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Summary of Background
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◮ Cross-spectral density
R(z) =

∑

τ

R[τ ]z−τ

is a polynomial matrix.

◮ Parahermitian:
RP(z) = RH(1/z∗) = R(z)

◮ Space-time covariance matrix:
R[τ ] = E

{

x[n]xH[n− τ ]
}

◮ Matrix of auto- & cross-
correlation sequences

◮ Symmetry R[τ ] = RH[−τ ]
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Summary of Background

◮ R(z) is a matrix with (Laurent) polynomial entries or
alternatively a polynomial with matrix-valued coefficients.

◮ Can be interpreted as a three-dimensional matrix.
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Summary of Background

◮ Eigenvalue decomposition (EVD) of a Hermitian covariance
matrix R offers optimality for many narrowband problems:

R = QΛQH Λ is diagonal

Q is unitary, i.e. QQH = I

◮ The polynomial matrix EVD (PEVD) is an extension to
parahermitian matrices R(z):

R(z) ≈ Q(z)Λ(z)QP(z) Λ(z) is diagonal

Q(z) is paraunitary, Q(z)QP(z) = I

◮ Diagonalisation of Λ(z) is important for, e.g., decoupling of
broadband MIMO systems.

◮ Polynomial subspace decomposition (i.e. Q(z)) used in, e.g.,
broadband AoA estimation and beamforming.
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How to Factorise a Polynomial Matrix?
◮ Iteratively minimise off-diagonal energy in R(z).

R(z)→ Λ(z)

Energy in ‘flattened’ parahermitian matrix. White ⇒ high energy.
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How to Factorise a Polynomial Matrix?
◮ Iteratively minimise off-diagonal energy in R(z).

◮ Key performance metric: off-diagonal energy vs execution time.
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How to Factorise a Polynomial Matrix?

◮ Several iterative PEVD algorithms successfully minimise
off-diagonal energy.

◮ Most important:

◮ Second order sequential best rotation (SBR2);

◮ Sequential matrix diagonalisation (SMD).
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Requirement for Truncation in Iterative PEVD Algorithms

◮ The ‘shift’ operations performed in SBR2 and SMD lead to an
increase in the order of the paraunitary matrix Q(z) at each
iteration.

◮ If the order of Q(z) is not restricted in some way, memory usage
and computational complexity will scale linearly with the order.
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State-of-the-Art Truncation
[Ta et al., ICIS&SP TSP 2007]

◮ Used to reduce the polynomial order of the paraunitary Q(z).
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PEVD Ambiguity
◮ The paraunitary matrix in the PEVD is not unique.

◮ The same diagonalised parahermitian matrix, Λ(z), can be
obtained using different paraunitary F (z) = QP(z),

R(z) ≈ F P(z)Λ(z)F (z) = F̂ P(z)Λ(z)F̂ (z) .

◮ Note that polynomial eigenvectors are in the rows of F (z).

◮ Using a modifying matrix, Γ(z), we can go from F (z) to F̂ (z),

F̂ (z) = Γ(z)F (z) .

◮ For the row-shift truncation we simply use,

Γ(z) = diag{z−τ1 z−τ2 . . . z−τM } ,

which individually delays or advances each of the M rows of F (z).
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Row-Shift Truncation

◮ Used to reduce the polynomial order of the paraunitary F (z).
◮ Works the same as the state-of-the-art but applied to each row

individually.
◮ Each row can be truncated by a different amount.
◮ Final step aligns rows using Γ(z).
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Motivation for my Research

◮ Existing iterative algorithms are slow to converge and not feasible
to implement — worse for large spatial dimension M .
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Motivation for my Research

◮ Existing iterative algorithms are slow to converge and not feasible
to implement — worse for large spatial dimension M .

◮ Aims:

◮ Develop techniques to lower complexity (and memory
requirements) of existing methods.

◮ Design novel, fast algorithms with improved scalability.

◮ Investigate frequency-based methods to compute PEVD.
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Algorithmic Improvements

◮ First step: code profiling and optimisation.

Before optimisation After optimisation
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Reduced Parahermitian Matrix Representation

◮ By segmenting a parahermitian matrix R(z), we can write

R(z) = R(−)(z) +R[0] +R(+)(z) .

◮ R[0] is the zero lag matrix, R(+)(z) contains terms for positive
lag elements only, and R(−)(z) = R(+),P(z).

◮ It is therefore sufficient to record a ‘half-matrix’ version of R(z).

R(z)

τ = 3
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τ = 0

R[0] +R
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Reduced Parahermitian Matrix Representation

◮ Columns beyond lag zero (τ = 0) have been discarded.

◮ Modifications have to be made to the search and shift stages.

◮ Both columns and rows in the reduced matrix are searched.

◮ A ‘cyclic shift’ approach is employed.

R(z)

τ = 3
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τ = 0

R[0] +R
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Reduced Parahermitian Matrix Representation

◮ An example of the shift operation is depicted for the case of
R(z) : C→ C

5×5 with parameters k(i) = 2 and τ (i) = −3.
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Reduced Parahermitian Matrix Representation

◮ An example of the shift operation is depicted for the case of
R(z) : C→ C

5×5 with parameters k(i) = 2 and τ (i) = −3.
◮ Shifting procedure:

1. The row is shifted.
2. Non-diagonal elements in the k(i)th row past lag zero are extracted

and parahermitian transposed.
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Reduced Parahermitian Matrix Representation

◮ An example of the shift operation is depicted for the case of
R(z) : C→ C

5×5 with parameters k(i) = 2 and τ (i) = −3.
◮ Shifting procedure:

1. The row is shifted.
2. Non-diagonal elements in the k(i)th row past lag zero are extracted

and parahermitian transposed.
3. These elements are appended to the k(i)th column at lag zero and

this column is shifted in the opposite direction.
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Reduced Parahermitian Matrix Representation

◮ Off-diagonal energy versus algorithm execution time for standard
SMD algorithm and ‘half-matrix’ SMD (HSMD) implementation.

◮ M is spatial dimension of parahermitian matrix, e.g., number of
array elements.
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Reduced Parahermitian Matrix Representation

◮ Approximate resource requirements of standard (SMD) and
proposed (HSMD) representations of an M ×M × (2N (i) + 1)
parahermitian matrix at the ith iteration.

Method Complexity Storage Memory Moves

SMD 4N (i)M3 2N (i)M2 4N (i−1)M

HSMD 2N (i)M3 N (i)M2 2N (i−1)M

◮ All resource requirements are approximately halved using the
proposed approach.
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Restricted Update SMD (RU-SMD)

◮ Restricting the search space of iterative PEVD algorithms to a
subset of lags around lag zero of a parahermitian matrix can bring
performance gains with little impact on algorithm convergence.
[Corr et al., ISP 2015 & Coutts et al., Asilomar SSC 2016]

◮ The restricted update SMD (RU-SMD) algorithm restricts the
search space of the SMD algorithm, but also restricts the portion
of the parahermitian matrix that is updated at each iteration.

◮ The update step of SMD is its most computationally costly
operation; thus, restricting the complexity of this step is useful.
[Redif et al., IEEE TSP 2015]

◮ Aim of RU-SMD is to be less expensive and faster than SMD.
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RU-SMD Overview

◮ The RU-SMD algorithm computes the PEVD of a parahermitian
matrix R(z) over i = 0 . . . I iterations.

◮ RU-SMD has two main steps:

1. Restricted update: iteratively diagonalise parahermitian matrix
while monotonically contracting the search and update space.

2. Matrix regeneration: regenerate parahermitian matrix when search
and update space has maximally contracted.

◮ Steps 1 and 2 are repeated for index α = 0 . . . β.

◮ The space restriction in 1 limits the number of search operations,
and reduces the computations required to update the
parahermitian matrix.
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Restricted Update Approach

◮ Matrix S(i−1)(z) = R(α)(z) : C→ C
5×5 with maximum lag

τ
(i)
max = 3 input to restricted update step. Note: R(0)(z) = R(z).

◮ Treat lags |τ | > τ
(i)
max as invalid.

� = 3

� = 2

� = 1

� = �

� = �1

� = �2

� = �3
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Restricted Update Approach

◮ Shifting of k(i)th row and column energy to lag zero from
lags ±τ (i) (k(i) = 2, τ (i) = −1). Fτ (i)

◮ Invalid values from lags |τ | > τ
(i)
max are shifted towards lag zero.

FillerFillerFillerFillerFillerFillerFillerFiller

� = 3

� = 2

� = 1

� = �
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� = �2
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Restricted Update Approach

◮ Valid central matrix with maximum lag (τ
(i)
max − |τ (i)|) = 2,

S(i)′′(z), is extracted. Fτ (i)

◮ Lags |τ | > (τ
(i)
max − |τ (i)|) are invalid.

FillerFillerFillerFillerFillerFillerFillerFiller

� = 2

� = 1

� = �

� = �1

� = �2
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Restricted Update Approach

◮ Update step: S(i)(z) = Q(i)S(i)′′(z)Q(i),H. Matrix Q(i) is
obtained from EVD of lag zero. FillerFillerFillerFiller

◮ Lags |τ | > (τ
(i)
max − |τ (i)|) are invalid.

FillerFillerFillerFillerFillerFillerFillerFiller
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Restricted Update Approach

◮ Shifting of k(i+1)th row and column energy to lag zero from
lags ±τ (i+1) (k(i+1) = 3, τ (i+1) = −1). Fτ (i)

◮ Invalid values from lags |τ | > (τ
(i)
max − |τ (i)|) are shifted towards

lag zero. Fτ (i)

� = 2

� = 1

� = �

� = �1

� = �2



Overview Background Iterative Algorithms Algorithmic Improvements DaC DFT-Based PEVD AoA Estimation Conclusion

Restricted Update Approach

◮ Valid central matrix with maximum lag

(τ
(i)
max − |τ (i)| − |τ (i+1)|) = 1, S(i+1)′′(z), is extracted. Fτ (i)

◮ Lags |τ | > (τ
(i)
max − |τ (i)| − |τ (i+1)|) are invalid.
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Restricted Update Approach

◮ Update step: S(i+1)(z) = Q(i+1)S(i+1)′′(z)Q(i+1),H. Matrix
Q(i+1) is obtained from EVD of lag zero. FillerFillerFillerFiller

◮ Lags |τ | > (τ
(i)
max − |τ (i)| − |τ (i+1)|) are invalid.
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Restricted Update Approach

◮ Shifting of k(i+2)th row and column energy to lag zero from
lags ±τ (i+2) (k(i+2) = 4, τ (i+2) = −1). Fτ (i)

◮ Invalid values from lags |τ | > (τ
(i)
max − |τ (i)| − |τ (i+1)|) are shifted

towards lag zero. Fτ (i)

� = 1

� = �
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Restricted Update Approach

◮ Valid central matrix with maximum lag

(τ
(i)
max − |τ (i)| − |τ (i+1)| − |τ (i+2)|) = 0, S(i+2)′′(z), is extracted.

◮ Lags |τ | > (τ
(i)
max − |τ (i)| − |τ (i+1)| − |τ (i+2)|) are invalid.

FillerFillerFillerFillerFillerFillerFillerFiller
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Restricted Update Approach

◮ Update step: S(i+2)(z) = Q(i+2)S(i+2)′′(z)Q(i+2),H. Matrix
Q(i+2) is obtained from EVD of lag zero. FillerFillerFillerFiller

◮ Only zero lag remains: matrix must now be regenerated.
FillerFillerFillerFillerFillerFillerFillerFiller

� = �
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Matrix Regeneration

◮ Paraunitary matrix F (α)(z) is the product of all shift and update
operations performed during the αth execution of the restricted
update step.

◮ This step has iteratively reduced the off-diagonal energy in input
parahermitian matrix R(α)(z).

◮ R(α+1)(z) = F (α)(z)R(α)(z)F
P
(α)(z) is the regenerated matrix,

and is more diagonal than R(α)(z).
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Matrix Regeneration

◮ Following regeneration of the parahermitian matrix, a matrix
G(α+1)(z) is also updated, which is a product of the paraunitary
matrices generated for indices 0 . . . α:

G(α+1)(z) = F (α)(z) · · ·F (0)(z) =

(

α
∏

x=0

F (α−x)(z)

)

.

◮ R(α+1)(z) is then input to the (α+ 1)th instantiation of the
restricted update step and iterations of RU-SMD continue.

◮ If the total number of RU-SMD algorithm iterations exceeds some
user-defined value I, or if the energy in the shifted column falls
below a user-defined threshold, the algorithm ends with
Λ(z) = R(α+1)(z) and Q(z) = G(α+1)(z).
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RU-SMD Performance

◮ Algorithm execution time and complexity requirements reduced.
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Summary of Algorithmic Improvements

◮ Improvements to algorithm implementation efficiency.

◮ Half-matrix form for parahermitian matrix.

◮ Restricted update approach.

◮ For the interested reader, see my thesis!

◮ Problem: none of these address increased algorithmic complexity
(proportional to M3) as spatial dimension M increases.
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Traditional PEVD algorithms are tasked with diagonalising an
entire M ×M parahermitian matrix via sequential operations.

◮ DaC method first ‘divides’ the matrix into a number of smaller,
independent parahermitian matrices, before diagonalising — or
‘conquering’ — each matrix separately.

◮ DaC scheme can substantially reduce PEVD complexity, which is
typically proportional to M3.
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Iteratively minimising energy in red regions yields a block diagonal
parahermitian matrix.

◮ Remaining B11(z) and B22(z) are independent parahermitian
matrices and can be diagonalised separately.
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Several block diagonalisation steps yield a block diagonal matrix.
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ SMD (standard) versus DaC SMD (DC-SMD, proposed).
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Divide-and-conquer strategy becomes increasingly useful as spatial
dimension M increases.
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Power spectral densities of the (a,b) first and (c,d) last four
eigenvalues obtained from (a,c) SMD and (b,d) DC-SMD.
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Independent parahermitian matrices ⇒ parallel processing.

◮ Task: combine parallelised DaC strategies for the PEVD with
developed complexity and memory reduction techniques.

◮ Parallel-Sequential Matrix Diagonalisation (PSMD).
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‘Divide-and-Conquer’ (DaC) Approach to the PEVD

◮ Independent parahermitian matrices ⇒ parallel processing.

◮ Task: combine parallelised DaC strategies for the PEVD with
developed complexity and memory reduction techniques.

◮ Parallel-Sequential Matrix Diagonalisation (PSMD).

Method E.val. Res. MSE Paraun. Err. LQ

SBR2 [1] 1.1305 1.293 × 10−6 2.448 × 10−8 133.8

SMD [2] 0.0773 3.514 × 10−6 6.579 × 10−8 165.5

DC-SMD 0.0644 6.785 × 10−6 1.226 × 10−14 360.4

PSMD1 0.0658 6.918 × 10−6 4.401 × 10−15 279.3

PSMD2 0.0661 8.346 × 10−6 1.303 × 10−8 156.0

PSMD3 0.0245 7.618 × 10−7 1.307 × 10−14 307.6

[1] J. G. McWhirter et al. An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Trans. on Signal Process., 55(5):2158–2169, May 2007.

[2] S. Redif et al. Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices.
IEEE Trans. on Signal Process., 63(1):81–89, Jan. 2015.
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DFT-Based PEVD Algorithms

◮ We have seen one of the two main categories of PEVD algorithm:

1. Iterative time (lag) based methods.

◮ Directly manipulate polynomial coefficients and seek to iteratively
diagonalise parahermitian matrix R(z).

◮ Encourage spectral majorisation of eigenvalues.

◮ Established algorithms: SBR2 [1] and SMD [2].

◮ Recent low-complexity, divide-and-conquer algorithm in [3] for large
arrays.

[1] J. G. McWhirter et al. An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Trans. on Signal Process., 55(5):2158–2169, May 2007.

[2] S. Redif et al. Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices.
IEEE Trans. on Signal Process., 63(1):81–89, Jan. 2015.

[3] F. K. Coutts et al. Divide-and-conquer sequential matrix diagonalisation for parahermitian matrices.
In Proc. Sensor Signal Processing for Defence, Dec. 2017.
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DFT-Based PEVD Algorithms

◮ An alternative strategy:

2. Fixed order frequency based methods.

◮ Transform the problem into a pointwise-in-frequency standard matrix
decomposition.

◮ Able to provide a spectrally majorised decomposition, or attempt to
approximate maximally smooth, analytic eigenvalues.

◮ Formulation in [4] performs well for finite order problems [5], but
requires an a priori guess of the polynomial order of Q(z).

[4] M. Tohidian et al. A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices.
EURASIP J. Adv. Signal Process., 2013:93, December 2013.

[5] F. K. Coutts et al. A Comparison of Iterative and DFT-Based Polynomial Matrix Eigenvalue Decompositions.
In Proc. IEEE 7th Int. Workshop Comp. Advances in Multi-Sensor Adaptive Process., Dec. 2017.
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Fixed Order Frequency Based Methods

◮ An existing approach obtains an approximate PEVD via K
independent EVDs in the discrete frequency domain:

R[k] = Q[k]Λ[k]QH[k] , k = 0 . . . K − 1 ,

R[k] = R(z)|z=ejΩk =
∑

τ
R[τ ]e−jΩkτ , Ωk = 2πk/K

◮ Can rearrange the eigenvalues and -vectors at each frequency bin.

◮ Ambiguity in eigenvector phase leads to discontinuities in phase
between eigenvectors in adjacent frequency bins.

◮ Phase alignment step alters phases to minimise discontinuities.

◮ Following the permutation (if desired) and phase alignment of
Q[k], Q[τ ] and Λ[τ ] are computed via the inverse DFT.
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Fixed Order Frequency Based Methods

◮ While analytic polynomial eigenvalues and eigenvectors have been
shown to exist as absolutely convergent Laurent series in [6] there
is currently no way of knowing the length of the series a priori.

◮ When converting Λ[k] and Q[k] to the lag domain, the order of
the IDFT restricts the series’ length to K.

◮ For unsufficiently large K, this can result in energy from ignored
high order polynomial coefficients corrupting the fixed set of K
coefficients (i.e., time domain aliasing).

[6] S. Weiss et al. On the Existence and Uniqueness of the Eigenvalue Decomposition of a Parahermitian Matrix.
IEEE Trans. on Signal Process., 66(10):2659–2672, May 2018.
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Proposed Approach Overview

◮ We propose an iterative frequency-based scheme:

R[k] = Q[k]Λ[k]QH[k] , k = 0 . . . Ki − 1 .

◮ Ki is increased within the set Ki ∈ {2
l+i | l, i ∈ Z

+, 2l > L}.

◮ L is the polynomial order of R(z).

◮ i = 0, 1, . . . , I − 1 records current iteration.

◮ Use method for reordering the eigenvalues and -vectors from [4].

◮ Use a phase alignment function from [7], which uses Powell’s
‘dogleg’ algorithm [8] to maximise eigenvector smoothness.

◮ Iterations continue while decomposition MSE above threshold ǫ.

[4] M. Tohidian et al. A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices.
EURASIP J. Adv. Signal Process., 2013:93, December 2013.

[7] F. K. Coutts et al. Enforcing Eigenvector Smoothness for a Compact DFT-based Polynomial Eigenvalue
Decomposition. In Proc. IEEE Workshop on Sensor Array and Multichannel Sig. Process., July. 2018.

[8] M. J. D. Powell. A new algorithm for unconstrained optimization. Nonlinear programming, 31–65, 1970.
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Proposed Approach Overview

◮ We propose an iterative frequency-based scheme:

R[k] = Q[k]Λ[k]QH[k] , k = 0 . . . Ki − 1 .

◮ Ki is increased within the set Ki ∈ {2
l+i | l, i ∈ Z

+, 2l > L}.

◮ In iteration i, Q[k] and Λ[k] for k = 0, 1, . . . ,Ki − 1 are identical
for k = 0, 2, 4, . . . ,Ki+1 − 2 in the (i+ 1)th iteration.

◮ Phase alignment step exploits this to aid optimisation.

◮ Q[τ ] and Λ[τ ] are computed via the inverse DFT following the
permutation (if desired) and phase alignment of Q[k].

◮ MSE computed between R̂(z) = Q(z)Λ(z)QP(z) and R(z).
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Smooth Decomposition

◮ In a smooth (analytic) decomposition, the eigenvalues and
-vectors are arranged such that discontinuities between adjacent
frequency bins are minimised.

Spectrally smooth Spectrally majorised
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Smooth Decomposition

◮ In a smooth (analytic) decomposition, the eigenvalues and
-vectors are arranged such that discontinuities between adjacent
frequency bins are minimised.

◮ For a smooth decomposition, the eigenvectors in adjacent
frequency bins are rearranged using the inner product

cmn[k] = qHm[k − 1]qn[k] ,

where, qm[k] is the mth column of Q[k].

◮ cmn[k] ≈ 1 if qm[k − 1] & qn[k] aligned; cmn[k] ≈ 0 otherwise.

◮ Goal: reorder columns of Q[k] such that cmm[k] ≈ 1 ∀ m.

◮ Λ[k] rearranged according to the reordering of the eigenvectors.
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Phase Alignment

◮ Phase alignment of eigenvectors in adjacent frequency bins is vital
for a compact-order decomposition.

◮ A matrix C(P ) [7] can be used to calculate the total power in the
derivatives of a function up to and including the P th derivative.

◮ Function ‘smoothness’ is characterised by a low total power.

◮ Phase of the mth eigenvector at frequency bin k can be adjusted
by an angle θk according to qm[k]← ejθkqm[k].

◮ We compute a vector of phases θ = [θ0, · · · , θKi−1]
T s.t. the mth

eigenvector qm[k] ∀ k is maximally smooth.

[7] F. K. Coutts et al. Enforcing Eigenvector Smoothness for a Compact DFT-based Polynomial Eigenvalue
Decomposition. In Proc. IEEE Workshop on Sensor Array and Multichannel Sig. Process., July. 2018.
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Phase Alignment

◮ An objective function has been derived in [7] that measures the
smoothness of all elements of qm[k] and takes the form

f(θ) = R{uHΓu} .

◮ uH = [ejθ0 , · · · , ejθKi−1 ], Γ =
∑M−1

n=0 diag{vn}C(P )diag{v
H
n },

and vn = [qm,n[0], · · · ,qm,n[Ki − 1]].

◮ qm,n[k] denotes the nth element (row) of eigenvector qm[k].

◮ We employ relatively low cost Powell’s iterative ‘dogleg’ trust
region strategy [8] for the unconstrained minimisation of f(θ).

◮ For i > 0, can use previous θ to give a more informed initial guess.

[7] F. K. Coutts et al. Enforcing Eigenvector Smoothness for a Compact DFT-based Polynomial Eigenvalue
Decomposition. In Proc. IEEE Workshop on Sensor Array and Multichannel Sig. Process., July. 2018.

[8] M. J. D. Powell. A new algorithm for unconstrained optimization. Nonlinear programming, 31–65, 1970.



Overview Background Iterative Algorithms Algorithmic Improvements DaC DFT-Based PEVD AoA Estimation Conclusion

DFT-Based PEVD Performance

◮ DFT-based PEVD algorithm capable of outperforming existing
methods.

◮ Suitable for scenarios with a high number of sensors.

◮ Example below has R(z) : C→ C
5×5 of order 38 with ground

truth polynomial eigenvalues that are not spectrally majorised.

Method MSE Paraun. Err. Ediag Time / s LQ Complexity

proposed 5.750 × 10−29 2.887 × 10−22 0 0.08854 64 O
(

ML3
)

SBR2 [1] 1.815 × 10−6 3.303 × 10−8 10−6 37.64 600.0 O
(

M2L
)

SMD [2] 9.321 × 10−7 3.847 × 10−8 10−6 11.34 357.9 O
(

M3L
)

[1] J. G. McWhirter et al. An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Trans. on Signal Process., 55(5):2158–2169, May 2007.

[2] S. Redif et al. Sequential Matrix Diagonalization Algorithms for Polynomial EVD of Parahermitian Matrices.
IEEE Transactions on Signal Processing, Jan. 2015.
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DFT-Based PEVD Performance

◮ Decompose the theoretical
parahermitian matrix

R(z) =

[

2 z−1 + 1
z + 1 2

]

.
0 0.2 0.4 0.6 0.8 1

0

2

4

◮ Eigenvectors & eigenvalues are neither of finite order nor rational.

◮ To decompose R(z) via an exact PEVD would require polynomial
matrices of infinite length.

Method MSE Paraun. Err. Ediag Time / s LQ

proposed 7.077 × 10−9 1.381 × 10−4 0 0.1196 64

SMD, µ1 4.362 × 10−25 2.466 × 10−16 10−6 0.6256 345

SMD, µ2 2.909 × 10−10 9.546 × 10−8 10−6 0.1995 83

SBR2 2.909 × 10−10 9.546 × 10−8 10−6 0.1724 83
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Angle of Arrival Estimation (AoA)

◮ Accuracy of noise-only subspace strongly dependent on quality of
PEVD.

◮ Each PEVD algorithm will produce a different AoA estimation
performance.

◮ The results you have seen used the SBR2 algorithm.

◮ Divide-and-conquer strategies offer very fast diagonalisation
performance, and are able to resolve weaker polynomial
eigenvalues.

◮ Does this translate to better AoA estimation performance if
simulation time is fixed?
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Angle of Arrival Estimation Results

◮ ‘Divide-and-conquer’ (DaC) approach to the PEVD:

◮ 6 sources sharing frequency range Ω ∈ [0.1π, 0.9π], 20 dB SNR.
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[1] J. G. McWhirter et al. An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Trans. on Signal Process., 55(5):2158–2169, May 2007.

[2] S. Redif et al. Sequential Matrix Diagonalization Algorithms for Polynomial EVD of Parahermitian Matrices.
IEEE Transactions on Signal Processing, Jan. 2015.
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Angle of Arrival Estimation Results

◮ Frequency-Based PEVD Algorithms:

◮ 3 sources with different frequency ranges, 20 dB SNR.
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Conclusion

◮ Summarised existing iterative PEVD algorithms.

◮ Introduced some methods used to lower the computational cost of
these algorithms.

◮ Gave overview of ‘divide-and-conquer’ approach to the PEVD.

◮ Explained DFT-based PEVD approaches and their advantages.

◮ Demonstrated the effects of PEVD algorithm choice on AoA
estimation results.
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Simulation Scenario 3 Zoomed
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Simulation Scenario 3 Zoomed
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Simulation Scenario 3 Zoomed
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Simulation Scenario 3 Zoomed
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AoA Comparison for DFT-Based and PSMD Algorithms

◮ Both algorithms executed for 1.5 seconds
◮ M = 24
◮ 6 sources
◮ DFT-based (left) vs PSMD (right)
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AoA Comparison for DFT-Based and PSMD Algorithms

◮ Both algorithms executed for 1.5 seconds

◮ M = 24

◮ 6 sources

◮ Evaluated at Ω = π/2
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Approximating a minimum-order solution to the PEVD

R(z) = V (z)Λ(z)V P(z) ≈ Q(z)D(z)QP(z)

Q(z) = H(z)U (z)

◮ Task: find all-pass filter bank U(z) = diag{u1(z), . . . , uM (z)}.

◮ um(z) defined by the greatest common divisor [9] of qm(z).
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[9] F. C. Chang. Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011.
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Future Work

◮ Impact of divide-and-conquer algorithms on spectral majorisation.

◮ Investigate scenarios with ‘naturally’ (up to permutations) block
diagonal matrices.

◮ Alternative permutation/optimisation strategies for the
DFT-based PEVD.

◮ Minimum-order solutions and impulse response estimation.

◮ Deploying developed algorithms in the real world.
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Future Work

◮ Minimum-order solutions and impulse response estimation:

[9] F. C. Chang. Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011.

[10] S. Weiss et al. Identification of broadband source-array responses from sensor second order statistics.
IEEE Sensor Signal Processing for Defence Conference, Dec. 2017
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Future Work
◮ Minimum-order solutions and impulse response estimation:

◮ Cross-spectral density matrix Ri(z) defined by transfer functions,
ai(z), and source power spectral density, S(z):

Ri(z) = ai(z)S(z)a
P
i (z) + σ2

nIM ≈ qi(z)di(z)q
P
i (z) + σ2

nIM

aP
i (z)ai(z) = Ai(z) = A

(+)
i (z)A

(+),P
i (z) , ai,norm(z) =

ai(z)

A
(+)
i (z)

Ri(z) ≈ ai,norm(z)A
(+)
i (z)S(z)A

(+),P
i (z)aP

i,norm(z) + σ2
nIM

qi(z) =
ai(z)

A
(+)
i

, di(z) = A
(+)
i (z)S(z)A

(+),P
i (z)

[9] F. C. Chang. Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011.

[10] S. Weiss et al. Identification of broadband source-array responses from sensor second order statistics.
IEEE Sensor Signal Processing for Defence Conference, Dec. 2017
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Future Work

◮ Minimum-order solutions and impulse response estimation:

qi(z) =
ai(z)

A
(+)
i

, di(z) = A
(+)
i (z)S(z)A

(+)P
i (z)

Ŝ(z) = GCD {d1(z), . . . , dI(z)}

◮ Phase ambiguity in q
i
(z) = q̂

i
(z)ui(z) can be eliminated through

determination of greatest common divisor (GCD) ui(z) [9].

âi(z) = Â
(+)
i (z)q̂i(z)

◮ Magnitude and phase of transfer functions recovered.

◮ Next problem: identifying GCD of noisy eigenvalues.

[9] F. C. Chang. Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011.

[10] S. Weiss et al. Identification of broadband source-array responses from sensor second order statistics.
IEEE Sensor Signal Processing for Defence Conference, Dec. 2017
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