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Abstract—Sonar operators combine auditory and visual 

information to make decisions relating to target detection and 

identification. Many past attempts to automate the role of sonar 

operators have only considered the visual information and have 

been unsuccessful. An assessment has been made of the auditory 

component of the sonar operator role. This information has been 

used to select three algorithms with the potential for detecting 

features that discriminate between target types. Results are 

presented of the application of these algorithms to relevant time 

series data. Subsequently the usage of these features is discussed 

in terms of the concept of early auditory-visual integration. 

I. INTRODUCTION 

In many applications, events are presented or displayed 

visually to an operator who is then responsible for detecting 

the presence and identity of threat targets using this visual 

information. This is not always effective for the detection of 

transient events. Such events are more likely to be detected by 

an auditory display and operators typically rely on listening to 

make a decision. This is mostly due to the human auditory 

system excelling in the detection of transient sounds in the 

presence of noise and the advantage of combined auditory and 

visual processing. Notwithstanding this superiority, there is 

still no effective way to automate this integration of auditory 

and visual information as part of the system display.   

What we need to do is to develop a combined auditory-

visual processing scheme to characterise transient events. Our 

starting point is to consider the ways in which submarine 

sonar operators interrogate auditory and visual displays. This 

is useful to understand some of the ways that human hearing 

is used alongside visual observation to separate disparate 

sources of transient events. In turn, this helps to provide the 

inspiration for some of the candidate processing methods that 

can be employed – this is our aim in this paper.  

It is worth noting that auditory-visual processing has been 

developed in other applications, for example, in speech 

recognition [1], and while there has been success in 

combining audio and video features, a generalised procedure 

is still lacking. Different authors (e.g. [2, 3]) have advocated 

that the features are combined at different stages (early or late) 

in the processing scheme but, in general, it is first necessary to 

characterise (and extract) features that capture the relevant 

auditory and visual information.  

In the following we show how features can be extracted for 

different sources of noise and offer comments on the way that 

the features could be combined. Some example results are 

provided to illustrate how different algorithms, that emulate 

the detection process, can be employed. 

II. OPERATOR DETECTION 

Visual detection of a broadband sonar contact is determined 

as a line marking on a sonar trace with a bearing scale against 

time, marking on top of background noise. A typical example 

of a broadband passive sonar image is shown in Fig. 1. 

 

 
Fig. 1.  Example sonar display for broadband passive sonar showing a line 

marking along bearing and time. 

It can be observed that the display contains information that 

would allow an operator to choose select a direction along 

which to listen. This directed listening corresponds to late 

integration i.e. using the auditory information to confirm 

and/or classify the presence of a target. On the other hand, 

early integration would correspond to simultaneous listening 

and visual detection. Operators are often forced to adopt the 

late integration approach because different directions 

correspond to different beams and they can only listen to one 

beam at a time. The key characteristics from the auditory 

analysis are: 

• Noise from ships consists of persistent regular rhythmic 

sound corresponding to motion of propeller blades; 



• Noise from some marine mammals consists of a series 

of frequency-modulated (FM) pulses; 

• Some other biological noise consists of a series of 

impulsive clicks. 

To characterise the noise from these different sources a set 

of algorithms is needed that can extract rhythmic sound, FM 

pulses, and clicks. 

III. ALGORITHMS 

This section presents an outline of the algorithms that have 

been selected on the basis of:  

• Discrimination between types of sound; 

• Performance on short samples of data. 

A. Normalised Square Different Function 

The algorithm selected to detect rhythmic sound is the 

Normalised Square Difference function [4]. The Square 

Difference Function (SDF) is defined as follows: 
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where x   is the signal, W is the window size, and τ   is the 

lag. The SDF can be rewritten as : 
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The Normalised SDF is then: 
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B. Hilbert-Huang Transform 

The algorithm selected to find impulsive clicks is the 

Hilbert-Huang Transform [5], that is, the successive 

combination of the Empirical Mode Decomposition (EMD) 

and the Hilbert transform. EMD involves decomposing the 

signal into a sum of Intrinsic Mode Functions (IMFs). 

The lower order IMFs capture fast oscillation modes of the 

signal, while the higher order IMFs capture the slow 

oscillation modes. 

 

C. Fractional Fourier Transform 

The algorithm selected to find FM pulses is the Fractional 

Fourier Transform [6]: 
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where 2/πα a= . 

IV. APPLICATION TO DATA 

Two data sets are used to illustrate the relative response of 

the three different algorithms: 

• Marine mammal noise with frequency modulated 

chirps; 

• Ship noise with a regular rhythm. 

The approach adopted is to divide the time series data into 

regular “chunks” and then apply the algorithms to each chunk. 

The output of the algorithm can then be plotted as an output 

level as a function of time or frequency for each chunk.   
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Fig. 2.  Output from NSDF for marine mammal noise. 
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Fig. 3.  Output from NSDF for ship noise. 

 

Figs. 2—9 show the output from applying the different 

algorithms to each type of data.  

As expected, the output from the NSDF analysis of the ship 

noise (Fig. 3) shows a clear persistent feature as a vertical line 

at 0.023 seconds corresponding to the rhythmic nature of the 

noise. In contrast, the NSDF analysis of marine mammal noise 

(Fig. 2) has no similar features. 

As expected the Fractional Fourier analysis of marine 

mammal noise (Fig. 4) shows a clear feature as a horizontal 

line at 4.5 seconds. In contrast, the Fractional Fourier analysis 

of ship noise (Fig. 5) shows no similar features. 

 



Single-Sided Amplitude Fractional Spectrum of y(t)
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Fig. 4. Fractional Fourier analysis of marine mammal noise. 
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Fig. 5. Fractional Fourier analysis of ship noise. 

 

 
Fig. 6.  IMFs of EMD of marine mammal noise. 

 

Figs. 6 & 8 show the intrinsic mode functions (IMFs) from the 

Empirical Mode Decomposition (EMD) of each time chunk. 

In each figure the top panel is the original time series, the 

upper middle panel is the high frequency components with 

progressively lower frequency components in the lower 

middle and bottom panels. Figs. 7 & 9 show the Hilbert 

analysis of the IMFs from Figs. 6 & 8 respectively. 
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Fig. 7.  Hilbert analysis of  IMFs of marine mammal noise. 

 
 

Fig. 8. IMFs of EMD of ship noise. 
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Fig. 9.  Hilbert analysis of IMFs of ship noise. 

 

The HHT analysis of marine mammal noise (Figs. 6 & 7) 

shows clear horizontal line features, whereas the HHT 

analysis of ship noise (Figs. 8 & 9) shows no similar features. 

Unlike the FrFT approach, the HHT algorithm does not 

require the pulses to have regular modulation. Hence the HHT 

algorithm would be expected to work against impulsive clicks 

as well as organised pulses. 



V. FEATURE EXTRACTION AND INTEGRATION 

 

A simplified version of the visual display is shown in Fig. 

10 to illustrate how a feature could be extracted. Extraction of 

a feature from Fig. 10 could be achieved with an energy or 

amplitude threshold in a cell corresponding to a particular 

direction at a particular time. 

Fig. 10 Schematic view of the visual data 

Plotting the output of the NSDF analysis of a rhythmic 

signal as a level versus time shows how quantitative 

information can be extracted (Fig. 11). The pitch rate, 

amplitude and rate of decline will vary corresponding to the 

periodicity and number of modes in the rhythmic signal. 

Hence the NSDF is able to distinguish between rhythms.  

Fig. 12 illustrates feature extraction from the EMD/HHT 

algorithm. The Intrinsic Mode Functions (IMFs) are 

automatically extracted recursively until the stop criterion has 

been reached, i.e. no more signal fluctuations are found. The 

number of IMFs found can be used as a complexity feature. 

Each Hilbert transform of the IMFs provides a time-frequency 

analysis enabling the detection of transient signals.  

The combination of information from the different bands 

(IMFs) provides the start and end time of the transient signal 

as well as the signal amplitude; this can provide simple 

features to feed into the overall audio feature vector. The 

spectral content of each IMF could also provide additional 

features such as the Hilbert coefficients.  

Fig. 13 illustrates the early integration concept. Once the 

features from each of the algorithms are established they 

could be fused together into a set of joint features and used to 

characterise the source of noise using auditory and visual 

information. The practicality of the fusion process in this 

context would form a useful topic of future research. 

VI. CONCLUSION 

The potential use of algorithms to derive features in the 

auditory data stream that discriminate between signal types 

has been demonstrated. Algorithms have been found that 

respond to rhythmic and pulsed sound. Feature extraction 

from the visual representation of sonar data is known to be 

straightforward. Hence the remaining issue is to develop a 

fusion process that is effective in this context. 
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Fig. 11.  Example features extracted from NSDF analysis. 

 

 

Fig. 12. Example features extracted from EMD/HHT analysis. 
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Fig. 13. Outline concept for early auditory-visual integration. 
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