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We observe X ∈ Rd

X ∼ P0 or X ∼ P1?

In classical decision theory, we know the distributions P0 and P1

In machine learning, we have to estimate P0 and P1 from data
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Example in 1D: Spam

X ∈ R: number of spam words in a message

Null Hypothesis

H0: message isn’t spam

Alternative Hypothesis

H1: message isn’t spam x

P0
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Signal vs Noise

Consider a test for detecting:

if given email is spam presence of aircraft in radar

if defendant is guilty presence of tumor in an image

Probability
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P0 P1

signalnoise

#### ## ##

decision boundary

decide signaldecide noise
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The Decision Tradeoff

True hypothesis Decide noise Decide signal

noise

✓ false alarm

signal

missed detection ✓
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Improving the Tradeoff

Larger effect size

increase µ1 − µ0

Better/more measurements

decrease variance
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Where to place the decision boundary?
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Decision and loss functions

Rd

P0

P1

True label

Y =


0 , if H0 is true

1 , if H1 true

Decision function f : Rd → {0, 1}

f(X) =


0 , if we decide H0

1 , if we decide H1

Loss function ℓ : {0, 1} × {0, 1} → R ℓ
(
f(X), Y

)

True hypothesis f(X) = 0 f(X) = 1

H0 is true

ℓ(0, 0) ℓ(1, 0)

H1 is true

ℓ(0, 1) ℓ(1, 1)
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Risk and Optimal Decision

Given decision function f : Rd → {0, 1} and loss ℓ : {0, 1}2 → R,

Risk: R[f ] := EXY

[
ℓ
(
f(X), Y

)]
where EXY [·] is the expectation with respect to X and Y

Optimal decision problem: Given ℓ, find f that minimizes the risk:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
. . . infinite-dimensional problem
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minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]

Recall that f(X) and Y are binary

Conditioning on X,

EXY

[
ℓ
(
f(X, Y )

)]
= EX

[
EY

[
ℓ
(
f(X), Y

) ∣∣∣ X

] ]
=

∫
Rd

EY

[
ℓ
(
f(X), Y

) ∣∣∣ X = x

]
fX(x) dx

If f(x) = 0,

EY

[
ℓ
(
0, Y

) ∣∣∣ X = x

]
= ℓ(0, 0)P

(
Y = 0 | X = x

)
+ ℓ(0, 1)P

(
Y = 1 | X = x

)
If f(x) = 1,

EY

[
ℓ
(
1, Y

) ∣∣∣ X = x

]
= ℓ(1, 0)P

(
Y = 0 | X = x

)
+ ℓ(1, 1)P

(
Y = 1 | X = x

)
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Likelihood ratio test minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]

The decision that minimizes the risk in a binary hypothesis test is

f(x) = 1{L(x)≥η}(x)

• Indicator function of set S: 1S(s) =

 1 , if s ∈ S

0 , if s ̸∈ S

• Likelihood ratio: L(x) =
fX|H1

(
x

∣∣ H1
)

fX|H0

(
x

∣∣ H0
)

• Decision threshold: η = ℓ(1, 0) − ℓ(0, 0)
ℓ(0, 1) − ℓ(1, 1)

· P(H0)
P(H1)
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f(x) = 1{L(x)≥η}(x)

• Indicator function of set S: 1S(s) =

 1 , if s ∈ S
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Example in R

H0 : X = W

no aircraft/tumor/spam
innocent defendant

H1 : X = c + W

aircraft/tumor/spam
guilty defendant

W ∼ N (0, 1) fW (w) = 1√
2π

e− w2
2

0 c

fX(x | H0) fX(x | H1)
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Example in R

Assume

• c = 1

• Loss values

True hypothesis f(X) = 0 f(X) = 1

H0 is true 0 1

H1 is true 25 0

• Base rates: P(H0) = 0.95 P(H1) = 0.05

Compute the decision threshold
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Example in R

Decision threshold occurs for

L(x) = η ⇐⇒ log L(x) = log η

with

L(x) =
fX|H1

(
x

∣∣ H1
)

fX|H0

(
x

∣∣ H0
) =

exp
(

− (x−1)2

2

)
exp

(
− x2

2

) = exp
(

x − 1
2

)

η = ℓ(0, 0) − ℓ(1, 0)
ℓ(1, 1) − ℓ(0, 1)

·
P

(
H0

)
P

(
H1

) = 0 − 1
0 − 25

· 0.95
0.05

≃ 0.76

The decision threshold is then

x − 1
2

= log 0.76 ⇐⇒ x ≃ 0.23
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Example in R c = 1

True hypothesis f(X) = 0 f(X) = 1

H0 is true 0 1

H1 is true 25 0

P(H0) = 0.95
P(H1) = 0.05

0.23

0 1

fX(x | H0) fX(x | H1)
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Particular cases

Recall the problem:
minimize

f :Rd→{0,1}
EXY

[
ℓ
(
f(X), Y

)]
Expected value is w.r.t. joint distribution PXY

When class Y ∈ {0, 1} is viewed as a parameter of PXY to estimate,

• Maximum a posteriori (MAP)

• Maximum likelihood (ML)

can be seen as likelihood ratio tests
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Maximum a posteriori (MAP)

Consider ℓ(0, 0) = ℓ(1, 1) = 0 and ℓ(1, 0) = ℓ(0, 1) = 1.

Then,

EXY

[
ℓ
(
f(X), Y

)]
=

∫
Rd

EY

[
ℓ
(
f(X), Y

) ∣∣∣ X = x

]
fX(x) dx

If f(x) = 0, EY

[
ℓ
(
0, Y

) ∣∣ X = x
]

= P
(
Y = 1 | X = x

)
If f(x) = 1, EY

[
ℓ
(
1, Y

) ∣∣ X = x
]

= P
(
Y = 0 | X = x

)

So, select f(x) = 1 if P
(
Y = 1 | X = x

)
≥ P

(
Y = 0 | X = x

)
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Maximum Likelihood (ML)

Consider ℓ(0, 0) = ℓ(1, 1) = 0 and ℓ(1, 0) = ℓ(0, 1) = 1

And P(H0) = P(H1) = 1
2

The optimal decision (MAP) is

maximum likelihood

f(x) = arg max
i

P
(
Y = i

∣∣ X = x
)

= arg max
i

fX|Y (x | Y = i) · P(Y = i)
fX(x)

(
Bayes rule

)
= arg max

i
fX|Y

(
x

∣∣ Y = i
) (

P
(
Y = i

)
= 1

2

)

This corresponds to a likelihood ratio test with η = 1
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Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR TPR

Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR TPR

Decision Theory



Types of errors and successes

True Positive Rate (TPR)

TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR TPR

Decision Theory



Types of errors and successes

True Positive Rate (TPR)

TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR TPR

Decision Theory



Types of errors and successes

True Positive Rate (TPR)

TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR)

FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR)

FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR

FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR

FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR)

TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true

TNR

FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR)

TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR)

FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true

FNR

TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR)

FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true FNR TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true FNR TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true FNR TPR
Decision Theory



Types of errors and successes

True Positive Rate (TPR) TPR = P
(
f(X) = 1

∣∣ H1
)

power, sensitivity, recall

False Positive Rate (FPR) FPR = P
(
f(X) = 1

∣∣ H0
)

type I error, false alarm

True Negative Rate (TNR) TNR = P
(
f(X) = 0

∣∣ H0
)

specificity

False Negative Rate (FNR) FNR = P
(
f(X) = 0

∣∣ H1
)

type II error, missed detection

α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true FNR TPR
Decision Theory



Other measures

Previous measures don’t account for base rates : P(H0), P(H1)

That is, they are suitable when P(H0) ≃ P(H1)

Alternatives

Precision: P
(
H1

∣∣ f(X) = 1
)

= TPR · P(H1)
TPR · P(H1) + FPR · P(H0)

F1-score: harmonic mean between precision and recall (TPR):

F1 = 2
1

P(H1 | f(X)=1) + 1
TPR
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α

β

Table of probabilities

True hypothesis f(X) = 0 f(X) = 1

H0 is true TNR FPR

H1 is true FNR TPR

α and β are in conflict:

• α ↓ =⇒ β ↑ : and vice-versa

• Both can decrease only by observing more data

It turns out that likelihood ratio tests are Pareto optimal
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Neyman-Pearson Lemma

Theorem

Let fLRT(x) be a likelihood ratio decision rule with FPR and FNR

αLRT = P
(

fLRT(x) = 1
∣∣ H0

)
βLRT = P

(
fLRT(x) = 0

∣∣ H1

)
Let f(x) be another (deterministic or probabilistic) decision rule with

α = P
(

f(x) = 1
∣∣ H0

)
β = P

(
f(x) = 0

∣∣ H1

)
Then,

α ≤ αLRT =⇒ β ≥ βLRT

β ≤ βLRT =⇒ α ≥ αLRT

And the same relations hold with strict inequalities (<, >)
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Proof

• fMAP(x) minimizes probability of error over all rules (det. and prob.):

P
(

errorMAP

)
=P

(
fMAP(X) = 1, H0

)
+ P

(
fMAP(X) = 1, H1

)
= P

(
fMAP(X) = 1

∣∣ H0

)

︸ ︷︷ ︸
αMAP

P(H0) + P
(

fMAP(X) = 1
∣∣ H1

)

︸ ︷︷ ︸
βMAP

P(H1)

= αMAP P(H0) + βMAP P(H1)

• fMAP(x) is characterized by fMAP(x) = 1 if L(x) ≥ η = P(H0)
P(H1)

• Select 0 < η < 1 such that P(H0) = η

η + 1
and P(H1) = 1

η + 1

This implies fLRT(x) = fMAP(x)
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Properties of ROC curves

Property 1: (0, 0) and (1, 1) are in the ROC curve

Property 2: TPR ≥ FPR

Property 3: The ROC curve is concave
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Proofs

Property 1: (0, 0) and (1, 1) are in the ROC curve

Proof:

• When η → +∞,

f(x) = 1L(x)≥η(x) = 0

for any x

Then,
(
FPR(+∞) , TPR(+∞)

)
= (0, 0)

• Similarly,
(
FPR(−∞) , TPR(−∞)

)
= (1, 1)
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Proofs

Consider two decision rules (omitting dependence on η):(
FPR(1) , TPR(1)

)
,

(
FPR(2) , TPR(2)

)
Build a randomized decision rule by selecting 1 w.p. p, and 2 w.p. 1 − p(
FPR , TPR

)
=

(
p FPR(1) + (1 − p)FPR(2) , p TPR(1) + (1 − p)TPR(2)

)
Property 2: TPR ≥ FPR

Proof:
• For any achievable α > 0, we can always find a randomized rule s.t.

TPR = FPR = α

• By the Neyman-Pearson lemma,

if an LRT has FPR⋆ = α, then its TPR⋆ ≥ α
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Proofs
Property 3: The ROC curve is concave

Proof:

• Consider two achievable points in the ROC diagram:(
FPR(η1) , TPR(η1)

)
and

(
FPR(η2) , TPR(η2)

)
• For any 0 ≤ t ≤ 1, we can form a randomized rule such that(

t FPR(η1) + (1 − t)FPR(η2) , t TPR(η1) + (1 − t)TPR(η2)
)

(1)

• By the Neyman-Pearson lemma, if an LRT has

FPR⋆ = t FPR(η1) + (1 − t)FPR(η2) , then

TPR⋆ ≥ t TPR(η1) + (1 − t)TPR(η2)

Thus, the ROC curve is above (1)
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Example: SARS-CoV-2 Tests

Lab-based tests (ELISA, CLIA) and rapid tests (lateral flow)

Detection of IgG, IgM, or IgG/IgM antibodies at days 8-14, 15-21, 22-35

(95% CI)

FPR

TPR

Deeks et al, Antibody tests for identification of cur-

rent and past infection with SARSCoV2, Cochrane

Database of Systematic Reviews, Issue 6, 2020
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Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
Assumed known fX|Hi

(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]

Assumed known fX|Hi
(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
Assumed known fX|Hi

(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
Assumed known fX|Hi

(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
Assumed known fX|Hi

(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
Assumed known fX|Hi

(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Looking Ahead: Empirical Risk Minimization

We studied a (binary) decision problem:

minimize
f :Rd→{0,1}

EXY

[
ℓ
(
f(X), Y

)]
Assumed known fX|Hi

(x | Hi) and P(Hi)

What if they are unknown?

Empirical Risk Minimization (ERM):

minimize
f :Rd→{0,1}

1
T

T∑
t=1

[
ℓ
(
f(xt), yt

)]

Assumption: we observe T samples {(xt, yt)}T
t=1

Decision Theory



Conclusions

Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties

Decision Theory



Conclusions
Probability

P0 P1

signalnoise

decision boundary

decide signaldecide noise

Optimal decision problems (binary case)

Likelihood ratio tests (LRT)

MAP and ML as particular cases

Optimality (Neyman-Pearson lemma)

Key assumption: known probability distributions

Types of errors

ROC curves and properties
Decision Theory



References

M. Hardt, B. Recht

Patterns, Predictions, and Actions

Princeton University Press, Oct, 2022

D. P. Bertsekas, J. N. Tsitsiklis

Introduction to Probability

Athena Scientific, 2nd edition, 2008

T. Fauwcett, “An introduction to ROC analysis,” Pattern Recognition Letters,

Vol. 27, pp. 861-874, 2006.

H. L. Van Trees, Detection, Estimation, and Modulation: Part I,

John Wiley & Sons, 2001.

Decision Theory



References

M. Hardt, B. Recht

Patterns, Predictions, and Actions

Princeton University Press, Oct, 2022

D. P. Bertsekas, J. N. Tsitsiklis

Introduction to Probability

Athena Scientific, 2nd edition, 2008

T. Fauwcett, “An introduction to ROC analysis,” Pattern Recognition Letters,

Vol. 27, pp. 861-874, 2006.

H. L. Van Trees, Detection, Estimation, and Modulation: Part I,

John Wiley & Sons, 2001.

Decision Theory



References

M. Hardt, B. Recht

Patterns, Predictions, and Actions

Princeton University Press, Oct, 2022

D. P. Bertsekas, J. N. Tsitsiklis

Introduction to Probability

Athena Scientific, 2nd edition, 2008

T. Fauwcett, “An introduction to ROC analysis,” Pattern Recognition Letters,

Vol. 27, pp. 861-874, 2006.

H. L. Van Trees, Detection, Estimation, and Modulation: Part I,

John Wiley & Sons, 2001.

Decision Theory


