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Abstract—In the absence of sufficient information about the
identity of an object to detect it among other objects there
is often extra information in the relationship berween objects
that can be exploited. This contextual information can help
us to characterise the natural set of surrounding objects or
even separate objects into different classes directly. Context is
widely used to understand and characterise scenery. This paper
introduces the use of context to detect underwater objects.
Context has not previously been studied for complex sonar
imagery and our aim is to design and test measures of context
to demonstrate how it can help us to detect and/or identify
‘“unauthorised” objects that are not part of the natural set of
objects present in the imagery. This is motivated by some of
the challenges that are faced in cluttered sonar environments,
or when the objects to be detected are hidden or disguised, for
which extra information can be decisive.

I. INTRODUCTION

Object identification tasks have traditionally treated objects
and their surroundings separately and chosen to isolate the
object so that it can be interrogated on its own. In the
real-world, objects will typically co-vary with other objects
and their surroundings. This implicit relationship between
objects can provide contextual information that can help us to
understand a scene or identify an object. This context is often a
generalised, abstract representation, based on properties from
the set of objects that are present. Context has already been
shown to facilitate the identification of such objects as faces,
cars and pedestrians, as well as characterising scenery.

In the following we consider the use of contextual infor-
mation in complex imagery, such as sonar or radar. Finding
even simple objects can be limited by the information that
is available about the likely identity or type of object e.g.
when there is limited resolution or the properties of the object
are not known in advance. It becomes more challenging to
compensate for changes in viewing conditions or items such as
position, size, and illumination. Our aim is to show that there
is an advantage to using context to detect underwater objects
in these types of conditions and, in particular, to detect so-
called “unauthorised” objects that do not belong to the natural
set of objects that could be present such as rocks, ridges and
fish.

A. Using context in imagery

In the absence of sufficient information about the identity
of an object, the surrounding objects and background and
prior knowledge can often provide the additional (contextual)
information needed to recognise the objects. There exists a

huge body of work on contextual information and its role in
object identification, see for instance [1]. Much of this research
is associated with the visual system and contextual cuing
whereby attention is quickly guided to regions of interest. This
has its own applications and is studied for data fusion and for
fast categorisation or recognition tasks. Less is known about
which features carry the information context and how these
features (once selected) should be built into a procedure that
exploits context to detect and/or identify objects. Nevertheless,
the capability of humans to recognise thousands of objects
in cluttered environments, despite changes in position, size,
illumination, or occlusions is a compelling starting point for
using context in imagery.

Recent studies have shown that context-awareness is
identity-related (semantic) and location-related (spatial). For
example, one would expect to find a table and chair in the same
image, but not a fish and a bicycle; and a cup is expected to
be on a table and not vice-versa. Much of this has focussed on
a choice between local or global representations of contextual
information. In a global representation, low-level features
are used to characterise the objects and its surroundings
without encoding individual objects. Locally, context can be
represented in terms of the relationships between objects or
by means of a low-dimensional global description. In the
following, we consider such statistical properties as the mean
size and variance of the objects and more complex structural
information such as the amount of background clutter.

The challenge is in selecting the features: global features
can be defined as the (weighted) combination of local features,
e.g. based on spatial or multi-scale filters at different locations.
Other global representations can be based on histograms of
local features such as multi-resolution methods or spatial
pyramid matching. Informally, pyramid matching works by
placing a sequence of increasingly coarser grids over the
feature space and taking a weighted sum of the number of
matches that occur at each level of resolution. This has been
used, for example, to separate images into different categories
[2]) or other segmentation tasks (e.g. [3], [4]). Sparse template
matching can also be used to eliminate the sensitivity of global
features to weak relationships between objects.

It is worth noting that there can be many different ways
to separate categories or classes of objects in an image.
For example, separating scenes into city or landscape, i.e.
separating man-made scenes from natural scenes like [5] using
histograms of local features, or into indoors or outdoors [6].
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Fig. 1. Comparison between the area and standard deviation of the objects
found on a seabed that contains sand ripples (top) and on a flat seabed
(bottom). The outliers are marked in red and correspond to the detections
in the lower panels of Fig. 3 and Fig. 4.

This, in turn, can favour different combinations of features and
means of representing the selected features.

Low-level background information, like clutter or objects
scattered throughout an image, could also be exploited; clutter
will typically depend on the environment and is already used
to characterise the background, such as statistical distributions
of the seabed (e.g. [7])), and help to detect underwater objects.

II. DETECTING UNDERWATER OBJECTS

Our aim is to design and test measures of context that can
be used to detect, identify and/or localise underwater objects.
In particular, we take advantage of high-resolution Synthetic
Aperture Sonar (SAS) data, as good as about 25x25 mm/pixel,
to demonstrate how information about all the objects present
in sonar imagery can be used to detect “unauthorised” objects
that are not part of the natural set of objects, and other features,
that are found on the seabed. To the author’s knowledge, the
context in complex sonar imagery has not been previously
studied, and this preliminary investigation provides a useful
addition to the evidence that has been presented elsewhere for
other imagery, such as natural scenes e.g. [8]. This is motivated
by applications that will be familiar to the reader, such as
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Fig. 2. Example threshold scheme based on multiples of the mean of two

different features.

minehunting sonar or the detection of unexploded ordnance.
Current schemes to detect underwater objects work well in
normal sonar conditions when the object is known a priori
but are less effective in the presence of clutter and variability
or when the “unauthorised” objects are obscured or not already
known e.g. when the objects are disguised or improvised.

A. Procedure

SAS data provided by the NATO Undersea Research Centre
(NURC) is used in this section to generate a small set of
measures that generalise to a wide set of objects on two seabed
types: flat and sand ripples.

In the following we have outlined a simple procedure using
pairs of statistical features, that describe the physical properties
of all the objects in images that are approximately 7200 pixels
across track and 1200 pixels along track in size. The first
step is to convert each image to a binary representation of
the objects by applying a threshold level of ten times the
mean (pixel intensity) level. In this binary representation, all
pixels now have a value of unity (above the threshold) or zero
(below the threshold). A morphological closing operation (a
smoothing function equivalent to dilation followed by erosion
of the image) is used to fill in small holes in objects. Following
this operation, each contiguous area of pixels having a value of
unity is labelled as an individual object and different measures
of each object are selected.

Fig. 1 shows example pairings of measures for two images
with different seabed types. In this case, the points corre-
sponding to two objects in the upper panel and three objects
in the lower panel have been isolated (marked in red) from
all the other points representing the set of objects located on
the seabed. In general, features (such as physical measures)
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Fig. 3. Example target detections when the seabed contains sand ripples c.f.
top panel in Fig. 1. The true positions are circled in the upper panel and the
detections are marked in red in the lower panel; the two detections correspond
to the two outliers marked in the top panel in Fig. 1.

are needed that form clusters for different classes of objects
that need to be detected. One simple procedure to detect
these objects is to set a threshold for each feature based, for
example, on multiples of the mean value of each feature; this
is illustrated in Fig. 2 for which any objects above and to the
right of the threshold line would be declared. Formally, the
set of detections is defined as

D ={d|1(d) > X{¢1(a))
and  a(d) > Y (¢a(a)), a € A}, (1)

for some X, Y, where ;2 are one pair of measures and
A is the set of closed objects in the binary image; this
definition could generalise to any number of measures 1); for
j=1,...,N.

While this procedure is unlikely to be sufficient for poor
sonar conditions, such as textured or clutter backgrounds, it
is employed below in order to introduce the concept of using
contextual information in sonar imagery - this is the main aim
of our paper.
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Fig. 4. Example target detections when the seabed is flat c.f. bottom panel
in Fig. 1.

B. Results

Some preliminary results are shown in Figs. 3—4 based on
comparisons between the area of each object and the standard
deviation of the pixel intensity of each object in examples of
each seabed type.

In each case, an object is declared (as “unauthorised”)
following this simple procedure, whenever the area of the
object was greater than X times the mean area of all objects
and the standard deviation of the object was greater than Y
times the mean standard deviation of all objects.

Fig. 3 and Fig. 4 show the results when X > landY > 1.5
in (1) for the same two example images considered in the top
and bottom panels in Fig. 1 respectively; the true positions
of the targets are circled in the upper panel in each of Fig. 3
and Fig. 4 and the detections are marked in red in the lower
panels in the same way as Fig. 1. It is worth noting that this
procedure detects the two objects on a flat seabed (Fig. 4)
but only one of three objects in the presence of sand ripples.
Similar results were found for all other images in the data that
was available but estimates of the number of positive contacts



and false contacts for different values of X,Y have not been
calculated.

C. Comments

Traditional methods for detecting the objects in sonar im-
agery would try to focus on each object in isolation and seek
ways to filter and remove the background or other surrounding
objects. The simple procedure developed here has effectively
shown that the reverse - explicitly looking at the information
about all the objects in the imagery - could help to detect
underwater objects without needing detailed information about
the target. There is much more to be done to select the
most relevant measures but context should provide useful
information in sonar imagery. The same should be true for
other imagery but, in general, one may expect some measures
to be needed on a case-by-case basis while other measures
could be found that are tolerant to, for example, different
resolution data or when the objects contained in the images
have different properties.

III. CONCLUSION

This preliminary investigation of contextual information
in sonar imagery has shown that relatively simple physical
measures can be used to characterise the relationship between
natural objects on the seabed and other “unauthorised” objects.
This is unlikely to be effective in detecting objects in poor
sonar conditions but could provide useful information to assist
detection or identification of man-made objects. The next
stage is to develop other measures of context, such as higher
order statistical moments, that can separate different classes

of objects, and an effective procedure that can exploit such
measures.
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