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Abstract—A voice activity detection (VAD) algorithm identifies
whether or not time frames contain speech. It is essential
for many military and commercial speech processing applica-
tions, including speech enhancement, speech coding, speaker
identification, and automatic speech recognition. In this work,
we adopt earlier work on detecting weak transient signals
and propose a polynomial subspace projection pre-processor to
improve an existing VAD algorithm. The proposed multi-channel
pre-processor projects the microphone signals onto a lower
dimensional subspace which attempts to remove the interferer
components and thus eases the detection of the speech target.
Compared to applying the same VAD to the microphone signal,
the proposed approach almost always improves the F1 and
balanced accuracy scores even in adverse environments, e.g.
-30 dB SIR, which may be typical of operations involving noisy
machinery and signal jamming scenarios.

Index Terms—Voice activity detection, polynomial matrix
eigenvalue decomposition, multi-channel signal processing

I. INTRODUCTION

A voice activity detection (VAD) algorithm identifies
whether or not time frames contain speech. VAD is essential
for many military and commercial speech processing appli-
cations such as speech enhancement [1], speech coding [2],
speaker identification [3], [4], and automatic speech recog-
nition (ASR) systems [5]. For example, speech enhancement
algorithms may facilitate communication among operators in
military operations where the acoustic environment is very
challenging, e.g., very noisy machinery and signal jamming
scenarios. Such algorithms, however, usually rely on noise es-
timators, which can be derived from the VAD pre-processing.

Classical statistics-based VAD approaches such as [2], [6]–
[8] exploit the statistics of speech and noise. These approaches
compute the model parameters based on the assumptions of the
speech and noise distributions. However, the performance of
these algorithms degrades when the assumed signal statistics
are violated and the speech presence probability, which the
VAD algorithms usually exploit, is difficult to deduce analyt-
ically [9]. Furthermore, during noise-only segments, rapidly
changing noise can result in transient interference [10].

Machine learning-based VAD methods have also been pro-
posed to implicitly model the data without using an explicit
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noisy signal model [10]–[12]. Amongst many, a VAD algo-
rithm, which uses a Gaussian mixture model (GMM) trained
in recognizing speech features, has been widely adopted for
real-time applications in the WebRTC system [13]. The algo-
rithm cannot cope with noisy environments where it becomes
challenging to extract speech features, severely degrading its
performance [9], [11].

In [14], a broadband subspace-based approach is used to
detect weak transient signals. The approach applies a poly-
nomial matrix eigenvalue decomposition (PEVD), which is
iteratively approximated by algorithms such as the second-
order sequential best rotation (SBR2) [15], [16] and sequential
matrix diagonalization (SMD) [17], [18] in the time-domain or
[19], [20] in the discrete Fourier transform (DFT)-domain, to
generate the eigenvectors and eigenvalues. Filtering the signal
through the eigenvector filterbank yields a syndrome vector,
which is more discriminative towards detecting a transient
signal [14].

In this work, we adapt [14] and investigate the idea of weak
transient signal detection for multi-microphone VAD. The
novel contributions of this paper are (i) a subspace-projection
approach for VAD instead of the syndrome vector approach
used for weak transient signal detection in [14], (ii) the use of
realistic speech signals and measured room impulse responses
(RIRs) and (iii) a comparison of the proposed approach against
benchmark VAD algorithms in adverse environments. We first
describe the goal of a VAD algorithm and provide a review
of PEVD in Section II. The proposed method based on a
multi-channel polynomial subspace projection is presented in
Section III. Simulations and results are discussed in Section
IV and Section V concludes our findings.

II. PROBLEM FORMULATION

A. Signal Model

The received signal at the q-th microphone is

xq(n) =

P∑
p=1

hT
p,q(n)sp(n) , (1)

where hp,q = [hp,q(0), . . . , hp,q(J)]
T represents the RIR

from the p-th source to the q-th microphone, modelled
as a J-th order finite impulse response filter, sp(n) =

[sp(n), . . . , sp(n− J)]
T is a tap delay line vector formed from

the p-th source signal, n is the sample index, and [·]T is the



transpose operator. The data vector over Q microphones is
x(n) = [x1(n), . . . , xQ(n)]

T .
Since the P source signals are not simultaneously excited

all the time, the goal of a VAD algorithm is to identify time
segments when the p-th source is active.

B. Polynomial Matrix Eigenvalue Decomposition
The space-time covariance matrix, parameterized by time

lag τ ∈ Z, is computed using [21]

R(τ) = E{x(n)xT (n− τ)} , (2)

where E{·} is the expectation operator over n. Each element,
rp,q(τ), is the correlation sequence between the p-th and q-th
microphone signals. This produces auto- and cross-correlation
sequences on the diagonals and off-diagonals, respectively.

The z-transform of (2),

R(z) =

∞∑
τ=−∞

R(τ)z−τ , (3)

denoted by R(τ)� R(z), is a para-Hermitian polynomial
matrix satisfying R(z) = RP (z) = RH(1/z∗), where [·]∗,
[·]H , [·]P are the complex conjugate, Hermitian and para-
Hermitian operators respectively. The para-Hermitian eigen-
value decomposition (EVD) of (3) is [21], [22]

R(z) = U(z)Λ(z)UP (z) , (4)

where the columns of U(z) are the polynomial eigenvectors
and the elements on the diagonal matrix Λ(z) are the poly-
nomial eigenvalues. Iterative PEVD algorithms based on the
SBR2 [15], [16] and SMD [18], [23] are used to approximate
(4) by Laurent polynomial factors.

Exploiting the orthogonality between subspaces and assum-
ing L signal components, (4) can be partitioned into

R(z) =
[
Us(z) U⊥(z)

] [ Λs(z) 0
0 Λs̄(z)

] [
UP

s (z)

UP
⊥(z)

]
,

(5)

where 0 is a zero matrix, Λs : C → CL×L contains the L
principal eigenvalues of the signal-related components with its
eigenvectors on the columns of Us(z) : C→ CQ×L while the
eigenvalues Λs̄ : C→ C(Q−L)×(Q−L) defines the noise floor
along with the orthogonal complement or noise-only subspace
spanned by the columns of U⊥(z) : C→ CQ×(Q−L).

III. POLYNOMIAL SUBSPACE PROJECTION APPROACH FOR
VOICE ACTIVITY DETECTION

A. Polynomial Subspace Projection
Typically, VAD algorithms operate directly on the micro-

phone signals. In the presence of strong interfering signals,
however, the performance of these algorithms degrades, as will
be investigated in Section IV.

Assuming that the first few frames contain only the inter-
ferer components, the space-time covariance matrix in (2) can
be estimated without bias using [24], [25]

R(τ) ≈ 1

N − |τ |

N−1∑
n=0

x(n)xT (n− τ) . (6)

Whenever we have assurance that only the stronger interfer-
ing signals are present, R(τ) can be re-estimated using (6)
based on appropriate interference-only segments in x(n). The
PEVD is computed on the z-transform of (6) to generate the
orthogonal complement subspace U⊥(z) based on (5).

In [14], a syndrome vector is obtained by filtering the mi-
crophone signals through the eigenvector U⊥(z)� U⊥(n).
This syndrome vector is used to detect the entry of a new target
source that may be weaker in power than the L interferers,
assumed to be stationary for a period of time. The syndrome
energy increases in the presence of a new source which is
likely to protrude into the subspace U⊥(z). Furthermore, since
U⊥(n) is designed to be causal [26] and may introduce bulk
delays to the microphone signals for signal alignment, the
syndrome vector may no longer be temporally aligned with
the microphone signals. Hence, the syndrome vector cannot
be directly used to generate a VAD mask for the microphone
signals.

Instead of generating a syndrome vector in [14], a poly-
nomial subspace projection P(z) = U⊥(z)UP

⊥(z) ∈ CQ×Q

is performed on the microphone signals x(n) to project
them onto a reduced (Q − L) dimensional subspace. This
will generate time signals y(n) with a reduction in energy
contributions of the estimated L interferer components using

y(n) =
∑
k

∑
m

U⊥(k)U
H
⊥ (k −m)x(n−m) . (7)

Note that L is the estimated rank of the interferer com-
ponents. In general, because of errors incurred in estimating
(2) and because PEVD algorithms such as SBR2 and SMD
encourage spectral majorization of the extracted eigenvalues,
leakage occurs across the subspace, i.e., some signal compo-
nents leak into U⊥(z) [27]. More notably, in the context of
dereverberation [28], the direct-path and early reflections are
captured by the subspace associated with the first principal
eigenvalue while the late reverberant components are observed
in the other subspaces [29]. While an over-estimation of L
may be advantageous in minimizing the energy spread of the
interferer components, the projection of the target signal onto a
lower (Q−L) dimensional subspace may not yield significant
components in y(n).

B. Voice Activity Detection on Projected Component

In order to detect a change point due to an emerging target
speaker in the syndrome vector, a VAD algorithm [2] can be
applied to the q-th processed signal yq(n) to generate a more
reliable binary mask mq(n) than the microphone signal xq(n)
which contains some interferer components. The segments
containing the target source are then extracted using

ŝq(n) = mq(n) · yq(n) , (8)

where ŝ(n) is the estimated target speech in the q-th processed
signal, and mq(n) takes on the value 0 or 1 since it is binary.
The proposed method is summarized in Algorithm 1.



Algorithm 1 Polynomial Subspace Projection-Based VAD.

Inputs: x(n) ∈ RQ, L.
R(τ)← E{x(n)xT (n)} // interferer-only frames, see (2)
R(z)← Z{R(τ)} // see (3)
U(z),Λ(z)← PEVD {R(z)} // use SMD [18]
y(n)← project{U⊥(n),x(n)} // see (7)
mq(n)← VAD{yq(n)} // apply VAD [2] on q-th signal
ŝq(n)← mq(n) · xq(n) // extract target activity, see (8)
return ŝq(n).

IV. SIMULATION AND RESULTS

A. Setup
Measurements of the speech signals and Q = 8 channel

cafeteria RIRs were taken from the VCTK corpus [30] and
Kayser database [31], respectively. The interferer signals com-
prising F16 cockpit and destroyer engine room noise were
extracted from the Noisex database [32]. If necessary, signals
were resampled to match the sampling rates of 48 kHz. The
speech and interferer signals were separately convolved with
the RIRs before being added together at each microphone. The
source-to-interferences ratio (SIR) [33] at the first microphone,
taken to be the reference, was varied from -30 dB to 20 dB.
The target speaker and directional interferer are respectively
1.02 m in front (along the y-axis) and 1.62 m to the right (along
the x-axis) of the listener, at positions A and D in Fig. 1 [31].

The VAD algorithms used include Sohn’s approach [2]
and the approach used by WebRTC [13]. WebRTC operates
at modes 0–3 from the least to the most aggressive setting.
The microphone signals were processed in 30 ms frames. The
first 15 frames were assumed to contain only the interferer
signals and were therefore, used for calculating (5). We also
applied [2] to the projected signal y(n) to investigate if there
is any advantage of pre-processing with (7) using different
rank estimates, L = 1, 2, 5, 7 (R1, R2, R3, R7).

B. Ground Truth Labels
A similar procedure described in [34] is used to establish

the ground truth (GT) labels. The RIR from the target to
the first microphone, chosen as the reference, is truncated
approximately 5 ms after the direct-path peak. The truncation
is necessary to ensure that the target speech is time aligned
with the microphone signals while minimizing reverberation.
The anechoic target speech signal is then convolved with the
truncated RIR to generate the target speech in x1(n). The
VAD algorithm Mode 3 [13] is applied to the target signal to
generate the ground truth VAD labels as shown in Fig. 2(a).
For the short target speech used later in Experiment 2 shown
in Fig. 2(a)(ii), the positive label ‘1’ at approximately 2.8 s
corresponds to a bilabial sound made with both lips [5], as also
observed in informal listening examples [35]. In this paper,
results for only the first microphone are presented.

C. Evaluation Measures
The counts for the ground truth and predicted labels are

tabulated using a confusion matrix [36]. The absence or

D
1.62 m

A

1.02 m

Fig. 1: Experiment setup in the cafeteria from [31].

presence of speech is indicated by the label ‘0’ or ‘1’. True
positive (TP) and true negative (TN) are obtained when both
labels are ‘1’ and ‘0’ respectively. False negative (FN) occurs
when the predicted label is ‘0’ but the ground truth is ‘1’ while
false positive (FP) happens when the predicted label is ‘1’ but
the ground truth is ‘0’. This allows the use of F1, true positive
rate (TPR), true negative rate (TNR), and balanced accuracy
(BACC) scores defined as [36]

TPR =
TP

TP + FP
, TNR =

TN
TN + FN

,

F1 =
TP

TP + 0.5× (FP + FN)
, BACC =

TPR + TNR
2

. (9)

D. Results and Discussions

1) Experiment 1: Comparison of VAD on Destroyer Noise.
The results are summarized in Table I. At 20 dB SIR, G0 and
G3 outperform the other approaches. Slight improvement in F1
and BACC scores arising from an increase in TP is observed
when we apply Sohn to the signals projected onto the lower-
dimensional subspace (R1, R2, R3, R7) over the microphone
signal.

As shown in Table I(b) at 10 dB SIR, the VAD outputs
of G0 and G3 are consistently 1, resulting in very high TP
and FP. This gives a F1 score of 0.866 but poor BACC
score of 0.500 arising from zero negative labels. The proposed
approach to perform Sohn [2] on the projected signals shows
a slight improvement in F1 score over direct processing on the
microphone signal.

At -30 dB SIR where the target signal is significantly
weaker, Table I(c) highlights the more significant improvement
in the proposed approach over the baseline Sohn. The subspace
projection approach increases TP by up to 57 for R7, although
this was traded against a drop in TN by 12.

At a high SIR of 20 dB, subspace leakage into the orthog-
onal complement subspace from the interferer-only subspace
is less likely. Hence, R1, R2, R5 and R7 performed similarly.
However, at low SIR, e.g. -30 dB, the interferer-only subspace
is likely to have leaked into the complement subspace. This
promotes high-rank, e.g. R7, so that the microphone signal can
be projected into a 1-dimensional subspace where interferer-
only components are mostly removed. Note that this small
dimensional subspace projection will likely contain only a
fraction of the target signal, and hence, the selection of the
rank L represents a trade-off.

2) Experiment 2: Different Target Speech Durations. The
target speech is corrupted by -20 dB SIR directional F16
cockpit noise. The VAD outputs are shown in Fig. 2(b) for the



(a) Ground truth (GT) labels.
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Fig. 2: Comparison of VAD binary outputs m1(n) using Sohn VAD [2] on the microphone signal x1(n) (Sohn), proposed
approach by applying [2] on projected signal y1(n) using different estimated ranks (R1-R7), WebRTC using modes 0 and 3
(G0, G3) [13]. The plots show (a) the ground truth (GT) labels for (i) long and (ii) short target signal component in x1(n);
(b) long noisy and (c) short noisy segments of speech corrupted by -20 dB SIR F16 cockpit noise from Noisex database [32].

TABLE I: Confusion matrix and scores for VAD output on target speech in directional destroyer noise at various SIR.
(a) SIR = 20 dB

Method TP TN FP FN F1 BACC
Sohn 283 175 104 32 0.806 0.763
R1 287 174 105 28 0.812 0.767
R2 286 175 104 29 0.811 0.768
R5 287 173 106 28 0.811 0.766
R7 291 171 108 24 0.815 0.768
G0 311 249 30 4 0.948 0.940
G3 293 273 6 22 0.954 0.954

(b) SIR = 10 dB
Method TP TN FP FN F1 BACC

Sohn 271 238 41 44 0.864 0.857
R1 275 233 46 40 0.865 0.854
R2 275 224 55 40 0.853 0.838
R5 280 227 52 35 0.866 0.851
R7 277 231 48 38 0.866 0.854
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

(c) SIR= -30 dB
Method TP TN FP FN F1 BACC

Sohn 94 226 53 221 0.407 0.628
R1 111 227 52 204 0.464 0.651
R2 102 235 44 213 0.443 0.642
R5 138 226 53 177 0.545 0.688
R7 151 214 65 164 0.569 0.699
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

TABLE II: Confusion matrix and scores for VAD output on
long target speech in directional F16 noise at -20 dB SIR.

Method TP TN FP FN F1 BACC
Sohn 130 241 38 185 0.538 0.638
R1 136 249 30 179 0.565 0.662
R2 158 244 35 157 0.622 0.688
R5 148 247 32 167 0.598 0.678
R7 136 224 55 179 0.538 0.617
G0 315 0 279 0 0.693 0.500
G3 315 0 279 0 0.693 0.500

same long speech segment as Experiment 1. The target signal
and the GT labels are shown along with the other VAD outputs.
As described in the earlier experiment, the G3 VAD output is
always 1, which implies that it always predicts the presence of
speech. This results in a high TP and, subsequently, good F1
score but is penalized by the poor BACC score arising from
high FP, as shown in Table II.

When the target speech segment is short, as shown in
Fig. 2(c), the G0 and G3 VAD outputs are also always 1.
However, this time, the FP tremendously increases to 410
and this severely affects the F1 score. The proposed approach
demonstrates that pre-processing the microphone with the
subspace projection almost always improves the F1 and BACC
scores. In this case, R2 provides an improvement over [2] in
F1 and BACC scores by 0.176 and 0.119, respectively.

TABLE III: Confusion matrix and scores for VAD output on
short target speech in directional F16 noise at -20 dB SIR.

Method TP TN FP FN F1 BACC
Sohn 28 334 76 56 0.298 0.574
R1 30 342 68 54 0.330 0.596
R2 45 349 61 39 0.474 0.693
R5 32 344 66 52 0.352 0.610
R7 32 325 85 52 0.318 0.587
G0 84 0 410 0 0.291 0.500
G3 84 0 410 0 0.291 0.500

V. CONCLUSION

In this work, a polynomial subspace projection approach
has been proposed as a pre-processor to improve VAD per-
formance. We have shown that performing this multi-channel
pre-processor prior to applying the single-channel Sohn VAD
algorithm [2] almost always improves the F1 and balanced
accuracy (BACC) scores even in adverse environments, e.g.,
-30 dB SIR. This improvement over the baseline of applying
VAD to the microphone signal is less significant at high SIRs
and more significant at low SIRs. Note that it is particularly
in the low SIR regime, i.e., for weak speaker signals, where
we set out to boost VAD performance. We have also shown
that the rank estimate of the interferer-only subspace directly
impacts the orthogonal complement subspace used for the
projection and, subsequently, the VAD performance. Informal
listening examples are available [35]. An end-to-end PEVD-
based VAD algorithm has also been proposed recently [37].
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