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Abstract— We present an adaptive reduced-rank signal pro-
cessing technique for airborne phased array radar applications.
The proposed method performs dimensionality reduction by us-
ing a reduced-rank switched joint interpolation, decimation and
filtering algorithm (RR-SJIDF). A multiple-processing-branch
(MPB) framework, which contains a set of jointly optimized
interpolation, decimation and filtering units, is employed to
process the observations. The output is switched to the branch
with the best performance among the available ones. In order to
design the decimation unit, we present the optimal decimation
scheme and also a low-complexity decimation algorithm. We
then develop a low-complexity recursive least squares (RLS)
algorithm for the proposed scheme. Simulations results show that
the proposed RR-SJIDF STAP algorithm converges at a very fast
speed and provides a considerable signal-to-interference-plus-
noise-ratio (SINR) performance improvement over the state-of-
the-art reduced-rank schemes.

I. INTRODUCTION

Space-time adaptive processing (STAP) has been motivated
as a key enabling technology for advanced airborne radar
applications following the landmark publication by Brennan
and Reed [1]. STAP techniques can improve slow-moving
target detection through better mainlobe clutter suppression,
provide better detection in combined clutter and jamming
environment, and offer a significant increase in output signal-
to-interference-plus-noise-ratio (SINR). However, due to their
large computational complexity, the full-rank optimum and
adaptive STAP techniques are prohibitive for practical use
when the number of elements in the filter is large. It is well-
known that K ≥ M independent and identically distributed
(i.i.d) training samples are needed for the filter to achieve the
steady performance, where M is the filter dimension [2]. Thus,
in dynamic scenarios, full-rank STAP techniques with large M
usually fails or provides poor performance in tracking target
signals contaminated by interference and noise.

Reduced-rank adaptive signal processing, which has gained
a great deal of attention in the last decades, is a key technique
for dealing with large systems [3]- [17]. The basic idea of the
reduced-rank algorithms is to reduce the number of adaptive
coefficients by projecting the received vectors onto a lower
dimensional subspace which consists of a set of basis vectors.
The adaptation of the low-order filter within the lower dimen-
sional subspace results in significant computational savings,
faster convergence speed and better tracking performance. The
first statistical reduced-rank method was based on a principal-
components (PC) decomposition of the target-free covariance
matrix [3]. Another class of eigen-decomposition methods was
based on the cross-spectral metric (CSM) originally proposed
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in [4] and then also considered in [5]. Both the PC and
CSM algorithms have a high computational load due to the
eigen-decomposition. Another class of subspace methods has
been investigated thoroughly in the recent years. Among
them are the multistage Wiener filter (MSWF) [6], [7] which
projects the observation data onto a lower-dimensional Krylov
subspace and the auxiliary-vector filtering (AVF) [8], [9].
These methods are very complex to implement in practice
and suffer from numerical problems despite their improved
convergence and tracking performance. Recently, reduced-rank
filtering algorithms based on joint iterative optimization of
filters [11], [13], [14] and an adaptive diversity-combined
decimation and interpolation scheme [15] have been proposed.
In our prior work [14], a STAP scheme based on joint iterative
optimization of filters has been applied to airborne radar. This
technique provides a significant improvement both in con-
vergence speed and SINR performance but with considerable
complexity level, even compared with the existing reduced-
rank STAP algorithms. However, the work in [15], [16] has
not considered linearly constrained reduced-rank algorithms
that are suitable for STAP in radar systems.

In this paper, we develop a reduced-rank approach to
the STAP design utilizing a scheme based on a switched
joint interpolation, decimation and filtering (SJIDF) algorithm
for airborne radar systems. In this scheme, the number of
elements for processing is substantially reduced, resulting in
considerable computational savings and very fast convergence
performance for radar applications. The proposed approach
obtains the subspace of interest via a multiple processing
branch (MPB) framework which consists of a set of simple
interpolation, decimation and filtering operations. Unlike the
previous work in [15], multiple interpolators and reduced-rank
filters are employed in the MPB framework. We describe an
optimal decimation scheme and a low-complexity decimation
scheme for the proposed structure. We derive an RLS algo-
rithm for the proposed scheme and evaluate its computational
complexity. The results show that the proposed RR-SJIDF
STAP converges at a very fast speed and obtains a considerable
SINR improvement over the existing methods.

This paper is organized as follows. Section II states the
signal model and the problem which concerns us. Section III
presents the proposed reduced-rank adaptive filtering scheme,
describes the proposed joint iterative optimization of the
interpolation, decimation and filtering tasks, and details the
proposed decimation schemes. In Section IV, we present
the proposed adaptive RLS algorithm. The performance as-
sessment examples of the proposed reduced-rank STAP are
provided in Section V using simulated radar data. Finally,
conclusions are given in Section VI.
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Fig. 1. (a) The Radar CPI datacube. (b) The STAP schematic.

II. PROBLEM STATEMENT

The system under consideration is a pulsed Doppler radar
residing on an airborne platform. The radar antenna is a uni-
formly spaced linear array antenna consisting of N elements.
Radar returns are collected in a coherent processing interval
(CPI), which is referred to as the 3-D radar datacube shown in
Fig. 1(a), where K denotes the number of samples collected
to cover the range interval. The data is then processed at one
range of interest, which corresponds to a slice of the CPI
datacube. This slice is a J × N matrix which consists of
N × 1 spatial snapshots for J pulses at the range of interest.
It is convenient to stack the matrix column-wise to form the
M×1,M = JN vector r(i), termed the i-th range gate space-
time snapshot, 1 ≤ i ≤ K [1].

A. Signal Model
The function of a radar is to ascertain whether targets are

present in the data. Thus, given a space-time snapshot, radar
detection is a binary hypothesis problem, where hypothesis H0

corresponds to target absence and hypothesis H1 corresponds
to target presence. The radar space-time snapshot is then
expressed for each of the two hypotheses in the following
form,

H0 : r(i) = v(i)

H1 : r(i) = as+ v(i),
(1)

where a is a zero-mean complex Gaussian random variable
with variance σ2

s , v(i) denotes the input interference-plus-
noise vector which consists of clutter rc(i), jamming rj(i) and
the white noise rn(i). These three components are assumed to
be mutually uncorrelated. Thus, the M×M covariance matrix
R of the undesired clutter-plus-jammer-plus-noise component
can be modelled as

R = E{v(i)vH(i)} = Rc +Rj +Rn (2)

where H represents Hermitian transpose, Rc =
E{rc(i)rHc (i)}, Rj = E{rj(i)rHj (i)} and Rn =
E{rn(i)rHn (i)} denote the clutter, jamming and noise
covariance matrices respectively, and E denotes expectation.
The vector s, which is the M × 1 normalized space-time
steering vector in the space-time look-direction, can be
defined as:

s = b(�t)⊗ a(ϑt), (3)

where b(�t) is the K×1 normalized temporal steering vector
at the target Doppler frequency �t and a(ϑt) is the N × 1
normalized spatial steering vector in the direction provided
by the target spatial frequency ϑt. The notation ⊗ denotes
Kronecker product.
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Fig. 2. Proposed Adaptive Reduced-Rank Filtering Scheme (RR-SJIDF).

B. Optimum Radar Signal Processing
To detect the presence of targets, each range bin is pro-

cessed by an adaptive 2D beamformer (to achieve maximum
output SINR) followed by a hypothesis test to determine
the target presence or absence. The optimum full-rank STAP
(or Neyman-Pearson optimal under Gaussian disturbance) [1]
obtained by an unconstrained optimization of the SINR is
given as follows:

ωopt = kR−1s (4)

where k is an arbitrary nonzero complex number. The optimal
constrained weight vector for maximizing the output SINR,
while maintaining a normalized response in the target spatial-
Doppler look-direction was originally given in [18] by

ωopt =
R−1s

sHR−1s
. (5)

It is obvious that the solution in (5) can also be obtained by
solving the linearly constrained minimum variance (LCMV)
problem as

ωopt = argmin
ω(i)

ωH(i)Rω(i) s. t. sHω(i) = 1. (6)

III. PROPOSED RR-SJIDF SCHEME

In this section, we detail the proposed adaptive reduced-
rank filtering scheme based on the switched joint interpola-
tion, decimation and filtering (RR-SJIDF). The reduced-rank
adaptive filtering scheme based on combined decimation and
interpolation filtering was presented in [15]. In this work, we
develop a reduced-rank STAP algorithm based on the SJIDF
scheme for airborne radar applications, whose schematic is
shown in Fig. 2. The motivation for designing a projection
matrix based on interpolation and decimation comes from two
observations. The first is that rank reduction can be performed
by eliminating (decimating) samples that are not useful in the
filtering process and then attempting to recreate the eliminated
samples with an interpolator. The second comes from the
structure of the projection matrix, whose columns are a set
of bases formed by the interpolators and the decimators.

A. Overview of the RR-SJIDF Scheme
In this part, we briefly introduce the principle of the

proposed RR-SJIDF algorithm. In this scheme, the number
of elements for filtering is substantially reduced, resulting in
considerable computational savings and very fast convergence
performance for the radar applications. The proposed approach
straightforwardly obtains the subspace of interest via a multi-
ple processing branch (MPB) framework. The M ×1 received



vector r(i) = [r0(i), r1(i), · · · , rM−1(i)]
T is processed by

a MPB framework with B branches, where each processing
branch contains an interpolator filter, a decimation unit and
a reduced-rank filter. In the b-th branch b ∈ {1, 2, ..., B},
the received vector r(i) is filtered by the interpolator filter
ῡb(i) = [υ0,b(i), υ1,b(i), · · · , υI−1,b(i)]

T with filter length
I , yielding the interpolated received vector r′b(i) with M
samples, which is expressed by

r′b(i) = Vb(i)r(i) (7)

where the M ×M Toeplitz matrix Vb(i) is given by

Vb(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ0,b(i) 0 . . . 0
... υ0,b(i) . . . 0

υI−1,b(i)
... . . . 0

0 υI−1,b(i) . . . 0

0 0
. . . 0

...
...

. . .
...

0 0 . . . υ0,b(i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8)

In order to facilitate the description of the scheme, let us
introduce an alternative way of expressing the vector r′b(i),
which will be useful in the following through the equivalence:

r′b(i) = Vb(i)r(i) = R0(i)ῡb(i), (9)

where the M × I matrix R0(i) with the samples of r(i) has
a Hankel structure [19] and is described by

R0(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0(i) r1(i) . . . rI−1(i)
r1(i) r2(i) . . . rI(i)

...
... . . .

...
rM−I(i) rM−I+1(i) . . . rM−1(i)

rM−I+1(i) rM−I+2(i)
. . . 0

...
...

. . .
...

rM−2(i) rM−1(i) 0 0
rM−1(i) 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

The dimensionality reduction is performed by a decimation
unit with D×M decimation matrices Tb(i) that projects r′b(i)
onto D×1 vectors r̄b(i) with b = 1, . . . , B, where D = M/L
is the rank and L is the decimation factor. The D × 1 vector
r̄b(i) for branch b is expressed by

r̄b(i) = Tb(i)r
′
b(i) = Tb(i)R0(i)ῡb(i), (11)

where the vector r̄b(i) for branch b is used in the minimization
of the output power for branch b

|yb(i)|2 = |ω̄H
b (i)r̄b(i)|2.

The output at the end of the MPB framework y(i) is selected
according to:

y(i) = ybs(i) when bs = arg min
1≤b≤B

|yb(i)|2, (12)

where B is a parameter to be set by the designer. Essential to
the derivation of the joint iterative optimization that follows
is to express the output of the RR-SJIDF STAP yb(i) =

ω̄H
b (i)r̄b(i) as a function of ῡb(i), the decimation matrix Tb(i)

and ω̄H
b (i) as follows:

yb(i) = ω̄H
b (i)Tb(i)R0(i)ῡb(i) = ω̄H

b (i)r̄ω̄,b(i)

= [ῡH
b (i)RH

0 (i)TH
b (i)ω̄b(i)]

∗ = [ῡH
b (i)r̄ῡ,b(i)]

∗.
(13)

where r̄ω̄,b(i) = Tb(i)R0(i)ῡb(i) denotes the reduced-rank

signal with respect to ω̄b(i) and r̄ῡ,b(i) = RH
0 (i)TH

b (i)ω̄b(i)
denotes the reduced-rank signal with respect to ῡb(i), (·)∗
denotes the conjugate operation. The expression (13) indicates
that the dimensionality reduction carried out by the proposed
scheme depends on finding appropriate ῡb(i), Tb(i) and
ω̄b(i), as shown next.

B. Optimization of the Filters
In this part, we describe the proposed joint and iterative

optimization algorithm that adjusts the parameters of the
interpolator filter ῡb(i) and the reduced-rank filter ω̄b(i) with
the decimation pattern Tb(i). The objective of the LCMV
criterion is the minimization of the cost function defined as

L(ω̄b(i), ῡb(i)) = E

[∣∣ω̄H
b (i)Tb(i)R0(i)ῡb(i)

∣∣2]
+ 2�{

λ
[
ω̄H

b (i)Tb(i)S0ῡb(i)− 1
]} (14)

where λ is the Lagrangian multiplier and S0 is M×I steering
matrix with a Hankel structure with the same form as R0(i)

S0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 s1 . . . sI−1

s1 s2 . . . sI
...

... . . .
...

sM−I sM−I+1 . . . sM−1

sM−I+1 sM−I+2
. . . 0

...
...

. . .
...

sM−2 sM−1 0 0
sM−1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

By fixing ω̄(i) and ῡ(i), respectively, (14) can be rewritten
into two equations as

L(ῡb(i)) = E

[∣∣ῡH
b (i)r̄ῡ,b(i)

∣∣2]+ 2�{
λ
[
ῡH
b (i)s̄ῡ,b(i)− 1

]}
L(ω̄b(i)) = E

[∣∣ω̄H
b (i)r̄ω̄,b(i)

∣∣2]+ 2�{
λ
[
ω̄H

b (i)s̄ω̄,b(i)− 1
]}

where we define s̄ῡ,b(i) = TH
b (i)SH

0 ω̄b(i) and s̄ω̄,b(i) =
Tb(i)S0ῡb(i) to denote the reduced-rank steering vectors
with respect to ῡ(i) and ω̄(i), respectively. By minimizing
L(ῡb(i)) and solving for λ, we get

ῡb(i) =
R̄−1

ῡ,bs̄ῡ,b(i)

s̄ῡ,b(i)HR̄−1
ῡ,bs̄ῡ,b(i)

. (16)

where R̄ῡ,b = E

[
r̄ῡ,b(i)r̄

H
ῡ,b(i)

]
. By minimizing L(ω̄b(i)) and

solving for λ, we get

ω̄b(i) =
R̄−1

ω̄,bs̄ω̄,b(i)

s̄ω̄,b(i)HR̄−1
ω̄,bs̄ω̄,b(i)

. (17)

where R̄ω̄,b = E

[
r̄ω̄,b(i)r̄

H
ω̄,b(i)

]
. Note that the joint iterative

optimization of the interpolation filters {ῡb(i)|b = 1, ..., B}
and the reduced-rank filters {ω̄b(i)|b = 1, ..., B} are per-
formed seperately in the all processing branches.



C. Design of the Decimation Unit

In this part, we consider two strategies for the design of
the decimation unit Tb(i). We constrain the design of Tb(i)
so that the elements of the matrix only take the value 0 or
1. This corresponds to the decimation unit simply keeping or
discarding the samples. The first strategy exhaustively explores
all possible decimation patterns which select D samples out
of M samples, this is therefore the optimal approach. In this
case, the scheme can be viewed as a combinatorial problem
and the total number of patterns B, equal to

B = M · (M − 1) · · · (M −D + 1) =

(
M
D

)
. (18)

However, the optimal decimation scheme described above is
too complex for practical use since it needs D permutations
of M samples for each snapshot and carries out an exhaustive
search over all possible patterns. Therefore, an alternative
decimation scheme with low-complexity that renders itself to
practical use is of great interest. To this end, we consider the
second decimation scheme that we call pre-stored decimation
unit (PSDU). The PSDU scheme employs a structure formed
in the following way

Tb = [φb,1 φb,2 ... φb,D] (19)

where the M × 1 vector φb,d denotes the dth basis vector of
the bth decimation unit, d = 1, ..., D, b = 1, ..., B, and is
composed of a single 1 and (M − 1) 0s, according to the
following

φb,d = [0, ... , 0︸ ︷︷ ︸
zb,d

, 1, 0, ... , 0︸ ︷︷ ︸
M−zb,d−1

] (20)

where zb,d is the number of zeros before the only element
equal to one. We set the value of zb,d in a deterministic way
which can be expressed as

zb,d =
M

D
× (d− 1) + (b− 1). (21)

It should be remarked that other designs have been investigated
and this structure has been adopted due to an excellent trade-
off between performance and complexity.

IV. ADAPTIVE ALGORITHM

Here, we describe an RLS algorithm that adaptively adjusts
the coefficients of the interpolation filters {ῡb(i)|b = 1, ..., B}
and the reduced-rank filters {ω̄b(i)|b = 1, ..., B} based on the
least squares (LS) cost functions, which are shown as below:

LLS(ῡb(i)) =
i∑

n=1

αi−n
∣∣ῡH

b (n)r̄ῡ,b(n)
∣∣2

+ 2�{
λ
[
ῡH
b (i)s̄ῡ,b(i)− 1

]}
,

LLS(ω̄b(i)) =
i∑

n=1

αi−n
∣∣ω̄H

b (n)r̄ω̄,b(n)
∣∣2

+ 2�{
λ
[
ω̄H

b (i)s̄ω̄,b(i)− 1
]}

,

(22)

where α is the forgetting factor. By computing the gradients
of LLS(ῡb(i)) and LLS(ω̄b(i)) and equating them to zero,

respectively, we obtain

ῡb(i) =
ˆ̄R−1
ῡ,b(i)s̄ῡ,b(i)

s̄ῡ,b(i)H
ˆ̄R−1
ῡ,b(i)s̄ῡ,b(i)

,

ω̄b(i) =
ˆ̄R−1
ω̄,b(i)s̄ω̄,b(i)

s̄ω̄,b(i)H
ˆ̄R−1
ω̄,b(i)s̄ω̄,b(i)

,

(23)

where ˆ̄Rῡ,b(i) =
∑i

n=1 α
i−nr̄ῡ,b(n)r̄

H
ῡ,b(n) and ˆ̄Rω̄,b(i) =∑i

n=1 α
i−nr̄ω̄,b(n)r̄

H
ω̄,b(n) denote the time averaged correla-

tion matrices with respect to ω̄b(i) and ῡb(i), respectively. By

employing the matrix inversion lemma, ˆ̄R−1
ω̄,b(i) and ˆ̄R−1

ῡ,b(i)
can be recursively obtained as follows

ˆ̄R−1
ῡ,b(i) = α−1 ˆ̄R−1

ῡ,b(i− 1)− α−1K̄ῡ,b(i)r̄
H
ῡ,b(i)

ˆ̄R−1
ῡ,b(i− 1),

ˆ̄R−1
ω̄,b(i) = α−1 ˆ̄R−1

ω̄,b(i− 1)− α−1K̄ω̄,b(i)r̄
H
ω̄,b(i)

ˆ̄R−1
ω̄,b(i− 1),

(24)

where

K̄ῡ,b(i) =
ˆ̄R−1
ῡ,b(i− 1)r̄ῡ,b(i)

α+ r̄Hῡ,b(i)
ˆ̄R−1
ῡ,b(i− 1)r̄ῡ,b(i)

,

K̄ω̄,b(i) =
ˆ̄R−1
ω̄,b(i− 1)r̄ω̄,b(i)

α+ r̄Hω̄,b(i)
ˆ̄R−1
ω̄,b(i− 1)r̄ω̄,b(i)

,

(25)

where ˆ̄R−1
ῡ,b(0) and ˆ̄R−1

ω̄,b(0) are initialized to δ−1I, where δ
is a small constant and I is the identity matrix. It is worth
remarking that r̄Hω̄,b(n)(i), r̄

H
ῡ,b(n)(i),s̄

H
ω̄,b(n)(i) and s̄Hῡ,b(n)(i)

have to be updated as soon as ῡb(i) and ω̄b(i) are updated
since they are dependent on ω̄b(i) and ῡb(i), respectively. The
output of the MPB scheme y(i) is selected according to:

y(i) = ybs(i) when bs = arg min
1≤b≤B

|yb(i)|2, (26)

where
yb(i) = ω̄H

b (i)Tb(i)R0(i)ῡb(i). (27)

V. PERFORMANCE ASSESSMENT

In this section we assess the proposed RR-SJIDF STAP
algorithm in an airborne radar application. The parameters of
the radar platform are shown in Table I. For all simulations, we
assume the presence of a mixture of two broadband jammers
at −45◦ and 60◦ with jammer-to-noise-ratio (JNR) equal to
40 dB. The clutter-to-noise-ratio (CNR) is fixed at 40 dB.
We compare both the SINR performance against the number
of snapshots and the PD performance against the signal-to-
noise-ratio (SNR) for the different designs of linear receivers
using the full-rank filter with the RLS algorithm, the MSWF
with the RLS algorithm, the AVF and our proposed technique.
The radar receiver provides an estimate to determine whether
the target is present or not. All presented results are averages
over 1000 independent Monte-Carlo runs.

Firstly, as shown in Fig. 3, we evaluate the SINR against
the number of snapshots K performance of our proposed
algorithm with different setting parameters and compare with
the other schemes. The schemes are simulated over K = 500
snapshots and the SNR is set at 0 dB. The curves show an
excellent performance by the proposed algorithm, which also
converges much faster than other schemes. With the number of



TABLE I

RADAR SYSTEM PARAMETERS

Parameter Value

Antenna array Sideway-looking array (SLA)
Carrier frequency (fc) 450 MHz
Transmit pattern Uniform
PRF (fr) 300 Hz
Platform velocity (v) 50 m/s
Platform height (h) 9000 m
Clutter-to-Noise ratio (CNR) 40 dB
Jammer-to-Noise ratio (JNR) 40 dB
Elements of sensors (N ) 10
Number of Pulses (J) 8
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Fig. 3. SINR performance against snapshot with M = 80, SNR = 0 dB, α =
0.9998. All algorithms are initialized with δ−1I, where δ is a small constant.

branches B = 4, the proposed scheme approaches the optimal
MVDR performance after 50 snapshots. As one may expect,
with an increasing the number of branches, the steady SINR
performance improves. An improvement of performance is
also possible with the use of model order selection algorithms
[16], [17] or an adjustment in the number of auxiliary vectors
for the AVF [9]. In the second experiment, in Fig. 4, we
present PD versus SNR performance for all schemes using
50 snapshots as the training data. The false alarm rate PFA is
set to 10−6. The figure illustrates that the proposed algorithm
provides sub-optimal detection performance using very short
support data, but remarkably, obtains a 90 percent detection
rate, beating 50 percent for the AVF, 40 percent for the MSWF
with the RLS and 30 percent for the full rank filter with the
RLS at an SNR level of 15 dB.

VI. CONCLUSIONS

In this paper, we proposed an RR-SJIDF STAP algorithm
for airborne radar systems. The proposed method performs
dimensionality reduction by employing a MPB framework,
which jointly optimizes interpolation, decimation and filtering
units. The output is switched to the branch with the best
performance according to the minimum variance criterion. In
order to design the decimation unit, we have considered the
optimal decimation scheme and also a low-complexity pre-
stored decimation units scheme. Furthermore, we have devel-
oped an adaptive RLS algorithm for efficient implementation
of the proposed scheme. Simulations results have shown that
the proposed RR-SJIDF STAP scheme converges at a very
fast speed and provides a considerable SINR improvement,
outperforming existing state-of-the-art reduced-rank schemes.
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Fig. 4. Probability of detection performance vs SNR with M = 80, α =
0.9998, K = 50 snapshots, PFA = 10−6.

REFERENCES

[1] L. E. Brennan and I. S. Reed, “Theory of adaptive radar”, IEEE Trans.
Aero. Elec. Syst., vol. AES-9, no. 2, pp. 237–252, 1973.

[2] S. Haykin, Adaptive Filter Theory, NJ: Prentice-Hall, 4th, ed2002.
[3] A. M. Haimovich and Y. Bar-Ness, “An eigenanalysis interference

canceler”, IEEE Trans. Sig. Process., vol. 39, no. 1, pp. 76–84, 1991.
[4] K. A. Byerly and R. A. Roberts, “Output power based partially adaptive

array design,” in Proc. 23rd Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, pp. 576-580, 1989.

[5] J. S. Goldstein and I. S. Reed, “Reduced-rank adaptive filtering”, IEEE
Trans. Sig. Process., vol. 45, no. 2, pp. 492–496, 1997.

[6] J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representation
of the wiener filter based on orthogonal projections”, IEEE Trans. Inf.
Theory, , vol. 44, no. 7, pp. 2943–2959, 1998.

[7] J. S. Goldstein, I. S. Reed, and P. A. Zulch, “Multistage partially adaptive
STAP CFAR detection algorithm”, IEEE Trans. Aero. Elec. Syst., vol.
35, no. 2, pp. 645–661, 1999.

[8] D. A. Pados and G. N. Karystinos, “An iterative algorithm for the
computation of the MVDR filter”, IEEE Sig. Process., vol. 49, no. 2,
pp. 290–300, Feb 2001.

[9] H. Qian and S. N Batalama, “Data record-based criteria for the selection
of an auxiliary vector estimator of the MMSE/MVDR filter IEEE Trans.
on Commun., vol. 51, No. 10, October 2003, pp. 1700-1708.

[10] D. A. Pados, G. N. Karystinos, S. N. Batalama, and J. D. Matyjas,
“Short-data-record adaptive detection”, 2007 IEEE Radar Conf., pp. 357–
361, 17-20 April 2007.

[11] R. C. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank MMSE
Filtering with Interpolated FIR Filters and Adaptive Interpolators,” IEEE
Signal Processing Letters, vol. 12, no. 3, March 2005, pp. 177 - 180.

[12] R. C. de Lamare and R. Sampaio-Neto, “Adaptive interference suppres-
sion for CDMA based on Interpolated FIR filters in multipath channels”,
IEEE Trans. on Vehicular Technology, September 2007, pp. 2457 - 2474.

[13] R. C. de Lamare and R. Sampaio-Neto, “Reduced-rank adaptive filtering
based on joint iterative optimization of adaptive filters”, IEEE Sig.
Process. Lett., vol. 14, no. 12, pp. 980–983, 2007.

[14] R. Fa, R. C. de Lamare, and D. Zanatta-Filho, “Reduced-rank stap
algorithm for adaptive radar based on joint iterative optimization of
adaptive filters”, in 2008. Conf. Record of the Fourty-Second Asilomar
Conf. Sig. Syst. Comp., 2008.

[15] R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank MMSE
parameter estimation based on an adaptive diversity-combined decimation
and interpolation scheme”, in Proc. IEEE Int. Conf. Acous. Speech Sig.
Process., ICASSP 2007, 15–20 April 2007, vol. 3, pp. III–1317–III–1320.

[16] R. C. de Lamare and R, Sampaio-Neto, “Adaptive Reduced-Rank
Processing Based on Joint and Iterative Interpolation, Decimation and
Filtering”, IEEE Trans. on Signal Processing, vol. 57, no. 7, July 2009,
pp. 2503 - 2514.

[17] R. Fa., R. C. de Lamare, and L. Wang, “Reduced-Rank STAP Schemes
for Airborne Radar Based on Switched Joint Interpolation, Decimation
and Filtering Algorithm”, IEEE Trans. on Signal Processing, vol. 58 ,
No. 8, 2010, pp. 4182 - 4194.

[18] S. Applebaum and D. Chapman, “Adaptive arrays with main beam
constraints”, IEEE Trans. on Ant. Prop. , vol. 24, no. 5, 1976.

[19] G. H. Golub and C. F. van Loan, Matrix Computations, Wiley, 2002.


