is used to express the Maximum Likelihood Estimation 

(MLE) of the source signal (Nandi, 1994, Kay, 1993). In the step of sparse array optimisation, 

a constraint with FIM is considered to reduce the error before scaling the observed signal by 

the weight coefficients. In the spatial sparsity reconstruction step, the difference between the 

reconstruted result and the desired beam response is also constrained with a statistical term. 

Fig. 3.12 shows the results of narrowband DoA estimation with FIM constrained joint 

approach for the moving sources without and with noise. An example of tracking from 50 

degrees to -50 degrees is shown to demonstrate the performance of the proposed method. For 

the future work, we will extend the FIM constraints from the narrowband to the broadband 

scenario. A more detailed study will be conducted for the use of FIM, including the process 

to calculate MLE through FIM, the possible convex optimization problem, and the problem 

of computing the expectation. 

                      

(a)                                                                                              (b) 

Fig. 3.12. Narrowband DoA estimation with FIM constrained joint array sparsity and spatial 

sparsity based approach for moving sources (a) without noise and (b) with noise 

(SNR=20dB). 

 

3.5.4 Acoustic Reflector Localisation and Its Use to Improve Source Separation 

 

The work undertaken by Luca Remaggi can be categorized into four main tasks. The first task 

regards the evaluation of an epoch detector algorithm, the clustered dynamic programming 
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projected phase-slope algorithm (C-DYPSA), which we proposed as times of arrival (TOAs) 

estimator. Secondly, several simulated room impulse responses (RIRs) have been produced 

and utilized to test the acoustic reflector localization methods proposed, comparing them with 

the state of the art. Both these tasks were included in the journal article that has been 

published this February 2017 (Remaggi et al., 2017). The acoustic reflector has been 

incorporated into a blind source separation as side information for further improving the 

performance of source separation in reverberant environment.  

 

Starting with the C-DYPSA evaluation, this novel TOA estimator C-DYPSA was evaluated 

and compared against its previous version, the DYPSA algorithm (Naylor et al. 2007), on the 

four recorded datasets. In addition, the experiments to compare DYPSA and C-DYPSA with 

the algorithm in (Kuster, 2008) were performed, applying the same datasets. DYPSA 

estimated the peak positions in each RIR singularly, detecting zero crossings in the group 

delay function. C-DYPSA improved it, by exploiting the information given by multiple 

microphones, by clustering different microphone results and deleting outliers. On the other 

hand, the peak detector utilized in (Kuster, 2008)  employed an adaptive threshold based on 

the time domain amplitudes averaged over neighbouring samples.  
 

The fine errors produced were calculated as root mean square error (RMSE) and confidence 

interval (CI). These results are reported in the bottom of Table 3.3. C-DYPSA performed 

better in every dataset, since outliers produced by DYPSA for single RIRs are discarded in C-

DYPSA, generating a final estimate more robust and accurate. In fact, the top part of Table 

3.3 shows the gross errors decreasing for every dataset, applying C-DYPSA. Regarding the 

Kuster’s method (Kuster, 2008) preliminary results showed a gross error rate close to 100%. 

Therefore, a couple of improvements were applied on it: the first peak detected was forced to 

correspond to the RIR peak having greater energy (in other words all the peaks detected 

before the direct sound were deleted); since the Kuster’s method observes the RIRs by 

dividing them in temporal windows, it was improved by not allowing multiple peaks inside 

the same time interval (the only peak selected for each window is the one corresponding to 

the local maximum of energy). However, as can be seen in Table 3.3, C-DYPSA produced 

higher performance than (Kuster, 2008), both in terms of fine and gross errors. 

 
 Gross Error (%) RMSE (mm) 

 AudioBooth Studio1 VML Vislab AVG AudioBooth Studio1 VML Vislab AVG 

Kuster 16.9 26.7 57.5 26.7 31±9 89 194 227 94 151±34 

DYPSA 2.3 0.5 27.1 0.5 11±11 54 100 194 110 115±50 

C-DYPSA 0.7 0.0 21.1 0.0 8±9 48 99 192 95 109±51 

Table 3.3. TOA estimation, C-DYPSA evaluation and comparison. 

 

 

The second topic is the simulations made to evaluate the reflector localization algorithm 

proposed (i.e. ISDAR-LIB, mean-ISDAR-LIB, median-ISDAR-LIB, and ETSAC) together 

with two state-of-the-art methods. Both these results and the one provided by the C-DYPSA 

analysis have been published through a journal (Remaggi et al., 2017). The aim of these 

simulations was to evaluate the proposed reflector localization methods, over a wide variety 

of controlled scenarios, highlighting potential strengths and weaknesses. The metrics utilized 

were RMSE and CI to evaluate the fine errors, and the gross errors. Two different sets of 
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simulations were performed. First, the 100 datasets produced by varying size and average 

absorption coefficient α, with direct sound 70dB louder than the additive noise, and 

microphone perturbation of 7mm maximum, were evaluated, with results reported in Table 

3.4.  
 

 
Gross Error (%) Size α 

  Small Medium Large 0.2 0.5 0.8 Overall 

ISDAR-LIB 29.7 0.5 0.0 3.6 19.1 6.6 9.9 ± 8.7 

Median-ISDAR-LIB 14.0 0.0 0.0 2.0 11.4 1.0 4.7 ± 4.6 

Mean-ISDAR-LIB 9.7 0.0 0.0 1.0 8.2 1.0 3.3 ± 3.2 

ETSAC 8.1 0.0 0.0 0.1 5.9 0.4 2.4 ± 2.6 

 
RMSE (mm) Size α 

 Small Medium Large 0.2 0.5 0.8 Overall 

ISDAR-LIB 61 13 13 13 31 44 29 ± 15 

Median-ISDAR-LIB 27 34 34 30 29 34 31 ± 2 

Mean-ISDAR-LIB 207 34 24 60 151 109 98 ± 52 

ETSAC 145 13 14 13 107 71 61 ± 41 

 

Table 3.4. Simulations for varying size and absorption coefficient of the rooms. 
 

Then, the 300 datasets obtained by varying the direct to noise ratio (DNR) were considered, 

and the results are shown in Table 3.5. Starting from the first set of simulations (Table 3.4, 

top), the direct localization ETSAC gives the best performance, with the lowest gross error 

over the 100 datasets. The multiple-loudspeaker methods (i.e. median-ISDAR-LIB and 

median-ISDAR-LIB) outperformed the single-loudspeaker method (i.e. ISDAR-LIB). Mean-

ISDAR-LIB was the better image-source reversion reflector locator, among those tested. 

Grouping by room size, we note that every method suffers when the room dimensions 

become too small. This is due to the fact that, in really small environments, the loudspeakers, 

which are perfectly omnidirectional for the simulated datasets, can happen to be closer to 

different reflectors, raising an ambiguity on which reflector is under investigation. ETSAC, 

the direct locator, is still better under these conditions. On the other hand, organizing the 

results considering the three different α, when α=0.5 all the methods seem to deteriorate. 

However, the smallest room generated has been coincidentally selected to have α=0.5, and 

there is no clear trend between α=0.2 and α=0.8 under these conditions. The methods are 

more affected by the room size rather than α. Again, the direct localization ETSAC is the best 

method under every condition. The RMSE reported on the bottom of the table, should be read 

with the related gross error, as the RMSE of the fine error values depends on the amount of 

gross errors eliminated from the calculation. First, median-ISDAR-LIB has consistent results 

over all the conditions: although it produces gross errors with more datasets than mean-

ISDAR-LIB, if the setup gives fine errors it is more robust on identifying outliers over the 

estimated image sources. Compared to the image-source reversion method with lowest gross 
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error, ETSAC's fine error is better. There is also a tendency for higher αs to produce higher 

fine errors with every method.  

 

For the second set of simulations, observing the gross error reported in the top part of Table 

3.5, the only two methods that are not strongly affected by lower DNRs are mean-ISDAR-

LIB and ETSAC. ETSAC is, in general the best method here tested, however, it faces small 

issues with DNR=30dB. Here, mean-ISDAR-LIB has comparable performance, showing a 

high robustness over DNR variations. Nevertheless, looking at the fine errors on the right side 

of the table, a general trend of improving performance with increasing DNR can be noted. 

The only one that does not follow that trend is ETSAC. However, it has the lowest gross error 

for DNR=40dB and DNR=50dB, which includes more samples in its RMSE calculation. 

Compared to mean-ISDAR-LIB, ETSAC has lower RMSE, showing ETSAC to be the best 

method tested in these simulations.  
 

 Gross error (%) RMSE 

  Small Medium Large 0.2 0.5 0.8 

ISDAR-LIB 11.8 9.4 9.3 41 ± 2 28 ± 2 30 ± 2.6 

Median-ISDAR-LIB 19.3 5.1 5.7 45 ± 2 33 ± 1 33 ± 2.6 

Mean-ISDAR-LIB 3.3 3.9 3.6 128 ± 6 107 ± 6 109 ± 2.6 

ETSAC 3.7 2.1 2.2 65 ± 1 80 ± 1 80 ± 2.6 

Table 3.5. Simulations varying the DNRs. 

Finally, we consider the use of the acoustic reflector information to improve source 

separation performance. To this end, we use Mandel’s method (Mandel et al., 2010) as a 

baseline, by including interaural phase difference (IPD) cues related to the first reflection. 

This allows the generation of a Gaussian Mixture model that is able to determine, for each 

time-frequency bin, the probability of a specific source that is dominant in the time-frequency 

point of the mixture, together with its first reflection. Experiments have been performed to 

evaluate the SDR produced by the proposed method. In Figure 3.13, the signal to distortion 

ratios (SDRs) are reported for every dataset and every position of the target signal. These 

results were calculated as the RMS over all the possible positions of the interferer. It is clear 

from Figure 3.13 that, for every dataset, the proposed blind source separation method, 

considering one interferer, performs better than Mandel’s method. This implies that the use of 

the acoustic reflector information is helpful in improving source separation performance.  
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Figure 3.13. SDR obtained for different target positions. The blue lines with circular marks refer to 

our proposed method, whereas the red ones with crossed marks refer to (Mandel et al., 2010). 

 

3.5.5 Source Tracking with PHD Filters 

1)  SFM-MCMC-PHD 

 

The focus of the work by Pengming Feng is mainly on the social force model based MCMC-

OVSCM particle PHD filter for multiple human tracking. This method is briefly summarised 

below. 

 

After the prediction step of the particle PHD filter, the weights for each particle are calculated 

by the energy based social force model, which contains energy function for distance     
   

, 

energy function for changing of angle     
   

, energy function for changing of velocity       

and energy function for changing of destination     : 
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then the energy based social force for each particle is calculated as: 

 

  
         

          
                                                                           (3.9) 

 

After calculating the social force for each particle, all particles are fed into an MCMC 

resampling step to achieve more accurate prediction. In the measurement model, the OCSVM 

classifier is employed to calculate the likelihood for particles, which is also aided by 

background subtraction. At last, the weights for the particles are updated by the update step 

of the particle PHD filter, and resampled in order to avoid the computational complexity 

growing exponentially. The proposed system is evaluated on the selected sequences from the 

CAVIAR, PETS2009 and TUD datasets. Results are presented in Figure 3.14 which shows 

that the proposed method improves the tracking performance over the baseline PHD methods. 

This work has been accepted to publish in a journal (Feng et al., 2017). 
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Fig. 3.14. Tracking performance of the proposed social force model based MCMC-OVSCM 

particle PHD filter as compared with baseline methods including PHD and SFM-MCMC-

PHD.  

 

 
2) Adaptive Retrodiction PHD 

 

Following the idea of combination of adaptive filters, this work employs the forward and 

backward process adaptively, where the backward process is achieved from the backward 

retrodiction step. Instead of using the term of PHD smoother, the term of retrodiction is 

employed because of the non-Gaussian and nonlinear of the state and measurement model. 

Fig. 3.15 shows the flowchart of the proposed system. 

 

 
Fig. 3.15. Graphical comparison between PHD filtering, Retro-PHD filtering and the 

proposed adaptive Retro-PHD filtering algorithm.  

 

Assuming the time lag to be L, the backward weight      
  is calculated as: 
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After calculating the weight for particles from both the forward and backward process, the 

convex weights for the adaptive step are calculated as 
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And the tracking position from the adaptive step is found by using a convex combination of 

results from both filtering and retrodiction as: 

 

   
   

   
                                 

    
          

                           
                                                   (3.15) 

 

When evaluated on the selected sequences from the CAVIAR and PETS2009 datasets, the 

results are presented in Figure 3 which shows that the proposed method improves the tracking 

performance over the baseline methods.  This work has been published as (Feng et al., 2016). 

 

Fig. 3.16. Tracking performance of the proposed adaptive retrodiction particle PHD filter as 

compared with the baseline methods. 

 

3.5.6  IVA Based Source Separation with the Multivariate Model 

 

The work of Waqas Rafique has been on source separation based on independent vector 

analysis (IVA) algorithms. IVA provides a different way for addressing the permutation 

problem by using a dependent multivariate source prior instead of independent univariate 

source prior as in the case of the ICA algorithm (Kim et al., 2007). Using a dependent 

multivariate source prior, the dependency between different frequency bins of each source 

can be retained, whilst independence between each source vector can be maximised. 

Therefore, selecting an appropriate multivariate source prior is crucial for the separation 

performance of the IVA algorithm. Two methods have been developed recently, as explained 

below. 

1) Multivariate Mixed Source Prior for IVA Algorithm 

The separation performance of the IVA algorithm depends on the nonlinear score function 

which is used to preserve the inter-frequency dependency. We have introduced a new mixed 

source prior to be used in both the IVA and the fast fixed point IVA (FastIVA) algorithm. 

Recently a mixture of multivariate Student’s t and the super Gaussian distribution is adopted 
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as a source prior for the IVA and the Fast version of the IVA (FastIVA) algorithm. The 

multivariate Student’s t distribution has heavier tails which can be useful in modelling high 

amplitude components in speech signals, such as in voiced signals (Rafique et al., 2015). At 

the same time, the dependent super Gaussian distribution can be used to model the rest of the 

signals. The performance of the proposed multivariate mixed source prior was tested in real 

room environments with reverberation time of 565ms. This work is published in IET 

Intelligent Signal Processing conference, London, UK 2015 (Rafique et al., 2015) and in 

IEEE Sensor Array and Multichannel Signal Processing Workshop, Rio de Janerio, Brazil, 

2016 (Rafique et al., 2016). 

In order to further enhance separation performance of the mixed multivariate source prior, the 

ratio of the Student’s t distribution and the super Gaussian source prior were adjusted 

automatically according to the energy of the speech signals. Importantly, the method is found 

to be successful only with access to the mixtures not the original sources. Again, the 

separation performance of the IVA algorithm is evaluated in different realistic scenario with 

very high reverberation time and results are shown in Figure 3.17. This work is published in 

EUSIPCO 2016 (Rafique et al., 2016).  

 

Fig. 3.17. The graph provides performance of the fixed mixed and energy driven mixed 

source prior at six different angles using BRIRs. Results were averaged over twelve mixtures 

at each angle. 

 

2)  Expectation Maximisation Framwork for IVA Algorithm  

 

Previously, identical source priors were used. However, different speech sources will 

generally have different statistical properties. The properties of natural speech vary from 

person-to-person and depend on which language being spoken as the pronunciation rates and 

phonemes can be totally different in different parts of the world. The recorded speech is 

dependent on variations in room acoustics and microphone characteristics e.g. different 

rooms will have different reverberation effects and different microphones will have variable 

frequency responses. All of these factors can change the observed human speech signal and 

therefore different speech signals generally have different statistical properties. It is important 

that the BSS algorithms can adapt their statistical structure according to the characteristics of 

the observed speech signals. 

 

A novel IVA algorithm was proposed by using the Student's t mixture model (SMM) which is 

adopted as a source prior for the IVA algorithm, instead of the conventional identical 

multivariate distributions. The Student’s t mixture model as a source prior can adapt to 

statistical properties of different speech mixtures. The unknown parameters of the source 

prior and unmixing matrices are estimated by deriving an efficient expectation maximization 
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(EM) algorithm.  Improvement in the separation performance in realistic scenarios is 

confirmed by simulation studies on real datasets. A journal article is in preparation for this 

study.  

 
 

Fig. 3.18. Comparison between different source priors for the IVA algorithm for BRIRs 

(RT60 = 565ms). The separation performance at each angle is averaged over eighteen 

different speech mixtures. The IVA algorithm with proposed mixture model Student's t 

source prior performs better at all the separation angles in comparison to the use of identical 

source prior for all the sources. 
 

3.6 Future Plans 

 

 We will continue to improve the computational efficiency of the MS-SBR2 

algorithms. We will also provide more theoretical studies to the behaviour of the 

SBR2 and MS-SBR2 algorithms. We will perform comprehensive evaluations for the 

MS-SBR2 algorithm. Different types of dataset will be used to test the algorithm, 

such as large size random matrices, simulated MIMO data, and defence related data 

such as Portland 03 dataset. 

 We are extending the spatial sparsity based DoA estimation method by incorporating 

ship pose/direction information into the optimisation. We are currently testing this 

new algorithm on both synthetic data as well as Portland 03 dataset. We plan to 

submit a journal paper in the next two months.  

 We will link further the sparse array work with automated sensor selection and the 

scenario for dealing with sensor failures. More experiments will be performed to 

evaluate its behaviour in a variety of situations including the sidelobe, array gain, and 

SNR. A journal submission is planned in the next six months.  

 We will extend the evaluation of the joint sparsity model based method using both 

simulated data with an acoustic model, and real data underwater acoustic data e.g. 

Portland 03 dataset.  The evaluations include different noise levels, different 

frequency overlaps between frequency bands, stationary and moving sources, and 

multiple sources.  

 We will include statistical constraints into the joint sparsity model to improve the 

performance of the algorithm to account for uncertainties in the noisy measurements 

from the array. Currently, we are performing experimental studies on this new 

algorithm.  
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 We intend to use the dictionary learning method to enhance the measurements of the 

particle PHD filter, including the method of hierarchical dictionary learning method to 

improve the tracking accuracy and reduce the computational complexity. Moreover, 

an online dictionary will be utilized to further improve the accuracy of the 

measurement model. 

 We will extend the experimental study of the acoustic reflector based source 

separation for more real acoustic data in room environment. Exploring the potentials 

of this algorithm for underwater acoustic data such as the Portland 03 dataset will also 

be an interest.  

 

3.7 Selected Activities and Engagements 

 

Engagement with industry partners and Dstl: 

 

 Atlas Electronik has been acting as a partner for the work package L_WP3. 

 A joint project (of seven months) under the MoD MarCE scheme between Atlas and 

Surrey has been conducted. The project is titled “Array processing exploiting sparsity 

for submarine hull mounted arrays”.  Simulations have been performed for studying 

the performance of an array in terms of array gain and SNR under sparse array 

configuration. We have completed a report and submitted to Atlas and also shared 

with Dstl. 

 Interactions with Julian Deeks and Nick Goddard on the 1
st
 Polynomial Matrix 

Decomposition Workshop in August 2016 about the potential exploitation and 

development of the sparse array work.  

 

Engagement between partners: 

 

 Joint work between Surrey University and Newcastle University has been conducted 

on sparse analysis model based dictionary learning and its use for signal recovery 

from noisy signals e.g. for image denoising and audio super-resolution, as well as for 

multiplicative noise removal, and on PHD filter for multi-source tracking.  

 Some informal discussions have been taken between Surrey and Cardiff on 

polynomial dictionary learning method based on polynomial matrix decomposition 

techniques. 

 

3.8 Outputs 

 

During the past year, we have generated the following publications. 

 
Published/accepted: 

 

 Z. Wang, J. G. McWhirter, J. Corr, and S. Weiss (2016), "Order-Controlled Multiple Shift 

SBR2 Algorithm for Para-Hermitian Polynomial Matrices," in Proc. 9th IEEE Sensor Array 

and Multichannel Signal Processing Workshop, Rio de Janeiro, Brazil, 2016. 

 J. G. McWhirter and Z. Wang (2016), "A Novel Insight to the SBR2 Algorithm for 

Diagonalising Para-Hermitian Matrices," in Proc. 11th IMA International Conference on 

Mathematics in Signal Processing, Birmingham, England, 2016. 
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 Z. Wang, A. Sandmann, J. G. McWhirter, and A. Ahrens (2016), "Multiple Shift SBR2 

Algorithm for Calculating the SVD of Broadband Optical MIMO Systems," in Proc. 39th Int. 

Conf. on Telecommunications and Signal Processing, Vienna, Austria, 2016. 

 M. Chen, M. Barnard, and W. Wang. (2016). "Joint Array and Spatial Sparsity Based 

Optimisation for DoA Estimation." in Proc. IEEE Sensor Signal Processing for Defence 

(SSPD), pp. 1-5, 2016. 

 L. Remaggi, P. J. B. Jackson, P. Coleman and W. Wang (2017), “Acoustic reflector 

localization: novel image source reversion and direct localization methods”, IEEE/ACM 

Transactions on Audio, Speech and Language Processing, vol. 25, no. 2, 2017. 

 P. Feng, W. Wang, S. Dlay, S. M. Naqvi and J. A. Chambers (2017), “Social force model 

based MCMC-OCSVM particle PHD filter for multiple human tracking,” IEEE Transactions 

on Multimedia, December, 2017. 

 P. Feng, W. Wang, S. M. Naqvi and J. A. Chambers (2016), ''Adaptive particle PHD 

smoother for multiple human tracking,'' IEEE Signal Processing Letters, vol. 23, no. 11, 2016. 

 Z. Fu, P. Feng, S. M. Naqvi and J. A. Chambers (2016), ''Robust particle PHD filter with 

sparse representation for multi-target tracking,'' in Proc. IEEE International Conference on 

Digital Signal Processing (DSP), 2016. 

 Z. Fu, P. Feng, S. M. Naqvi and J. A. Chambers (2017), ''Particle PHD filter with hierarchical 

dictionary learning for multi-target tracking,'' in Proc. IEEE International Conference of 

Acoustics, Speech and Signal Processing (ICASSP), 2017. 

 W. Rafique, S. Erateb, S. M. Naqvi, S. S. Dlay and J. A. Chambers (2016), "Independent 

vector analysis for source separation using an energy driven mixed student's T and super 

Gaussian source prior," 2016 24th European Signal Processing Conference (EUSIPCO), 

Budapest, pp. 858-862, 2016. 

 W. Rafique, S. M. Naqvi and J. A. Chambers (2016), “Mixed source prior for the fast 

independent vector analysis algorithm," in Proc. IEEE Sensor Array and Multichannel Signal 

Processing Workshop (SAM), Rio de Janerio, pp. 1-5, 2016. 

 

 

 

Submitted/under review/under preparation: 

 

 Z. Wang, A. Sandmann, J. G. McWhirter and A. Ahrens (2017), “Multiple Shift 

SBR2Algorithm for Calculating the SVD of Broadband Optical MIMO Systems,” 

International Journal of Advances in Telecommunications, Electrotechnics, Signals and 

Systems, 2017. (under  review) 
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L_WP4: MIMO and Distributed Sensing 

 

End of Year Report April 2016– Mar 2017. 

 

Staffing 

Work Package Leaders: Prof John J. Soraghan (ST) and Prof Ian K. Proudler (LU). 

Other Academics Involved: Dr Stephan Weiss (ST), Prof Sangarapillai Lambotharan (LU), Dr 

Carmine Clemente (ST). 

Research Associates: Mr Christos Ilioudis (PDRA6a-ST), Mr Domenico Gaglione (PDRA6b-ST). 

UDRC Research students: 

Affiliated Research Students: Mr Jianlin Cao (ST), Mr Yixin Chen (ST), Mr Adriano Rosario Persico 

(ST), Mr Alessio Izzo (ST). 

Lead Project Partner: Leonardo, Edinburgh. 

Dstl contact: Stephen Moore (Sensors & Countermeasures Dept.), Brian Barber (Sensors & 

Countermeasures Dept.). 

 

Aims and the lists of the original L_WP4 in the case for support: 

To develop novel paradigms for Distributed MIMO Radar Systems (DMRS). Links to L_WP1 

& L_WP2 through anomalies; L_WP3 through exploiting sparsity and L_WP5 for 

decentralised processing.  Advanced signal processing methods for active/passive DMRS will 

be investigated. The approaches aim to improve performance, reduce system requirements 

with the result of producing a set of algorithms suitable for robust applications in a cluttered 

networked battlespace (T1, T3, T5, T8). 

 

Progress made in the fourth year in addressing the original objectives 

 

Staffing 

Dr Carmine Clemente was promoted as Lecturer in April 2016. 

Mr Christos Ilioudis and Mr Domenico Gaglione are near to completing their PhDs and were 

appointed as Research Assistants for WP4 since June 2016. 

Mr William Coventry started his PhD in October 2016. His studentship is co-sponsored by the 

Electronic Support Measures of Leonardo. The student will be working on Fine-Time Resolution of 

Passive RF imaging. 

Mr Ilias Theodorou started his PhD in December 2016. The student will be working on Space Debris 

detection based on passive CubeSAT radar systems. 

 

L_WP4.1 progress 

The work developed at ST on WP4.1 focuses on the development of novel signal processing 

techniques, paradigms and systems for high performance distributed sensing.  The work 

includes the development of new cognitive radars that are able to fuse together intelligently 

different radar technologies and information sources in a distributed sensing framework. To 

this end, the work has concentrated in the following sub-areas during the fourth year.  

 

 D. Gaglione is currently working on the extension of POMP based algorithm for helicopter 
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classification in the multi-target/multi-sensor scenario. Moreover, the Student Research 

Highlight paper was published; L_WP4.1-3 

 Journal paper accepted regarding the use of Krawtchouk moments for target classification on 

SAR images. 

 Hardware implementation of the Krawtchouk based approach for classification of human  gait 

from micro-Doppler signatures. This work also generated a paper entitled “Efficient Micro-

Doppler based pedestrian activity classification for ADAS systems using Krawtchouk 

moments” presented in the 11th IMA conference; L_WP4.1-4 

 Investigation of classification of unmanned aerial vehicles (UAVs) using global navigation 

satellite system (GNSS) passive radars, and two proposal submissions one for CDE and one 

for the ESNC; L_WP4.1-5 

  

L_WP4.2 

The work developed at ST on L_WP4.2 focuses on the development of novel signal processing 

techniques and algorithms for distributed systems. To this end, we have concentrated in the following 

sub-areas in the fourth year. 

 

 Journal paper accepted on modelling, algorithms and evaluation of micro-Doppler based 

recognition of ballistic targets; L_WP4.2-1 

 The review of the Journal paper on CFAR Detection in Foliage Penetrating SAR images was 

completed; L_WP4.2-2 

 Journal paper accepted on Oil Spill detection using Multi-family GLRT from SAR images; 

L_WP4.2-2 

 Journal paper accepted on Covariance Matrices Symmetries based Polarimetric SAR image 

Classification; 

 A paper on Co-Radar experimental validation was accepted and was presented at SSPD 2016. 

Additionally, a Journal paper on the proposed system is nearly completed. The proposed 

system was presented at the CDE marketplace (26th April); while two proposals, to Huawei 

and NXP for the application of the technique in vehicular communication were also submitted 

with the latter being accepted; L_WP4.2-5 

 

Technical Highlight 

 

Ambiguity Function for MIMO Radar Systems 

Design and performance analysis of MIMO radar systems is a subject of high interest and 

relation to L_WP4. The most commonly used tool performance evaluation tool in radar 

systems is the ambiguity function (AF). Although the AF for monostatic radar systems is well 

defined by the so called Woodward AF, various definitions regarding the MIMO AF have 

been proposed in the literature. 

Recently, a new AF definition based on the Kullback Leibler divergence and applied to a 

narrowband distributed MIMO signal model was proposed in [1]. Theoretical analysis 

showed that the proposed AF, similarly to the traditional definition, is maximally stretched 

between 0 and 1 while also being flexible for various system assumptions. Moreover, the 

performance of the proposed AF compared to the commonly applied approach of summing 
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the matched filter outputs of all transmitter receiver pairs was examined. The simulation 

results demonstrated that the proposed method performs significantly better for varying 

energy parameter and offers lower floor levels when a constant energy parameter is assumed 

[1]. 

An extension of the MIMO AF in [1] was also held in [2] offering a more generalised 

definition. Here the proposed MIMO AF covers a broader signal model accounting for 

arbitrary system geometry configurations. Moreover, theoretical analysis showed that the 

KLD and therefore the proposed MIMO AF can be factorised into signal and channel 

correlation matrices. The derived expression of the KLD between the probability measures of 

the received signal indexed by real spatial/velocity position of the target    and an estimated 

one   is as follows: 

 

        
 

 
             

     

  
 

       
    

  
 

     
    

  
 

     
     

         
     

  
 

         
    

  
 

     
    

  
 

     
 

  

 

         
    

  
 

     
          

     

  
 

     
  

 

 

where          is the correlation between the real and expected received signal from each 

transmitter, and      and      are the expected signal and channel correlation matrices 

assuming a target at  . This formulation allows for higher flexibility and potentially more 

simplified optimisation process. The behaviour of the proposed AF was investigated in a 

    MIMO radar system using orthogonal waveforms. The geometry of the system for the 

examined scenario is illustrated in Figure 1a. The behaviour of the proposed AF for two 

different target placements:       (see red star in Figure 1a) and             (see blue star 

Figure 1a) is illustrated in Figure 1b and Figure 1c respectively. As it can be seen in Figure 

1a, assuming the target at       corresponds to a distributed system approximation as the 

target is “viewed” by the sensors from different directions. The main characteristic of this 

configuration is that the different transmitter-target-receiver channels will be uncorrelated [2] 

and therefore the AF can be described by the constructive summation of 16 ellipsoid ridges 

associated with each transmitter receiver pair (see Figure 1b). On the other hand, when the 

target is placed at             the system can be considered as collocated as the target is 

“viewed” from a narrower span of directions (see Figure 1a). This geometry results in 

correlated transmitter-target-receiver channels [2] meaning that the ellipsoid ridges can be 

added constructively or distractively depending on their phase and channel correlation (see 

Figure 1c). A further investigation on the proposed definition is currently being performed to 

involve non-orthogonal and non-narrowband signal models. The research outcomes are 

planned to generate a journal paper. 
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Figure 1 Illustration of (a) geometry of system and MIMO AF behaviour assuming a target at (b) [0,0] and 
(c) [-425,-425] Cartesian [x,y] coordinates 

  

(b) (c) (a) 
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Fractional Fourier Based Waveform for a Joint Radar-Communication System – 

Comparison Analysis with OFDM and Experimental Validation  

The activity regarding the joint radar-communication (CoRadar) system based on the 

Fractional Fourier Transform (FrFT) [3] has been further investigated, through an extensive 

comparison analysis with OFDM and with the validation of the concept by means of a 

prototype of the system [4].  

Compared to an OFDM waveform, the FrFT waveform presents lower range and Doppler 

sidelobes, as shown in Figure 2(a)-(b), and this is reflected in their performance in terms of 

Probability of Detection (  ) and Probability of False Alarm (   ) when used with common 

detectors, as shown in Figure 2(c). Indeed, the FrFT shows performance very close to a 

Linear Frequency Modulated (LFM) pulse, while for the OFDM waveform, once the    is 

fixed to a certain desired level, the     results are higher compared to FrFT and LFM 

waveforms. 

  
 

(a) (b) (c) 

Figure 2. (a) and (b) Ambiguity Functions (AFs) of the FrFT and OFDM waveforms, respectively. (c) 
Receiver Operating Characteristic (ROC) of a square law detector when FrFT, OFDM and LFM waveforms 

are used and          . 

Comparison is also made in terms of communication performance as shown in Figure 3, from 

which it is observable that the Bit Error Ratio (BER) presents the same trend on varying the 

energy per bit to noise power spectral density (  ) for both FrFT and OFDM, and for all the 

channel models considered. 
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(a) AWGN Only (b) Rice Channel + AWGN (c) Rayleigh Channel + AWGN 

Figure 3. Communication performance. Comparison between FrFT waveform and OFDM on varying the 
energy per bit to noise power spectral density, for (a) AWGN noise only, (b) Rayleigh channel plus AWGN 

and (c) Rice channel plus AWGN.  

The prototype of the proposed FrFT CoRadar system consists of a mono-static radar that 

generates the FrFT waveforms, sends the pulses and performs basic radar tasks, and a 

separate communication receiver that demodulates the pulses. The entire system is 

implemented by means of an SDR device, namely the NI-USRP 2943r. Figure 4(a) shows the 

communication performance of the FrFT CoRadar in different configurations evaluated on 

real data (solid lines), and compared to simulated data (dashed lines) assuming an indoor 

Rice channel, while Figure 4(b) shows a spectrogram when FrFT CoRadar pulses with   sub-

carriers are used. The Doppler and micro-Doppler signature of the person walking towards 

and away from the radar is clearly visible. 

 
 

(a) (b) 

Figure 4. (a) Communication performance on real data, on varying    and for different number of sub-

carriers. (b) Spectrogram obtained from FrFT CoRadar pulses with   sub-carriers: person walking 

towards the radar approximately between 4-  seconds, and away from it between 0-  seconds and  -   
seconds. 

Model-Based Multi-Sensor Multi-Target Identification of Helicopters  

The Micro-Doppler (mD) effect identifies the time-varying characteristic of the Doppler 

frequency shift due to secondary motions, also called micro-motions, that a target may 

exhibit. The mD may be due to swinging arms and legs of a human being while walking or 
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running, or due to moving legs or flapping wings of animals. The source of micro-motions 

can also be a rotating propeller of a fixed-wing aircraft, or rotating rotor blades of a 

helicopter. All these micro-motions are peculiar to each target, and generate different mD 

signatures that may be used for classification purposes. 

The capability to identify the model of a helicopter by analysing its mD signature was first 

investigated in [5], after that in [6] it was demonstrated that the theoretical return signal from 

propeller blades depends on the number,  , the length,  , and the rotation speed  , of the 

blades themselves. Moreover, since the Radar Cross Section (RCS) from the tail blades is 

smaller than the RCS from the main rotor blades [7], the majority of the methods only relies 

on the mD information extracted from the main rotor blades. 

In this task, the previously proposed automatic mD model-based algorithm for helicopters 

identification [8] was refined and extended to: 

1. operate in a multi-sensor scenario and 

2. to be able to classify multiple targets present in the radar cell of interest. 

The algorithm relies on a parametric sparse representation of the model of the signal scattered 

from a helicopter’s rotor hub; the recovery of the sparse signal from the received one through 

the resolution of an optimisation problem, allows the estimation of  ,   and  , and then the 

classification of the target. However, the estimate of the length of the blades is strongly 

biased by the aspect angle with which the target is seen, making it unreliable in the final 

classification stage. The employment of multiple distributed sensors that observe the target 

from different points of view, leads to a more accurate and reliable estimate for  , which can 

then be exploited as a discriminative feature. The enhanced capability of identifying multiple 

targets, as well as recognising the number of targets, is achieved by estimating the mD 

parameters from a set of chunks of data extracted from the received signal, rather than just 

one. The no. of chunks is initialised to a maximum value, & then iteratively reduced until the 

no. of targets is estimated. 

The algorithms were tested with both simulated and real data. Concerning the synthetic one, 

signals scattered from    helicopter models in different configurations were generated, and 

processed in a Monte-Carlo framework to assess the performance of the algorithm. Figure 5 

shows the performance for the single-target algorithm in terms of identification accuracy and 

unknowns on varying the SNR. 

 

Figure 5. Performance for the single-target algorithm in terms of identification accuracy and unknowns. 
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The accuracy reaches         for           , and it is above      for SNR greater 

than      , while the percentage of unknowns is below    . 

Figure 6 shows the results obtained with the multi-target algorithm when one target is 

assumed to be in the region of interest. The detection rate, namely the ratio of the Monte-

Carlo tests in which the number of helicopters has been correctly estimated to the total 

number of tests, is close to      across all the values of SNR, while the maximum accuracy is 

about      in agreement with the perfomance achieved with the single-target algorithm. 

 

(a) 

 

(b) 

Figure 6. Performance for the multi-target algorithm tested in the presence of one target in the scene, in 
terms of (a) detection and false alarm rate, (b) identification accuracy and unknowns, on varying the SNR.  

Tests are also performed assuming that two and three targets are present in the region of 

interest. Figure 7 shows the results in the first case: the rate of detection is above      for 

values of the SNR greater than     , while the false alarm, that is the ratio of the number of 

Monte-Carlo tests in which the number of helicopters has been overestimated to the total 

number of tests, is always below     . Moreover, the accuracy in correctly identifying both 

the helicopters or at least one of them is      and     , respectively, for SNR above      . 

 

(a) 

 

(b) 

Figure 7. Performance for the multi-target algorithm tested in the presence of two targets in the scene, in 
terms of (a) detection and false alarm rate, (b) identification accuracy and unknowns, on varying the SNR. 
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The performance of the multi-target algorithm when three targets are in the region of interest 

is shown in Figure 8. The maximum detection rate is     , while the false alarm rate is below 

     . In      of the cases and for SNR greater than     , at least one target is correctly 

identified. This percentage reduces to      and      when correctly identifying at least two, 

or all the three targets, respectively. 

 

(a) 

 

(b) 

Figure 8. Performance for the multi-target algorithm tested on the presence of three targets in the scene, 
in terms of (a) detection and false alarm rate, (b) identification accuracy and unknowns, on varying the 

SNR. 

Concerning the assessment on real data, a set of signals acquired with a        CW radar 

and scattered from a two-bladed helicopter scale model GAUI X3 was used. Signals were 

acquired with four different aspect angles and with three different rotation speeds of the 

blades, in order to simulate as many targets   ,    and   . Both the single-target and the 

multi-target algorithms were tested, even if the latter was only evaluated in presence of single 

helicopters to assess the accuracy in estimating the number of targets. The results for the 

single-target algorithm are summarised in Table 1. The overall accuracy is above      and 

the worst performance is obtained with signals acquired with aspect angle of   . This is 

probably due to the small RCS of the blades in this geometry. 

Table 1. Real data performance evaluation. Single-target algorithm, accuracy (%). 

Target 
Aspect Angle 

               

                     

                    

                      

 

Table 2 and Table 3 show the results for the multi target algorithm, in terms of detection rate 

and percentage of accuracy, respectively. The detection rate is above      in all the analysed 

case, while the overall accuracy is of about       . 
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Table 2. Real data performance evaluation. Multi-target algorithm, detection rate. 

Target 
Aspect Angle 

               

                       

                       

                       

 

Table 3. Real data performance evaluation. Multi-target algorithm, accuracy (%). 

Target 
Aspect Angle 

               

                     

                    

                      

 

Passive CubeSat 

Space debris represents a real threat for new and existing space missions, because collisions 

with even very small objects (few cm size) at the orbital velocity (e.g. speeds of 10 km/s in 

LEO) can cause catastrophic impacts. Therefore, the new space missions have to be designed 

considering the presence of the orbital space debris avoiding the risk of collision. The 

challenge to detect and track space debris by radar is of fundamental importance to increase 

safety for online space mission.  

A new system for space debris detection and monitoring is presented by using a bistatic 

passive radar deployed on a CubeSAT flying in low earth orbit. The two principal 

components composing the sensing platform are a Software Defined Radio (SDR) and a 

passive antenna. Moreover, a Low Noise Amplifier (LNA) can be used in order to increase 

the sensing capacities. Any satellite transmitting radio waves towards the Earth within the 

frequency band of the antenna on the sensing platform poses a suitable illuminator of 

opportunity (IO). The IOs can be statically or dynamically selected among the available 

platforms (e.g., Iridium, GNSS, HY2A). 

The analysis of radar system capabilities is conducted by investigating the minimum 

detectable target size. The capability of a radar to detect a target generally depends on the 

received power from the target. In particular, the radar equation describes how the SNR 

depends on transmitter, receiver and target parameters and the system geometry. Considering 

the incoherent integration of   radar pulses and the signal processing gain      given by the 

matched filtering, the SNR is as follows: 

 
     

  

  
  

       
    

       
    

        
        (1) 

where    is the transmitted power,    and    are the distances of transmitter and receiver 

from the target,    and    are the transmitter and receiver gains,   is the transmitted signal 
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wavelength,   is the Radar Cross Section (RCS) of the target,    is the reference temperature, 

  the receiver noise figure, and    (  )  is a loss factor which includes no free-space 

propagation and temperature related losses. 

From (1) it is noted that the SNR is proportional to the target’s RCS. In cases of very small 

RSC, particular advantage in terms of SNR can be achieved by exploiting the forward-

scattering radar (FSR) configuration. In principle, FSR is obtained from a bistatic radar 

configuration in which the bistatic angle close to     . The FSR guarantees relative RCS 

enhancement since in this case the RCS depends only on the area and the shape of a target’s 

silhouette. In the Fraunhofer diffraction zone the forward-scattering RCS can be written as: 

 
    

    

  
      (2) 

where     represents the peak antenna gain of uniformly illuminated aperture whose area is 

equal to   .  

The proposed system configuration aims to employ the advantages in terms of RCS achieved 

by the FSR, considering the received power as the figure of merit for the detection. As it can 

be seen in (2), the maximal FS RCS is achieved when the target crosses the LOS. This event 

can hence be used as a figure of merit for the target detectability evaluation. However, even 

in the case in which the bistatic angle never reaches     , the detection via FSR can take 

place considering the sidelobes effect of the diffracted field. 

By rearranging (1), the RCS (in   ) can be written as function of the system parameters and 

SNR as follows 

               
      

      
              

 
   

     

                                       

                    

(3) 

 

In this way it is possible to define the minimum RCS of a detectable target by fixing the SNR 

at the receiver. For the performance analysis, the target altitude is set equal to 800 km which 

is the orbit height with the highest concentration of space debris. 

Due to the vast advance in hardware technology, nowadays it is possible to assemble a 

cubeSAT with a total weight smaller than 3 kg and a low power consumption for a relative 

low cost. Specifically, for the numerical simulations in this analysis it is considered a 

cubeSAT composed by an SDR and an LNA which guarantee a receiver gain of 69    with a 

noise figure of 12.5   . The SNR for fixed probability of detection (PD) and probability of 

false alarm (PFA) is set equal to 10   .  The loss factor    is set equal to 1, translating to no 

system losses which is the optimum case. The proposed system in fact solves the problem of 

atmosphere absorption which represents one of the most relevant loss factor. The considered 

IO is the satellite from the Global Star constellation which is a low Earth orbit (LEO) satellite 

constellation orbiting at 14000 km from the Earth and is used for a satellite phone and low-

speed data communications. In order to perform the radar task, the 16.5 MHz bandwidth 

downlink from the satellite to the user in the 2483.5 to 2500 MHz band is employed. Figure 9 

https://en.wikipedia.org/wiki/Low_Earth_orbit
https://en.wikipedia.org/wiki/Satellite_constellation
https://en.wikipedia.org/wiki/Satellite_constellation
https://en.wikipedia.org/wiki/Satellite_phone
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shows that for integration time of 5 seconds it is possible to detect objects (circular or square 

plats) whose dimensions are smaller than 25 cm for all the examined values of cubeSAT’s 

altitude. This analysis shows that the proposed system allows the detection of very small 

space debris when the suitable design is considered. One of the most important aspects of the 

proposed system is that the relative shorter distances between the transmitter-target system 

and space based receiver compared to that of a ground based receiver guarantees higher SNR 

for the radar tasks. Moreover, thanks to system geometry, the performance of the proposed 

system is not affected by atmospheric absorptions. For the same reason the system 

functionality is independent from weather conditions. 

 

  

(a) (b) 

Figure 9: Minimum value for detectable (a) sphere (or circular plat) diameter and (b) square 

plat length by using Global Star payload as transmitter with carrier frequency      GHz. 

 

 

GUAPO- GNSS based UAV monitoring system using Passive Observations 

Professional large unmaned air vehices (UAVs) are known to be used in several military and 

civilian applications nowadays, e.g. security, search and rescue, monitoring, disaster 

management. In addition, small UAVs have also recently attracted strong interest, especially 

among hobbyists and amateurs, due to their accessibility, potential and low cost. However, 

the lack of a clear regulation poses a real safety problem, as recently demonstrated by the 

crash between a small drone and a landing aircraft [9]. Moreover, small UAVs may end up 

being used in unconventional ways. For example drones could be deliberately used to 

interfere with common airport operations or their small size exploited to evade conventional 

radar systems [10] and border surveillance systems [11].  Even more alarming is the warning 

raised by world leaders about the use of drones to carry chemical weapons during a "dirty 

bomb" attack [12]. 

The Sensor Signal Processing & Security (SSP&S) Laboratories at the University of 

Strathclyde invented a Passive Bistatic Radar (PBR) system based on Global Navigation 

Satellite Systems (GNSS) for small UAVs' detection. The invention exploits the power drop 

Plate 
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caused by UAVs when they cross the bistatic line of sight [13], between the GNSS 

transmitter and the receiver, for their detection and discrimination with other unwanted 

targets (i.e. birds). Use of multiple satellites and signal integration will help to deal with the 

typical small Radar Cross Section (RCS) of UAVs. 

The forward scattering enhancement obtained facilitates improved detection capabilities, 

extending the minimum detectable range of the target thanks to the higher Signal to Noise 

Ratio (SNR) that is achieved. Figure 10 shows an example of power drop when an UAV 

crosses the LOS between transmitter and receiver. The profile of this drop is primary 

dependant to the silhouette of the target and therefore can be used as a feature to perform 

classification. In Figure 11 the Euclidian distance between the “shadowing” of three different 

UAVs in different acquisitions is illustrated. As it can be seen the received signals of the 

same type of UAV have a small distance to each other while received signals of different type 

of UAVs have much higher distance. These preliminary results demonstrate the high 

potential of the proposed system to achieve high detection and classification capabilities for 

small UAVs. Applications of this invention include but are not limited to, perimeter 

monitoring (for stadiums, sensitive buildings, prisons, etc.), base protection, restricted 

airfields monitoring, monitoring of UAVs’ dedicated flight paths (for delivery of goods). 

 

Figure 10. Example of power drop when an UAV crosses the LOS between transmitter and receiver 
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Figure 11 Euclidian distance between “shadowing” from different small UAV targets. 

 

Other activities 
 

- Granted the Regional (UK) and Overall European Winner award on European Satellite 

Navigation Competition (ESNC). 

- Public dissemination of outcomes regarding advances on GNSS based UAV monitoring 

system through media (e.g. BBC Breakfast on Tuesday 29th November). 

- Preparation of patent filing for GNSS based UAV monitoring system. 

- Publication of a Case Study on the NI website entitled “Co-Radar: Combining Two 

Technologies to Increase Efficiency of Airborne, Space-Borne, and Ground-Based Platforms”; 

- Guidance and Supervision of three MSc students on their final year projects associated with 

passive Radars; 

- Knowledge exchange and expertise provision in the field of Micro-Doppler Signatures for 

Canon Research Centre France S.A.S. 

- Attendance and presentation of three papers at the Sensor Signal Processing for Defence 

(SSPD) Conference 2016; 

- Attendance and presentation of four papers for the Institute of Mathematics and its 

Application (IMA) conference. 

- Attendance and presentation of a paper entitled “CubeSAT based passive bistatic radar for 

space debris detection and tracking” on the Stardust 2016 ESA-ESTEC. 

- Attendance and presentation of group’s latest work in the UDRC LSSCN consortium CSG 

meeting. 

- Attendance and presentation of “GUAPO: GNSS based UAV monitoring system for Air 

fields using Passive radar Observations” at the International Navigation Conference (INC) 

2016. 

- Attendance and presentation at the UDRC Themed Meeting on Space Surveillance and 

Tracking. 
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- Brian Barber from DSTL has visited the group and had individual discussions with members 

of the group regarding their current work and subjects of future interest. 

- Meeting and knowledge exchange with George Matich and Steve Clark from Leonardo 

Finmeccanica. 

- Knowledge exchange meeting with Dr Francesco Fioranelli from University of Strathclyde; 

- Dr. Augusto Aubry from Universita’ degli Studi di Napoli “Federico II” has visited the group 

and worked with it on a novel waveform design framework aiming at the mitigation of the 

clutter produced by wind turbines. 

 

Plan for the fifth year 

 

Communicating Radar in automotive applications 

After successfully generating two conference and one journal paper, and a demonstrator showcased at 

the CDE marketplace, the concept of communicating radar will be further expanded in the 5
th
 year. A 

PhD student starting in the month of March will investigate the adaptation and implementation of the 

proposed concept for automotive applications. The studentship is a part of the accepted NXP proposal. 

 

Further investigation and field validation of GUAPO concept 

Driven by the well-received introduction of the GUAPO concept though winning awards and public 

dissemination, further investigation of the proposed concept will be held in the 5
th
 year. By 

successfully securing funds to support two full-time RA for 9 and 3 months using the impact 

acceleration support provided by the EPSRC, the system is scheduled to advance from its current TRL 

2 state to a TRL 5 by the end of the 5
th
 year. Potential funding from a Defence and Security 

Accelerator project can possibly further support the project. 

 

Investigation of solution for Enhanced Space Situation Awareness  

The research topic of Space Situation Awareness (SSA) will be expanded during year 5. Solutions 

able to provide enhanced capabilities for SSA will be investigated, including high range resolution 

profile and enhanced sensor systems. Extensive study on a Passive Bistatic Radar system on CubeSats 

for Space Debris monitoring will be held as a part of Mr Ilias Theodorou's PhD research. Moreover, 

feasibility study on Background modelling and constant false alarm rate (CFAR) Launch Detectors 

design will take place funded by MDC. 

 

Investigation of novel signal processing techniques 

Recently introduced signal processing techniques such as Partial Fast Fourier Transform, Random and 

Multi-Order Fractional Fourier transform, stochastic differential equations, and image moments 

appear to be very interesting and their potential in the network battlespace will be investigated. 
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L_WP5 (EI): Low Complexity Algorithms and Efficient Implementation 
 

1. Staffing 

 

Work Package Leaders: Prof. Ian Proudler (LU), Dr. Stephan Weiss (ST) 

Other Academics involved: Prof. John McWhirter (CU) 

Research Associate: Dr. Keith Thompson (ST) 

Other Research Associates: all other PDRAs (LU, SU, CU and ST) will be involved. 

Contributing PhD Students: Jamie Corr (ST), Fraser Coutts (ST), Mohamed Alrmah (ST), 

and Ahmed Alzin (ST) 

Project Partners: Mathworks and Texas Instruments, 

Research Themes: T8 and T9  

[dstl] Contacts: Dr David Nethercott, Dr George Jacob, and Dr Nick Goddard 

 

2. Aims and Objectives of L_WP5 

 

2.1 Lists of original aims in the case for support 
 

To develop novel paradigms and implementation strategies for a range of complex signal 

processing algorithms operating in a networked environment. Links to L_WP1-L_WP4. 

(Relates to all themes) 

 

Low complexity algorithms will be targeted by both generic efficient approaches to common 

themes across the consortium, such as high-dimensional array data, and application-specific 

low-cost implementations through collaborative research and active engagement with all 

other WPs. 

 

L_WP5.1 Data reduction and distributed processing 

 

Lower dimensional representation of data can lead to significant cost reduction, including 

data-independent techniques such as frequency domain, sub-band or subspace-based 

processing and thinning of sensor data. This work will exploit a combination of data 

dependent and independent techniques to achieve a significant data reduction, and will 

demonstrate how this can be exploited in low-cost algorithms. Due to operating in a 

networked environment, the efficient organisation of algorithms across a distributed 

processing platform will be considered. This work will explore algorithms and applications 

from across all work packages. Areas of study include (i) Polynomial decompositions leading 

to sparse representations through data-dependent optimal transformations (e.g. Karhunen-

Loeve transform (KLT)), for dimensionality reduction in beamformers (ii) Parallel 

implementations of linear algebra functions and distributed processing methods (e.g. systolic 

array design, IP core implementations, vector-codebook methods) to minimise the 

communications bandwidth between processing nodes and (iii) Statistical signal processing 

problems will be utilised to map algorithms to distributed processors, whereby constraints on 

the communication bandwidth between nodes need to be set (e.g. Bayesian belief network 

(BBN) structures). 
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L_WP5.2 Hardware Realisations 

 

Collaborating with Texas Instruments, PrismTech, and Steepest Ascent (now Mathworks), 

numerically efficient schemes are to be derived, with mappings onto suitable processing 

platforms to be investigated that demonstrate real-time algorithms in suitable test scenarios. 

Multi-core GPU-based platforms and programming environments such as CUDA are an 

enabling technology for massively parallel processing of data (facilitating real-time 

applications at low cost, but potentially high power consumption). In contrast, micro-

controllers, DSP and FPGA based processing platforms are perfect candidates for low power, 

inexpensive sensor processing units. In collaboration with industrial partners, state-of-the-art 

Multicore DSP/FPGA embedded solutions are to emerge that are capable of matching the 

power performance-price constraints posed by the range of specific problems arising within 

all work packages of the consortium. 

 

2.2 Modification to Aims and Objectives 
 

Some tasks have changed during the project, as stipulated by quarterly meetings and the 

midterm review. Particularly w.r.t. the latter, L_WP5 objectives, sub-tasks and progress 

points were updated to the following: 
Objectives 

 L_WP5.1) Exploit recently developed spatio-temporal techniques based on polynomial matrix 

decompositions to generate sparse representations of broadband signals to aid in distributed 

signal detection and separation. 
 L_WP5.2) Propose computationally efficient realizations based on parallel implementation. 

 

2.3 Progress against Objectives and Subtasks 

 

Overall Progress against Objective  
 

The aim of WP5 is to develop novel paradigms and implementation strategies for complex 

signal processing algorithms in a networked environment. With a focus on polynomial matrix 

methods, we have made significant progress in terms of understanding the underlying theory, 

algorithm enhancement, further updating of a unique Matlab toolbox that supports a range of 

applications where we have demonstrated the method's benefits. We also took several steps to 

promote the uptake of polynomial matrix approaches by the wider community. 
We now are fully equipped in terms of hardware processing platforms to undertake 

implementations, and have started to assist other WPs with algorithm implementation in 

hardware. For the remainder of the project, WP5 will continue to exploit the consortium's 

unique expanding expertise on polynomial methods and their applications, and work to 

enable hardware realisations by interacting with other WPs. 
 

Progress against Sub-Tasks 

L_WP5.1) Data reduction and distributed processing 

 Element completed - A Matlab toolbox on polynomial matrix decomposition has been created and 

made available to the public with support from MathWorks. In the area of polynomial matrix 

decompositions fast converging algorithms have been developed. Numerical speed-up of 

implementations have been achieved using e.g. Jacobi sweeps instead of an eigenvalue 

decomposition (polynomial matrix methods were adopted as an example implementation and area 

of focus at the 2nd quarterly LSSC meeting). 

 Ongoing - Review of Bayesian belief networks; further development of polynomial matrix 

methods, with applications to beamforming and sonar. 
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 Future - Activities will be directed towards distributed beamforming, the application of 

polynomial matrix methods to sonar dataset; general assistance with numerical optimisation for 

WP1-4. 
 

L_WP5.2) Hardware realisations 

 Element completed - Hardware kits for FPGA, multicore DSP and CPU processing have been 

acquired, with an FPGA implementation of a wideband transceiver completed; attendance of TI 

training courses; some sample implementations on FPGA platforms have been completed and 

published. 
 Ongoing – Continued development of sample implementations for all three platforms; and 

hardware implementation of a polynomial matrix decomposition algorithm are currently 

undertaken. 
 Future - Assistance to WP1-4 for hardware realisation of workpackage-specific solutions. 

 

In the following sections of this report more details are included to elaborate on the technical 

progress made. 

 

3. Progress made in the 4th year in addressing the original objectives 
 

In the 4
rd

 year of the project, L_WP5.1 has further driven the progress of numerically 

efficient algorithms of interest to the consortium. In particular, polynomial matrix 

decompositions capable of formulating and providing novel solutions to broadband 

multichannel problems have been further pursued in a number of directions, ranging from the 

underlying theoretical understanding to algorithm development, provision of enhanced 

routines in our PEVD Matlab toolbox, to exploring new applications.   
In L_WP5.2, hardware realisations have been driven forward, and demonstrator kits for 

FPGA, DSP, and GPU computing platforms are now available and operational. Some sample 

implementations have been pursued in collaboration with WPs 1 and 4,  and in tandem with 

L_WP5.1, hardware implementation of some the latest developments in PEVD algorithms is 

in progress. 
 

3.1 Progress of L_WP5.1 (Efficient Algorithms, Data Reduction and 

Distributed Processing)  
 

In L_WP5.1 the focus of Keith Thompson has been on understanding complex signal 

processing algorithms, in particular Gaussian mixture models and techniques for distributed 

processing, The former is in particular to assist WP1 (Cardiff) with algorithm realisation.  

Keith is also involved in the ongoing development of PEVD algorithms through the co-

supervision, with Dr. Stephan Weiss, of PhD students Jamie Corr, Fraser Coutts, and Ahmed 

Alzin, has been supervising a number of undergraduate projects in the area of WP5 (Radar 

implementation etc), and provides support in maintaining the PEVD Matlab Toolbox.  
 

The focus of Stephan Weiss and Ian Proudler has been particularly in the context of 

L_WP5.1, with the aim of exploring theory, algorithms, applications and implementations of 

polynomial matrix approaches. A number of different iterative polynomial matrix eigenvalue 

decomposition (PEVD) algorithms have now been developed, and progress continues to be 

made in terms of algorithm performance, further enhancing accuracy and computational 

speed, and the cultivation of new application areas. The majority of these algorithms, together 

with a representative number of demonstrations, are contained in the PEVD Matlab toolbox. 
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These techniques have been promoted in a dedicated 1
st
 International Workshop on 

Polynomial Matrix Decompositions, held at the Kavli International Centre at the Royal 

Society's Chicheley Hall, in August 2016, chaired by John McWhirter and Stephan Weiss. 

On behalf of the consortium, Stephan also presented a tutorial on polynomial matrices at the 

IEEE Sensor and Multichannel Signal Processing Conference (SAM 2016) in Rio de Janeiro 

in July 2016. 
 

3.2 Progress of L_WP5.2 (Hardware Implementations) 
 

The focus of Dr. Keith Thompson has been on further developing capability of implementing 

complex algorithms across a range of different computing platforms and devices. To support 

this objective, recent hardware development options acquired by the group in Strathclyde are 

detailed below. Access to computational resources and supporting training materials has been 

made available to consortium partners. Not all algorithms are suitable for full implementation 

in hardware (FPGA/ASIC), therefore different options for developing solutions with suitable 

hardware/software partitions are desirable. 

 Xilinx Kintex-7 FPGA Digilent Genesys2 (50,950 slices, 16mb BRAM, 840 DSPs, 1Gb 

DR3) 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,719,1488&Prod=GENESYS2 

 Xilinx Zync-7000-based Zedboard (Dual-Core ARM Cortex A9, 13300 logic slices, 512mb 

DDR3, 220 DSP slices)  

http://www.xilinx.com/support/university/boards-portfolio/xup-boards/XUPZedBoard.html 
 

 TI Multicore DSP 66AK2L06 (2x ARM Cortex A15, 4x C66x DSP cores, 2x FFT Co-

processor,2GB DDR3) 

http://www.ti.com/tool/xevmk2lx 
 

 GPU Laptop – Quad-core Intel i7, Nvidia GTX 970M with 1280 CUDA Cores, 3Gb DDR5, 

http://www.geforce.co.uk/hardware/notebook-gpus/geforce-gtx-970m/specifications 

 

 Qualcomm Snapdragon - Intrinsyc’s Open-Q™ 805 Embedded Development Kit incorporates 

quad-core ARM-based CPUs each 2.5 GHz, with 16GB eMMC 5.0, & 3GB PoP LPDDR3 RAM 

https://www.intrinsyc.com/snapdragon-embedded-development-kits/openq-805-

development-kit/ 

 
The Qualcomm Snapdragon development kit has recently been acquired with support from 

Leonardo (formerly Selex ES) for the development of suitable image processing algorithm 

implementations (to involve MSc industrial project students). The Snapdragon processing 

architecture has been selected as the basis for the new Firefly IR camera from Leonardo 

http://www.leonardocompany.com/en/-/firefly , a power efficient imaging sensor designed 

for use on a variety of airborne/ground platforms. Initially, the goal is to identify various 

video analytics algorithms of interest, and look to adapt them toward deployment on the 

Snapdragon embedded processor. As a smartphone platform, the Snapdragon SoC has been 

designed with the Android OS in mind, with the Snapdragon 820 Development Kit from 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2,719,1488&Prod=GENESYS2
http://www.xilinx.com/support/university/boards-portfolio/xup-boards/XUPZedBoard.html
http://www.ti.com/tool/xevmk2lx
http://www.geforce.co.uk/hardware/notebook-gpus/geforce-gtx-970m/specifications
https://www.intrinsyc.com/snapdragon-embedded-development-kits/openq-805-development-kit/
https://www.intrinsyc.com/snapdragon-embedded-development-kits/openq-805-development-kit/
http://www.leonardocompany.com/en/-/firefly
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Intrinsyc delivered with this pre-loaded (with a potential option for Linux) facilitating Java-

based algorithm development. 

Current implementation work is focused on FPGA implementation of a video image 

segmentation algorithm for Anomaly Detection, in collaboration with WP1, FPGA 

implementation of Polynomial EVD algorithms, and SAR image formation algorithms 

implemented on Multicore ARM & DSP device. Further details are provided in Section 4.2. 
 

4. Technical Details 
 

4.1 L_WP5.1 Polynomial EVD Theory, Implementations and Applications 

 
Further development of polynomial matrix algorithms have remained a core part of the work 

carried out in WP5. These methods have been found to have great utility across both WP3 

and WP5, and are of particular interest to Dstl in the Sonar domain. The novelty and wide-

ranging implications of the work have also been recognised by hosting dedicated events: the 

1
st
 International Workshop on Polynomial Matrix Decompositions and Applications, held 

from 24
th

 to 26
th

 of August 2016 at the Royal Society’s Chicheley Hall chaired by John 

McWhirter and Stephan Weiss, a tutorial session on ‘Polynomial Matrix Decompositions 

with Applications’ at the IEEE Sensor Array and Multichannel Signal Processing Workshop 

in Rio de Janeiro, Brazil in July 2016, organised by Stephan Weiss and John McWhirter, and 

delivered with support from Zeliang Wang and Jamie Corr, two research students working at 

Cardiff and Strathclyde Universities. A potential special  session – given sufficient 

participation – has been accepted for the forthcoming European Signal Processing 

Conference in Kos, Greece, in August 2017. A further special session proposal has also been 

submitted to a linear algebra conference to be held in Glasgow in summer 2017, organised by 

Jennifer Pestana from Strathclyde's Department of Mathematics and Statistics in conjunction 

with Stephan Weiss, Ian Proudler and John McWhirter. Particularly the Chicheley workshop 

has been a transformative event, and the research in this area is now advancing rapidly our 

theoretical understanding of the general approach, and will lead to improved numerical and 

computational efficiency, to new application domains, and to practical implementations in 

hardware. 

Improved Computational Performance  and Algorithm Speed-Up 

Complexity and Search Space Reduction in Cyclic-by-Row PEVD Algorithms [Coutts 

2016a]. Further investigation into previously defined Cyclic-By-Row PEVD algorithms has 

yielded significant gains in computational efficiency. The SMD PEVD algorithms first 

reported in WP5 have been shown to provide the twin benefit of greater diagonalisation 

performance together with a much reduced implementation cost, i.e. a reduced order of filters 

defined by the polynomial factors that algorithm yield. The Cyclic-by-Row approximation 

was later identified as providing a significant benefit in terms of reducing the computational 

cost of the SMD approach by replacing an ‘exact’ EVD step with a Cyclic-By-Row 

approximation. New methods developed have allowed the complexity (in terms of MACs) of 

this algorithm to be reduced by approximately 50%. This has been achieved by collecting the 



103 
 

rotations to be applied to the zero-lag of the Parahermitian matrix into a concatenated unitary 

matrix. This allows all rotations to be applied in one single step rather than successively 

applying individual sparse rotations across the entire polynomial matrix on each iteration. An 

innovative ‘Reduced Search Space’ strategy has also been defined to provide further 

computational cost savings through limiting the search region around the zero-lag where 

maximum off-diagonal elements are identified. The exact size of this search space can be 

adapted as the iterative process is executed by maintaining an understanding of the overall 

distribution of energy in the parahermitian matrix being diagonalised. Measured cost 

reductions for some arbitrary 5x5 and 10x10 matrices are detailed in Fig.1. 

 

Figure 1:  

 

 

 

 

 

 

 

 

 

 

Caption: Algorithmic cost reduction in terms of execution time when only operating on one 

half of a Parahermitian matrix [Coutts 2016a]. 

Multiple-Shift Algorithms for Polynomial Matrices 

In the development of computationally faster PEVD algorithms such as the sequential matrix 

diagonalisation approach, the general concept of shifting more off-diagonal energy per 

algorithm iteration (multiple-shift) has been found to be advantageous when factorising a 

Parahermitian matrix by means of a polynomial matrix EVD. This has led to the 

consideration of tackling other useful matrix decompositions using a similar approach. One 

very useful matrix decomposition is the QR decomposition of a matrix into A = QR,  where 

Q is orthogonal matrix, and R is upper triangular, which is found in many matrix-inversion 

based problems. A multiple-shift QR decomposition for polynomial matrices has therefore 

been defined which demonstrates a significant increase in computational efficiency, as 

measured by transfer of energy from lower-triangular to upper-triangular space against time. 
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This work [Coutts 2016c] extends research that had previously been conducted at the 

University of Cardiff.  Fig. 2 shows the reduction of this polynomial QRD compared to he 

initial work proposed at Cardiff. 

Meanwhile, the idea of a multiple-shift algorithm has been applied to the original PEVD 

algorithm, the second order sequential best rotation (SBR2) method at Cardiff in [Wang 

2015]. 

Figure 2:  

 

 

 

 

 

 

 

 

 

Caption: Reduction of algorithm complexity for a polynomial QRD algorithm, showing the 

remaining energy in the lower left triangular matrix vs the algorithm execution time [Coutts 

2016c]. The benchmark is the original polynomial QRD algorithm by Joanne Foster et 

al.[Foster 2010]. 

Parallelisation through Partitioning of Covariance Matrix  

An important recent aspect of the work on polynomial matrix techniques is to consider how 

larger scale problems may be tackled, along with how the algorithms can be parallelised. The 

PEVD algorithms operate on a space-time covariance matrix that is estimated through 

computing the correlation of sensor array inputs, where the number of sensor inputs (N) thus 

dictates the size of the matrix to be decomposed (NxN). Therefore, for large arrays of sensors, 

such as found in towed sonar array applications,  this will result in a very large data structures 

to be handled. Furthermore, as this matrix is parahermitian in nature, i.e. conjugate-

symmetric across the zero-lag, the potential for partitioning of data to perform a conventional 

ingle-Instruction-Multiple-Data (SIMD) parallel processing approach is not immediately 

clear. This has clear implications for the potential exploitation of the algorithms in custom 

parallel hardware. Nevertheless, recent outcomes have identified the potential for a larger-

scale parahermitian covariance matrix to be partitioned effectively to allow PEVD algorithms 

to be applied in parallel (i.e. multiple PEVD threads). The optimisation of this approach is 
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considered for submission to EUSIPCO 2017, and is to form the basis for the development of 

a PEVD hardware demonstrator. 

Extension to other polynomial matrix factorisation 

An important development that extends the potential utilization of polynomial matrix 

techniques to new applications has been the extension of an existing narrowband technique, 

the generalized EVD (GEVD) to the broadband case using polynomial matrices. This work is 

a fruit of collaboration with Prof. Marc Moonen’s group at KU Leuven  where a GEVD 

algorithm has been successfully developed to tackle Multichannel Wiener Filtering (MWF) 

problems, such as noise cancellation in distributed sensor applications. To extend to the 

broadband case, a polynomial GEVD technique has been defined that solves a joint 

diagonalisation problem, where covariance matrices from multiple arrays are decomposed 

using a two-step Cholesky decomposition (A = LL*) approach [Corr 2016].  Research on an 

enhanced polynomial QR decomposition algorithm using multiple-shifts per iteration has 

already been outlined earlier [Coutts 2016c]. 

Polynomial matrix formulations for broadband beamforming    

Broadband beamforming had been successfully targetted as an application of polynomial 

matrix factorisations, where a broadband generalised sidelobe canceller could be easily 

extended  from the narrowband to the broadband case, and solved in a fashion that decoupled 

the complexities of the quiescent vector, the blocking matrix and the adaptive process, which 

yielded significant reduction in computational complexity. In the meanwhile, we have 

extended this work to formulate and solve for a polynomial matrix-based Capon beamformer 

[Alzin 2016]. The gain response of a Capon beamformer design with look direction towards 

30 degrees in the presence of three interferers is shown in Fig. 3. 

Figure 3:  

 

 

 

 

 

 

 

 

Caption: Array gain vs angle of arrival and normalised operating frequency for a bradoand 

capon beamformer design detailed in [Alzin 2016]. 
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Broadband Blind Source Separation   

Collaboratively with the University of Cardiff and a former colleague, Prof Soydan Redif,  

applications of polynomial EVD methods to the problem of broadband blind source 

separation have been summarised in [Redif 2017]. This includes various approaches, such as 

domain-weighted filtering, in order to extract a signal of interest from various interfering 

sources. This work is currently extended to include a polynomial GEVD approach to BSS, by 

Soydan Redif and Ian Proudler, submitted to EUSIPCO. Further, an investigation into the 

existence and uniqueness is likely to yield important results on the well-known permutation 

problem in BSS, which typically limits the performance of BSS algorithms, 

4.2 L_WP5.2 Technical Details for WP5.2  
 

WP5.2 is to develop novel computationally efficient hardware realizations using the latest 

hardware options. In this section we highlight the work currently underway in support of 

developments in WP5.1 and to support colleagues from other work packages. 

Evolving GMM for Image Segmentation – FPGA Implementation 

In collaboration with Dr. Ioannis Kaloskampis (WP1, Cardiff) a custom FPGA 

implementation is in development to help accelerate the main computational bottleneck 

identified in the ‘Evolving Gaussian Mixture Model (GMM) for Online Video Segmentation’ 

techniques completed for Anomaly Detection [Kaloskampis 2014]. The algorithm 

development by Ioannis builds on earlier algorithm developments from Figueiredo and Jain 

(2002) where an Unsupervised Learning approach to the problem of mixture modelling was 

outlined. The algorithm avoids particular well-known drawbacks of the standard Expectation-

Maximization (EM) approach to density estimation through mixture modelling. In particular, 

the EM approach is very sensitive to initialization conditions where the number of 

components in the mixture must be selected a priori. The algorithm from Figueiredo and Jain 

[Figueiredo 2002] moves away from this approach by adopting a Minimum Message Length 

(MML) criterion where the number of components is first initialised as an arbitrarily large 

number and the algorithm seeks to then infer an appropriate structure from data to effectively 

merge the components. This unsupervised approach is particularly valuable in terms of image 

segmentation in video as consecutive frames can be subject to abrupt changes (where 

anomalies are of interest). 

In order to implement the algorithm on FPGA hardware, a fundamental reworking of the 

algorithm has been required. The learning algorithm defined by Figueiredo and Jain (2002), 

and modified by WP1 with further adaptive parameters, is an iterative algorithm (composed 

of nested While loops) which has been converted into a more hardware-friendly Finite-State-

Machine model of computation. Whilst it is possible to model and simulate iterative 

algorithms (composed of conditional while loops) after conversion to RTL language (vhdl), 

the process of logic synthesis demands that the number of loop iterations to be performed 
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must be bounded (as the logic synthesizer tools seek to unroll loops detected in RTL level 

code into individual parallel logic components, the number loop iterations must be pre-

determined).  

In order to increase the speed of computation and take advantage of the innate parallelisation 

capability of the FPGA, computational bottlenecks and areas for potential parallelisation have 

been identified. In particular, the algorithm repeatedly computes a measure (Bhattacharya 

distance) of the distance (dissimilarity) between the modified component densities with 

previously held versions stored in memory. A VHDL entity module has been defined to carry 

out this computation, where an approximation to the exponential function (trading-off 

approximation by Look-Up Table and iterative Cordic block) must be computed. This 

module has been instantiated multiple times to provide a parallel mechanism to compute 

these functions (with a further FSM to test whether number of components exceeds this 

number of modules, and thus reverting to a more serial execution if required). Further 

hyperbolic function approximation has been necessary to compute the natural log functions 

(ln) required to evaluate the log-likelihood functions utilised by the algorithm to assess the 

success of and update conditional variables. The implementation has been designed using 

fixed-point numerical representation with a combination of Xilinx System Generator 

(Simulink) block-based design tools along with manual coding in vhdl. Final performance 

results are to be published in a forthcoming paper, and the utilisation of the implementation 

with surrounding pre- and post-processing stages also of interest in terms of delivering a 

more fully-featured demonstrator. 

Polynomial EVD Algorithms – FPGA Implementation 

The proposed FPGA implementation (outlined in previous updates) is in the process of being 

completed. The development was paused in order to complete the necessary work outlining 

the potential for the Divide-and Conquer (DC-DMD) algorithm to be applied in parallel 

through judiciously partitioning of the space-time covariance matrix (to be submitted). Key 

sub-modules of the implementation have been defined with the overall implementation now 

able to be completed. The pause in this development has been the need to diversify from an 

existing publication detailing the implementation of the original SBR2 algorithm on FPGA 

[Kasap 2014], where a well-established parallel Jacobi algorithm (limited to handling 2x2 

submatrices in parallel) was modified for the polynomial matrix case. In the parallel approach 

to be adopted, we are no longer limited by the size of the submatrices to be computed in 

parallel, as the algorithm may now be applied independently to larger partitions of the overall 

matrix. The result should see significant improvement in computational performance. 

SAR Image Formation – Multicore DSP 

Synthetic Aperture Radar (SAR) data collection typically results in very large sets of 

complex data (temporal and spatial data capture, large dynamic range, etc.), with image 

formation a well-known computationally complex task. Numerous algorithms have been 

proposed in literature to tackle the task of SAR image formation, including the Range-

Doppler and Backprojection algorithms. A number of researchers have identified significant 
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parallelism within such algorithms and have sought to accelerate the computation through 

leveraging many-core architectures such as GPUs [Clemente 2009] and reconfigurable FPGA 

hardware [Cordes 2009]. In this work we are evaluating the potential of our recently acquired 

multicore Texas Instruments Multicore ARM and DSP SoC device (66AKK2L06) for SAR 

image formation. This device has been promoted as a suitable candidate solution for SAR 

processing with significant benefits in terms of power efficiency versus GPU-based 

alternative approaches. The multicore DSP is integrated with multiple onboard hardware FFT 

co-processors to specifically accelerate the Range compression tasks utilised by the 

algorithms. A Strathclyde undergraduate project student is currently developing some 

suitable Matlab code that is to be converted into C code for implementation on the Multicore 

DSP device. 

5. Linkages With Industry 
 

Dstl 

 

L_WP5 has maintained regular contact with David Nethercott, George Jacob, Nick Goddard 

at Dstl.  

In the summer of 2016, Dr. George Jacob approached all WPs requesting further information 

about how LSSC(N) research could be adapted for exploitation as real-time algorithms 

(within an FPGA-based framework). L_WP5 is to coordinate this effort with support from the 

other WPs to attempt to collect the following information into a general survey: 

1) Identify ‘Potential Algorithms that could be implemented in real-time  

2) Performance of Algorithms in fixed-point form (after quantization)  

3) Effort required to transform fixed-point algorithms toward HDL code generation  

Overall, the ideal would be to extract some working code examples in Matlab, perform some 

numerical analysis using profiler and fixed-point conversion software tools, a literature 

search to identify similar existing implementation, and to reformulate the most suitable 

candidate algorithms into a realisable form for HDL Code-Generation (e.g. Simulink & 

System Generator).  

 

Leonardo (formely Selex ES) 

Together with Strathclyde colleagues from L_WP4, L_WP5 has been heavily engaged in 

developing a relationship with Leonardo with regard to investigating the potential for new 

Neuromorphic Computing platforms to enable signal processing and machine learning 

techniques to be performed at very-low power. The initial stages of this work have been to 

complete a detailed literature and technology review of underlying computational concepts, 

available hardware and potential algorithms of interest. Further stages of the project are in the 

process of being determined. In tandem with this effort, Leonardo have initiated interest in 
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supporting industrial MSc projects based upon developing suitable image processing 

algorithms on a Qualcomm Snapdragon development kit. 

 

Mathworks 

 

L_WP5 has benefitted greatly from continued excellent support from our industrial partner 

Mathworks from contacts at both Mathworks Cambridge (Dr Marc Willerton) and 

Mathworks Glasgow (Dr Garrey Rice).  

 

6. Future Plans 

 
Carrying forward into the 5

th
 and last year of this project, we aim for the following research 

to be completed: 

 
Existence and Uniqueness of Polynomial Matrix EVD 
A number of polynomial matrix algorithms have emerged over the past decade, and enabled a 

number of otherwise problems that had previously not been possible to solve. While many 

algorithms can be proven to converge in terms of minimising off-diagonal energy, it has been 

uncertain to what solution algorithms converge. Particularly for the paraunitary matrix 

factors, different algorithms often return different solutions. We will therefore characterise 

the existence of the decomposition, and the uniquess of the polynomial eigenvalues and -

vectors. Besides theoretical value, this is expected to have an impact on the creation of a new 

family of parahermitian matrix EVDs (as opposed to a polynomial EVD, which assumes a 

representation by finite power series), as well as a potential solution to the long-standing 

problem of source permutation in blind source separation. 
 

PEVD Algorithms Operating in the Frequency Domain 

Based on our theoretical investigations to date, enforcing spectral majorisation is detrimental 

to the order of factors in a polynomial matrix EVD (and by association, for polynomial QRD 

and polynomial GEVD). We will aim to extract analytic factors, which can be shown to exist 

and would yield maximally smooth solutions of hence lower order when either solved exactly 

or approximated by a polynomial. 

 

Broadband Blind Source Separation  
A polynomial EVD can be used for blind source separation in isolating decorrelated signals. 

However, there is ambiguity of how to associate eigenvalues in dependency of frequency, 

which is commonly know as the permutation problem in the BSS community. We believe 

that by enforcing maximally smooth eigenvalues and -vectors, we can address this problem 

adequately. 
 

Broadband Beamforming 
Based on various contributions in this area over the past year, we would like to wrap-up the 

application of polynomial matrix methods to broadband beamforming by considering robust 

methods. This can be achieved by setting up the constraint equation appropriately [Lorenz 

2005]. Based on discussions with Sam Somasundaram  at Thales, we will also be using a 

more realistic and state-off-the-art benchmark to which we can compare a polynomial 

solution. 
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PEVD Toolbox Evolution 

Our toolbox will continue to expand, in terms of functions and algorithms to be included, but 

also in terms of the application examples and demonstrations that are encorporated. 
 

Distributed Processing 

Following Jamie Corr’s visit to KU Leuven (Belgium) in 2016, we aim to continue this link 

and expand our current work on the polynomial generalised EVD to develop robust 

distributed beamforming and mutlichannel filtering algorithms. 
 

Applications and Working With Real Data 

Discussions with Nick Goddard (Dstl) and Sam Somadundaram (Thales) have taken place to 

address open problems in underwater data processing, as well as the application of 

polynomial matrix methods to sonar data sets. Jamie Corr is now likely to complete his PhD 

before an internship with Thales will materialise, but it is hoped that this activity can be 

carried forward with another researcher, such as Fraser Coutts who has only just started his 

2
nd

 year. 
 

Hardware Realisations 

With a number of systems in place, it is anticipated that during the last year of this project, a 

number of algorithms across the consortium can be implemented – at least in parts – in 

hardware, or the common algorithmic components can be demonstrated to be feasible in real 

time, therefore underpinning some of the scientific claims of the consortium by 

demonstrations of technical feasibility. 
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