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ABSTRACT

Voice activity detection (VAD) algorithms are essential for many
speech processing applications, such as speaker diarization, auto-
matic speech recognition, speech enhancement, and speech coding.
With a good VAD algorithm, non-speech segments can be excluded
to improve the performance and computation of these applications.
In this paper, we propose a polynomial eigenvalue decomposition-
based target-speaker VAD algorithm to detect unseen target speak-
ers in the presence of competing talkers. The proposed approach
uses frame-based processing across multi-microphones to compute
the syndrome energy, used for testing the presence or absence of a
target speaker. The proposed approach is consistently among the
best in F1 and balanced accuracy scores over the investigated range
of signal to interference ratio (SIR) from -10 dB to 20 dB.

Index Terms— polynomial eigenvalue decomposition, target
speaker voice activity detection, speaker activity detection

1. INTRODUCTION

Voice activity detection (VAD) algorithms play an essential role in
speech processing applications, such as speaker diarization [1, 2],
automatic speech recognition (ASR) systems [3], speech enhance-
ment [4], and speech coding [5]. Typical VAD algorithms classify
audio frames as speech or non-speech. When the VAD labels are
correct, non-speech segments can be excluded to improve the appli-
cation performance and computation. Conversely, mis-classification
will not improve the computation when non-speech frames are la-
belled as ‘speech present’, while application performance may de-
grade when speech frames are labelled as ‘speech absent’, e.g., word
deletion in ASR and noise estimation using speech frames.

Classical statistical-based VAD approaches such as [5–8] exploit
the statistics of speech and noise. These approaches compute the
model parameters based on the assumptions of the speech and noise
distributions. However, the performance of these algorithms de-
grades when the assumed signal statistics are violated and the speech
presence probability, which the algorithms usually exploit, is diffi-
cult to deduce analytically [9].

Machine learning-based VAD methods have also been proposed
to model implicitly the data without using an explicit noisy signal
model [10–12]. The VAD produced for real-time applications in the
WebRTC project [13], which uses a Gaussian mixture model (GMM)
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trained in recognizing speech features [9], is now widely used in
many systems even if they are not real-time [9]. There are many
other machine learning approaches to VAD as well, including varia-
tions of methods that have also been useful for speaker recognition
and diarization such as time delay neural networks (TDNNs) [14].

A major drawback of these approaches is that they do not work
well when the background noise also comprises speech, such as in
a restaurant [15, 16]. More recent approaches have incorporated
speaker-specific information directly into the VAD employed, such
as end-to-end neural speaker diarization [15], target speaker-VAD
(TS-VAD) [17] and personal VAD [16]. These methods require sub-
stantial training data and are usually not designed for unseen speak-
ers absent in the training set. In the DIHARD III speaker diariza-
tion challenge [18], many top entries used VAD with some speaker-
specific information along with their diarization steps. In particular,
the winning entry [19] used an iterative TS-VAD as part of their sys-
tem intended to generalize to unseen speakers.

In [20], a broadband subspace approach is used to detect weak
transient signals. The approach uses an iterative polynomial ma-
trix eigenvalue decomposition (PEVD) algorithm such as the fam-
ily of second-order sequential best rotation (SBR2) [21, 22] and se-
quential matrix diagonalization (SMD) approaches [23, 24] in the
time domain or [25, 26] in the frequency domain. PEVD algorithms
have been found useful for many broadband signal processing ap-
plications such as speech enhancement [27, 28], source separation
[29, 30], source localizaton [31, 32] and beamforming [33].

This paper extends the work in [20] from transient signal de-
tection to TS-VAD for unseen targets. To achieve this, we adopt
a different frame-based multi-microphone approach to generate the
syndrome vector. The syndrome energy, computed from the syn-
drome vector, is then used to test for the presence or absence of
the target signal to generate a binary mask for every frame using
a novel detection method. The contributions of this paper are (i) a
novel PEVD-based TS-VAD algorithm and (ii) a comparison of the
proposed approach with benchmark VAD approaches in simulations
using realistic speech signals and measured impulse responses.

2. PROBLEM FORMULATION

2.1. Signal Model

The received signal at the q-th microphone is

xq(n) =

P∑
p=1

hT
p,q(n)sp(n) , (1)

where hp,q = [hp,q(0), . . . , hp,q(J)]
T represents the room im-

pulse response (RIR) from the p-th source to the q-th micro-
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phone, modelled as a J-th order finite impulse response filter,
sp(n) = [sp(n), . . . , sp(n− J)]T is the p-th source signal, n is the
sample index, and [·]T is the transpose operator. The data vector
over Q microphones is x(n) = [x1(n), . . . , xQ(n)]

T ∈ RQ.
Since the P source signals are not simultaneously excited all the

time, the goal of a TS-VAD algorithm is to identify time segments
when the p-th target source is active.

2.2. Polynomial Matrix Eigenvalue Decomposition

The space-time covariance matrix [21, 34], parameterized by time
lag τ ∈ Z, is computed using

R(τ) = E{x(n)xT (n− τ)} , (2)

where E{·} is the expectation operator over n. Each element,
rp,q(τ), is the correlation sequence between the p-th and q-th micro-
phone signals. This produces auto- and cross-correlation sequences
on the diagonals and off-diagonals, respectively.

The z-transform of (2),

R(z) =

∞∑
τ=−∞

R(τ)z−τ , (3)

denoted by R(τ)�R(z), is a para-Hermitian polynomial matrix
satisfying R(z) = RP (z) = RH(1/z∗), where [·]∗, [·]H , [·]P
are the complex conjugate, Hermitian and para-Hermitian operators
respectively. The para-Hermitian matrix eigenvalue decomposition
(EVD) of (3) is [34, 35]

R(z) = U(z)Λ(z)UP (z) , (4)

where the columns of U(z) are the polynomial eigenvectors and the
elements on the diagonal matrix Λ(z) are the polynomial eigenval-
ues. Iterative PEVD algorithms based on the SBR2 [21, 22] and
SMD [23, 24] are used to approximate (4) by Laurent polynomial
factors.

Exploiting the orthogonality between subspaces and assuming
M = P − 1 interferers in the absence of the target speaker, (4) can
be partitioned into

R(z) =
[
Us(z) U⊥(z)

] [ Λs(z) 0
0 Λs̄(z)

] [
UP

s (z)
UP

⊥(z)

]
,

(5)

where 0 is a zero matrix, Λs : C → CM×M contains the M princi-
pal eigenvalues of the interferer-related components with its eigen-
vectors on the columns of Us(z) : C → CQ×M while the eigenval-
ues Λs̄ : C → C(Q−M)×(Q−M) defines the noise floor along with
the orthogonal complement subspace of the interferers spanned by
the columns of U⊥(z) : C → CQ×(Q−M).

3. POLYNOMIAL EVD-BASED TARGET SPEAKER VOICE
ACTIVITY DETECTION ALGORITHM

We extend the work in [20] and propose two modifications includ-
ing (i) frame-based processing for syndrome generation and (ii) a
different detection approach for TS-VAD.

3.1. Frame-based Syndrome Generation

The multi-microphone signals are first processed using L frames,
each of size T , assuming no overlap between frames. Therefore, the
data vector for the i-th sample index in the ℓ-th frame xℓ(i) ∈ RQ

can be written as

xℓ(i) = x(ℓT + i) , i = 0, . . . , T − 1 . (6)

The first LI frames is assumed to contain only the interferers, and
the space-time covariance in (2) can be estimated using [36, 37].
After computing its PEVD, the orthogonal complement subspace
U⊥(z) based on (5) is generated. For each frame, a syndrome vec-
tor yℓ(i) ∈ C(Q−M) is computed by filtering the data vector through
the eigenvector U⊥(z)� U⊥(n) using

yℓ(i) =
∑
ν

UH
⊥ (−ν)xℓ(i− ν) . (7)

The syndrome vector yℓ(i), whose change in statistics indicates the
presence of the target speaker, is similar to the projection of xℓ(i)
onto a smaller (Q − M)-dimensional subspace. This projection
removes components associated with the interferer Us(z). In the
interferer-only case, the energy of yℓ(i) is expected to be smaller
than xℓ(i) if there are only M interferer signals, as seen in (5).

3.2. Target Speaker Voice Activity Detection

Instead of a decimated subspace detector in [20], a simple hard
thresholding mechanism is used in our proposed VAD design. The
energy of the syndrome data yℓ(i) for the ℓ-th time frame can be
calculated using

ξℓ =

T−1∑
i=0

∥yℓ(i)∥22 , (8)

where ∥·∥2 is the Euclidean-norm of a vector. When the target
speaker begins to talk, some of the signal components associated
with the target is likely to protrude into the orthogonal complement
subspace U⊥(z) and result in a large value for (8). In this case,
changes in the syndrome energy become more easily detectable than
the energy of the microphone signals.

A threshold value ξI indicating the absence of the target speaker
can be calculated by averaging across the LI interferer-only frames.
Any deviation from ξI is subsequently used to detect the presence
of the target on a frame-by-frame basis. For the ℓ-th time frame, a
binary mask m(ℓ) is generated based on

m(ℓ) =

{
1, ξℓ > ξI ,

0, otherwise .
(9)

The mask aims to identify frames containing the target. Inevitably,
this may also include the interferer when both talkers are speaking.
The target source s(n) is extracted by applying the mask using

ŝ(n) = [m(
n

T
) ∗ pT (n)] · x1(n) , (10)

where m(t) = 0 unless t ∈ Z such that n = ℓT , pT (n) is a Dirich-
let or rectangular window of length T , x1(n) is the first reference
microphone, and ∗ denotes the linear convolution operator.
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Fig. 1: Cafeteria setup from Kayser database [39].

4. SIMULATION AND RESULTS

4.1. Setup

The target and interferer speech signals were taken from the VCTK
corpus [38] and the 2-channel RIRs were taken from the in-ear
recordings in the Kayser database [39]. The speech and inter-
ferer signals were separately convolved with the RIRs before being
added together at each microphone. The signal to interference ra-
tio (SIR) [40] at the first microphone, taken to be the reference, was
varied from -10 dB to 20 dB. The target speaker and directional in-
terferer are respectively 1.02 m in front and 1.62 m to the right of the
listener, at positions A and D shown in Fig. 1 [39]. The directional
interferer in all experiments was the same male talker who spoke
continuously without pauses.

The proposed PEVD approach was compared against Sohn [5]
and WebRTC approaches [13]. WebRTC [13] operates at modes 0–3
from the least to the most aggressive setting. The microphone sig-
nals were processed in 30 ms frames. The time support used for (3)
in the proposed PEVD-based approach was also 30 ms. The SMD
algorithm was used for computing PEVD and the parameters are
based on [27]. The first 500 ms were assumed to contain only the
interferer signals and were therefore used for calculating (5).

4.2. Ground Truth Labels

A similar procedure described in [41] is used to establish the ground
truth (GT) labels. The RIR from the target to the first microphone,
chosen as the reference, is truncated approximately 5 ms after the
direct-path peak. The truncation is necessary to ensure that the tar-
get speech is time aligned with the microphone signals while mini-
mizing reverberation. The anechoic target speech signal is then con-
volved with the truncated RIR to generate the target speech in x1(n).
The VAD algorithm mode 3 [13] is applied to the target signal to
generate the ground truth VAD labels as shown in Fig. 2. Informal
listening examples for the VAD outputs are available [42].

4.3. Evaluation Measures

The counts for the ground truth and predicted labels are tabulated in
Table 1 using a confusion matrix [43]. The absence or presence of
speech is indicated by the label ‘0’ or ‘1’. A true positive (TP) and
a true negative (TN) are obtained when both labels are ‘1’ and ‘0’
respectively. A false negative (FN) occurs when the predicted label
is ‘0’ but the ground truth is ‘1’ while a false positive (FP) happens
when the predicted label is ‘1’ but the ground truth is ‘0’. This allows
the use of F1, true positive rate (TPR), true negative rate (TNR), and

balanced accuracy (BACC) scores defined as [43]

TPR =
TP

TP + FP
, TNR =

TN
TN + FN

,

F1 =
TP

TP + 0.5× (FP + FN)
, BACC =

TPR + TNR
2

. (11)

4.4. Experiments and Discussions

4.4.1. Experiment 1: Female Target and Male Interferer

The male interferer spoke continuously at a SIR of 5 dB. The first
500 ms was used by the PEVD approach to generate the orthogonal
complement of the interferer subspace U⊥(z) and to calculate the
threshold value ξI . The syndrome vector is generated for each frame
by filtering the data vector through U⊥(z) in (7) to derive the syn-
drome energy ξ. The evolution of the syndrome energy is plotted
along with the target and received signals in Fig 2(a). The syndrome
energy follows the envelope of the target signal, and a thresholding
mechanism can be used to design a detector.

The results for the different VAD algorithms are shown in
Fig 2(a) and Table 1(a). The proposed PEVD approach is the best
performing algorithm with F1 and BACC scores of 0.820 and 0.667,
respectively, while Sohn comes second. The PEVD approach can
better identify the absence of a target source as shown by the missed
detections before 1 s, between 6–8 s and after 14 s by other methods
in Fig 2(a) and scores the best in TN with 72 frames. The plot shows
that G0 and G3 tend to label the frames as containing the target
speech, e.g., binary mask values of 1, resulting in high FP.

4.4.2. Experiment 2: Male Target and Male Interferer

The target speaker and interferer in this experiment are both males at
20 dB SIR. Changes in the syndrome energy ξ with the target speech
as well as the received signal in the first microphone are shown in
Fig. 2(b). Compared to the female target example in Experiment 1,
the PEVD-based VAD for the male target speaker gives a relatively
high FP score. This might result from subspace leakage since both
male speakers are likely to be more similar than a pair of male and
female speakers. G3 gives the best improvement in F1 and BACC
scores, followed by PEVD, while G0 performs the worst.

When the SIR worsens to -10 dB, Sohn performs better than
PEVD in F1 score by 0.01, while PEVD scores better in BACC by
0.047. Compared to Sohn, PEVD can better identify the absence
than the presence of the target speaker in frames. This result is also
consistent with the other SIR and the female target talker. The We-
bRTC methods, G0 and G3, do not perform well, and they tend to
label frames as containing the target speaker, resulting in very low
TN and high FP scores.

5. CONCLUSION

In this work, we have proposed a novel PEVD-based TS-VAD for
detecting speech from a target speaker in the presence of competing
talkers. We have introduced two main modifications to an earlier
approach for the detection of weak transient signals, namely, frame-
based processing and a thresholding mechanism that generates a bi-
nary mask. The energy of the syndrome matrix at each frame has
been shown to follow the overall envelope of the target signal and
can be used to detect its presence. The proposed approach is consis-
tently among the best in F1 and BACC scores over the investigated
range of SIR from -10 dB to 20 dB.



(a) VAD outputs for 5 dB SIR female target.
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Fig. 2: Comparison of VAD outputs m1(n) using Sohn VAD [5], WebRTC Modes 0 and 3 (G0, G3) [13], and the proposed PEVD-based
VAD. The ground truth (GT), syndrome y(n), target and microphone 1 signals are plotted for reference. The VAD outputs are plotted for
(a) 5 dB SIR target female speaker, and (b) 20 dB SIR target male speaker.

Table 1: Confusion matrix and scores for VAD output on target speaker in the presence of a competing talker at various SIR.

(a) Female target in SIR = 5 dB

Metric Sohn G0 G3 PEVD
TP 295 313 310 294
TN 43 4 10 72
FP 139 178 172 110
FN 18 0 3 19
F1 0.790 0.779 0.780 0.820

BACC 0.589 0.511 0.523 0.667

(b) Male target in SIR = 20 dB

Metric Sohn G0 G3 PEVD
TP 343 357 350 356
TN 84 36 277 120
FP 267 316 75 232
FN 14 0 7 1
F1 0.709 0.693 0.895 0.753

BACC 0.600 0.551 0.884 0.669

(c) Male target in SIR= -10 dB

Metric Sohn G0 G3 PEVD
TP 338 360 354 294
TN 57 0 4 128
FP 273 330 326 202
FN 24 2 8 68
F1 0.695 0.684 0.679 0.685

BACC 0.553 0.497 0.495 0.600
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