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Abstract—This paper investigates two methods for GMTI using
three-channel SAR-ATI data. Motivated by previous results in
the two-channel case, a deterministic method for finding an
Eigendecomposition of the SAR-ATI sample covariance matrix
is presented. The CFAR detection capability of each of the
eight parameters of the Eigendecomposition is evaluated using
measured three-channel airborne data and compared to the well-
known DPCA-ATI metric. Results suggest that all moving target
energy is contained in a single parameter, the largest Eigenvalue,
and that for a given theoretical CFAR a lower real-world false
alarm rate is achieved in comparison to DPCA-ATI. Motivated
by this result ICA is then applied to the same measured three-
channel data and found to both detect and distinguish two
different types of moving target simultaneously present in a
maritime environment.

I. INTRODUCTION

A. Problem Statement and Motivation

The ‘classical’ way to detect and track ground moving
targets using an airborne radar is by using a Ground Moving
Target Indicator (GMTI) radar. Conventional moving target
indication (MTI) radars already provide the required wide area
surveillance for battlefield situational awareness applications;
however, they cannot have a sufficiently fine resolution, geo-
location accuracy or minimum detectable velocity to provide
all required functions arising as a result of the changing op-
erational environment. For example, there is a need to engage
small, slow-moving targets in cluttered radar environments
and identify the targets. The high spatial resolution imaging
provided by a synthetic aperture radar (SAR) system is re-
quired to maximise the probability of detection of such targets,
albeit with a reduced area of sensor coverage. Future SAR
systems have active array antennas which can give multiple
beams along the aircraft track that can be set up as a SAR
interferometer. In theory, combined processing of the signals
received by each antenna in the array could result in fine
resolution SAR images in which the stationary background is
greatly attenuated leaving only the moving targets. However,
there is currently no general theory to guide the best way of
processing the signals from such systems for more than two
beams when there are many different types and classes of
scatterer.

B. Mathematical Problem Formulation and DPCA-ATI

Consider a side-looking airborne radar sending out coherent,
large bandwidth pulses while it moves along its track. At

some point on the time scale of the pulse repetition frequency
(PRF) a pulse will reflect off a target and return to the radar.
The reflected pulse is measured as an amplitude and a phase.
In the absence of sensor noise, the phase of the returned
pulse depends only on the radar wavelength and the distance
between the target and the radar. The relative speed of the
airborne platform to the speed of light is small enough to
consider the platform stationary over the time taken for a pulse
to be sent out and returned. The measured reflected signal
can be represented by the complex quantity z1(t) where t
is the time at which the measurement is made. z1(t) can be
modelled as a complex zero-mean stationary Gaussian process.
Justification for this model can be found in [1].

After a short period of time, δt, the measurement is repeated
with the radar at the same location as before. This can be
achieved by having a second trailing antenna attached to
the airborne platform in the along-track direction. The signal
measured by the second antenna will be z1(t+ δt) where the
range from the antenna to target r(t + δt) may be different
from r(t) due to target motion.

If N antennas are arranged along-track in the same fashion
the corresponding returned signals, z1(t), . . . , zN (t + Nδt),
may be obtained as each antenna moves into the same position
over time.

The sample covariance matrix of n identically distributed
k-element random vectors is defined as

R̂zz =
1
n

n∑
m=1

z(m)z(m)H (1)

where H denotes Hermitian transpose and z(m) represents
a sample of the k-element random vector, i.e. z(m)H =
[z1(m)∗z2(m)∗ . . . zk(m)∗], and ∗ denotes complex conju-
gation. The sample covariance matrix is a natural way of
processing n-look k-channel SAR signals (in the SAR multi-
look processing sense) and gives the maximum likelihood
estimator for the elements of the covariance matrix of the
received signals. The covariance matrix is the fundamental
object of interest as, in theory, the phase changes between
the signals received through different channels contains the
information required to differentiate moving targets from the
static (or modelled moving) background.

Let R̂zz(i, j) denote the element of R̂zz on row i and
column j. The argument and magnitude of R̂zz(i, j) are called



the ATI phase and amplitude of the channels i and j. In the
absence of thermal and sensor noise, a non-zero ATI phase
indicates that the observed target has moved between being
observed by channels i and j. The variance of the phase
sample defines a limit on the lowest speed at which the target is
detectable since the ATI phase is proportional to target across-
track speed.

The quantity

DPCAij = R̂zz(i, i) + R̂zz(j, j)− R̂zz(i, j)− R̂zz(j, i) (2)

defines the displaced phase centre array (DPCA) metric
between channels i and j and is a commonly used moving
target metric. One expects that the radar returns of two
channels observing a target that does not change will be
identical and so, similarly to the ATI phase, the DPCA metric
should return zero. However, if the target does change between
measurements then the subtraction will give a non zero result.

Both of the above metrics are defined in a pairwise fashion
between SAR channels. For a three-channel system a com-
pound metric can be defined in the following way:

ATI123 = arg(DPCA12DPCA
∗
23). (3)

Clearly this metric is the ATI phase between the DPCA
metrics of channels 1 and 2 and channels 2 and 3. An
automatic constant false alarm rate (CFAR) detector can be
realised by computing an appropriate threshold for ATI123
given the tolerable rate of false alarms and knowledge of
the statistics of this metric. For a theoretical analysis of the
performance of this metric see [2].

II. EIGENDECOMPOSITION PARAMETERS AS GMTI
METRICS

In the case of a two-channel SAR-ATI system, Sikaneta and
Chouinard [3] showed that the joint probability density func-
tion (p.d.f.) of the four parameters of the Hermitian sample
covariance matrix, a Wishart distribution, can be transformed
into a joint p.d.f. of the two Eigenvalues, a rotation angle and
the ATI phase. This was accomplished by means of a unitary
transformation in the group U(2). This decomposition allowed
the marginalisation of the four parameter joint p.d.f. by each
parameter. These marginalisations allowed the computation of
constant false alarm rate (CFAR) GMTI detection thresholds
for each parameter. As a result a new detection metric, the
adaptable hyperbolic detector, was constructed as a product of
two of the transformed parameters and was demonstrated on
real and synthetic data to be a more effective GMTI metric
than both DPCA and the ATI phase.

Motivated by this approach we present an equivalent de-
composition of the three-channel covariance matrix R̂zz . Since
R̂zz is Hermitian there exists a unitary matrix U such that
U−1R̂zzU = E where E is the diagonal matrix of Eigenvalues
of R̂zz . It can be shown that the parameters θ, φ, ψ, δ1, δ2 can
be deterministically calculated from the elements of R̂zz so
that U takes the form shown in Equation 5.

Anastassakis [4] presented a geometrical method for diago-
nalising a real symmetric 3×3 matrix. Anastassakis’s solution
uses Euler rotations to attain analytical expressions for the Eu-
ler angles (parameters of the diagonalising rotation matrices)
and Eigenvalues in terms of elements of the symmetric matrix.
The problem of calculating the matrix U to diagonalise the
three-channel SAR sample covariance matrix is the Hermitian
analogue to the symmetric matrix diagonalisation solved by
Anastassakis. By first applying the transformation matrices P 1

and P 2 shown in Equation 5 with phase parameters given by

δ1 = (φ2 − φ1)/3
δ2 = −(2φ2 + φ1)/3

(4)

the arguments of the exponential terms of the Hermitian
covariance matrix are annihilated leaving a real symmetric
matrix. Anastassakis’s method can then be directly applied
to calculate the three rotation angles θ, φ and ψ and the
Eigenvalues λ1, λ2 and λ3.

It is an open research question to derive analytical expres-
sions for the marginal p.d.f. of each of the Eigendecomposition
parameters. In the absence of these marginal distributions we
must estimate CFAR detection thresholds by using simulated
SAR clutter data to approximate each p.d.f. This simulation is
presented in Section III-B.

III. EXPERIMENTAL SAR DATA

A. ESR Data

In this work three-beam SAR data obtained by the exper-
imental airborne Enhance Surveillance Radar (ESR) is used
to both estimate the covariance matrix parameters required
for synthetic data generation and to empirically evaluate the
performance of the eight Eigendecomposition parameters and
the DPCA-ATI metric as moving target detection metrics.
Briefly, the ESR was a conventional high resolution X-band
SAR, except that the main antenna was split into two halves
to provide monopulse capability. Two additional horn antennas
were mounted on the aircraft about 1.10 metres in front and
behind the centre of the main antenna. Together with the two
halves of the main antenna the two horns provide a three beam
interferometer.

The signals from each antenna were processed into complex
valued SAR images. Exactly the same processing parameters
and processor were used to generate each image ensuring that
any phase errors introduced by the processor were the same
for each image. These images are analytic images in complex
form and there is a systematic phase shift between them due
to physical seperation between the receiving antennas both
along the aircraft track and across track. Phase errors due
to aircraft motion and across-track seperation were removed
using a technique described in [5].

An example of the three modulus images (corresponding to
the fore, mid and aft antennas) used in this work is shown
in Figure 1; the example is from the aft channel. The image
is 250 pixels square, the range direction is upwards and the
spatial resolutions on the sea surface are 1.04m in range and



U = B(ψ)C(θ)D(φ)P 2P 1

=

 cψ sψ 0
−sψ cψ 0

0 0 1

  1 0 0
0 cθ sθ
0 −sθ cθ

  cφ sφ 0
−sφ cφ 0

0 0 1

  eiδ1 0 0
0 e−iδ1 0
0 0 1

  eiδ2 0 0
0 1 0
0 0 e−iδ2

 (5)

0.84m along track. The three images used in this work show
the radar return from a buoy in the southern North Sea together
with a breaking swell wave identified in Figure 1 by the green
and red ellipses respectively. The buoy is approximately 6m
in height above the water surface. Back-scattering occurs at
various points on the buoy. These points move with different
speeds due to the rocking motion on a background swell and
these points are mapped onto the image with different azimuth
shifts which is why the buoy image is elongated along-track.
The scatter cross-section at a number of points along the
breaking wave is comparable with the buoy cross-section and
any conventional detection algorithm based on a single image
will have difficulty detecting the buoy (or any similar target)
in such circumstances due to the multiplicity of false alarms.

Fig. 1. ESR aft channel modulus image

B. Simulated Data Generation

In order to estimate the required detection threshold for a
given Eigendecomposition parameter to achieve a specified
false alarm rate we require a large number of three-channel
clutter samples to approximate the marginal p.d.f. for the
parameter. In this work these samples are generated as corre-
lated samples from a stationary zero-mean complex Gaussian
process.

In order to generate simulated sample covariance matrices,
the parameters of the true covariance matrix of the underlying
clutter process must be chosen. In this work the background
was assumed to be stationary and homogeneous, i.e. φ1 =
φ2 = 0. The simplifying assumption is also made that σ1 =
σ2 = σ3, i.e. the three channels are balanced in power. This is

quite reasonable from an engineering point of view as it simply
requires that the channel gains be adjusted appropriately as
was done in the case of the ESR data introduced above.

In order that synthetic data was generated which is both rep-
resentative of realistic SAR data and allowed the calculation
of thresholds which can be used to test the detection metrics
against the ESR data, where possible, all required parameters
were estimated from the three ESR images. The clutter power
values were taken to be σ1 = σ2 = σ3 = 0.8, the mean
amplitude of the three coherent images, and the correlations
ρ1 and ρ2 were calculated to be 0.75 and 0.56 respectively. In
the real and simulated data each SAR image is formed from
a single look, i.e. n = 1.

Given the parameters of the underlying covariance matrix
for clutter only pixels, a large number of clutter only sample
covariance matrices can be generated. For each sample covari-
ance matrix the Eigendecomposition parameters and DPCA-
ATI metric can then be calculated. The histogram of each of
these parameters can then be used to approximate the p.d.f.
of the parameter. A threshold can then be calculated such that
the probability of the parameter exceeding the threshold for a
clutter only sample covariance matrix is a specified value.

IV. APPLICATION OF EIGENDECOMPOSITION TO ESR
DATA

Fig. 2. ESR moving target detections using λ1, Pf = 10−4

Using the theoretical clutter only sample covariance ma-
trices, moving target detection thresholds were calculated
for each Eigendecomposition parameter and the DPCA-ATI



Fig. 3. ESR moving target detections using DPCA-ATI, Pf = 10−4

metric for a false alarm rate of PF = 10−4. The Eigende-
composition parameters and DPCA-ATI metric of the sample
covariance matrix for each set of three corresponding pixels
in the ESR data were compared to this threshold. For each
parameter, any pixels exceeding the threshold were declared
as detections. For seven of the Eigendecomposition parameters
almost no detections are declared and in cases where detec-
tions are declared they do not fall on pixels covering either
the buoy or the breaking wave. However, the largest Eigen-
value λ1 declares many pixels falling on both the buoy and
breaking wave as detections and very few pixels elsewhere.
This suggests that the majority of moving target information
contained in the sample covariance matrix is concentrated into
λ1 by the Eigendecomposition and that this parameter is an
effective moving target detection metric with a low false alarm
rate. Figure 2 shows the pixels declared as detections by λ1.

When compared to the pixels declared as detections by the
DPCA-ATI metric, shown in Figure 3, we see that λ1 declares
both less non-target pixels as detections and less buoy and
breaking wave pixels as detections, i.e. λ1 has both lower real-
world probabilities of detection and false alarm than DPCA-
ATI.

V. APPLICATION OF ICA TO ESR DATA

ICA [6] is a computational method for separating a mul-
tivariate signal into additive subcomponents. The method
assumes that the sub-signals which are added together are
mutually statistically independent and at most one of them
has Gaussian first-order statistics. When these assumptions are
met, ICA is a very effective solution to the problem of blind
source separation. There are two main motivations for applying
ICA to the three-channel ESR data presented above. Firstly,
the SAR image formation process means that the complex
value of any given pixel may be a sum of energy returned from
multiple scatters in the scene and, hence, identifying targets of
interest in the image requires the separation of energy returned

from both target and background scatters. Secondly, in a multi-
channel system moving targets should be distinguishable from
background scatters by their differing phase histories. This
means that the first order statistics of the energy returned in the
three-channels from a moving target should be different from
that of background scatters. Furthermore, it is reasonable to
hypothesise that these first order statistics will be independent
as they are due to the physically independent motion processes
of the target and clutter.

ICA is, in general, unable to identify the actual number
of source signals. In this work we choose to analyse three
components. This choice was motivated by the assumption
that there are independent statistical processes generating the
returns from the clutter background, the breaking wave and the
buoy and that there are no other scatters in scene. ICA can be
applied to the ESR data by considering each image to be a
sample of a random vector which is assumed to be the sum of
three independent components. More formally, each image is
a vector of pixel values xi = [|xi,1|, |xi,2|, . . . , |xi,62500|] and
is assumed to be generated as a sum of the real valued vector
components s1, s2, s3:

xi = ai,1s1 + ai,2s2 + ai,3s3 (6)

weighted by real mixing weights ai,k. In order to distinguish
moving targets from background clutter we are interested in
the pixel values in each of the three independent component
images s1, s2, s3.

The FastICA algorithm [7] was used to separate the ESR
data into independent components. This is a popular imple-
mentation of ICA due to its efficiency. The most significant
feature of the algorithm is its use of maximisation of non-
Gaussianity of signals as a measure of statistical independence.

Figure 4 shows the value of each pixel in the three in-
dependent components. Figure 5 shows the corresponding
histograms of pixel values. The pixel values in the third
independent component visually resemble background clutter
and there are no strongly discernible patterns within the image.
Furthermore, the distribution of pixel values across the image
closely fits a Gaussian curve which is consistent with the
independent component representing background clutter. In the
first independent component the values of pixels covering the
buoy are strong outliers within the image and there are no other
strong outlier pixels. Of most interest is the second indepen-
dent component which shows that not only are the pixel values
corresponding covering both the buoy and the breaking wave
outliers to the distribution of pixel values across the image,
but they are outliers at opposite ends of the spectrum and are
hence distinguishable in the image. One possible explanation
for this is that the second component is sensitive to across
track velocity. The breaking wave and buoy have different
across track velocity values whilst the background clutter is
stationary and would hence have different pixel values in an
independent component sensitive to this physical phenomenon.



Fig. 4. ICA component pixel values

Fig. 5. ICA component pixel value histograms

VI. CONCLUSION

In this paper a new deterministic method for finding the
parameters of an Eigendecomposition of a 3 × 3 Hermitian
matrix has been presented. Based on a theoretical model of
clutter, simulated clutter samples were generated and used to
estimate a constant false alarm rate (CFAR) threshold for each
Eigendecomposition parameter as a moving target detection
metric. These thresholds allowed the evaluation of the eight
Eigendecomposition parameters as GMTI metrics using real
maritime SAR data. Experimental results suggest that the
majority of the moving target energy is contained within the
largest Eigenvalue. Furthermore, it has been shown that the
largest Eigenvalue can achieve a high real-world probability of
moving target detection with a low probability of false alarm.
ICA has been shown to be an effective method for separating
the intensity energy in three-channel SAR imagery due to
moving targets from the energy due to background clutter and
that the mixing weights of the independent components can
allow the separation of different classes of moving target.
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