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Abstract—We consider the problem of distributed target tracking in a
multi-object, multi-sensor scenario in which the structure of the joint

distribution of the estimate between different nodes is unknown. In
this paper we present a preliminary implementation of Generalised
Covariance Intersection (GCI) fusion rule for multi-object posteriors

through a Monte Carlo realisation. We discuss the subtleties in the case
of multi-object distributions and derive a scheme for sampling from
Exponential Mixture Densities which are at the heart of the GCI. We
demonstrate the improvement in localisation of multiple targets in a

simulation scenario.

I. INTRODUCTION

Distributed sensor networks are expected to revolutionise military

operations. By distributing information collection and processing

throughout a network of heterogeneous, geographically-dispersed

information processing nodes, it is anticipated that robust, scalable

tracking and estimation algorithms can be developed. However, there

are several challenges associated with realising such systems. We

focus on two problems: multi-object tracking, and distributed data

fusion.

Many tracking problems inherently involve multiple objects. Ob-

jects of military relevance rarely occur in isolation; they are sur-

rounded by other objects either of military or non-military sig-

nificance. Therefore, the tracking system must be able to account

for and track the states of each of these objects. The difficulties

are exacerbated by many sensing systems which are noisy, return

cluttered measurements, and may fail to detect targets. With careful

tuning, approaches such as Multiple Hypothesis Tracking (MHT)

can be used in relatively benign environments. However, general

experience indicates that MHT can be very brittle. These difficulties

are compounded in distributed environments, where individual nodes

make track initialisation, track merging and track deletion decisions

using local information only. This can cause valid tracks to be

pruned, and invalid tracks to be maintained. An alternative approach

to multi-object tracking is to use a rigorous multi-object multi-sensor

detection and classification algorithm provided through the formalism

of Finite Set Statistics (FISST) [1]. The success of FISST for multi-

sensor multi-object tracking has been demonstrated by the Probability

Hypothesis Density (PHD) filter algorithms [2], [3]. These algorithms

replace the exponential complexity of data association techniques

with robust, computationally cheaper [4], e.g., cubic–complexity [5],

algorithms that are effective in estimating both the correct number

of objects and their state vectors in data with high false alarm rates

and missed detections.

Distributed data fusion algorithms combine the state estimates that

are generated by a number of fusion centres or nodes. However, the

estimates from the different nodes are not conditionally independent

of one another and, if optimal fusion is to occur, common information

has to be “cancelled out” [6]. However, in most networks computing

this information is prohibitively expensive. An alternative is to

use suboptimal fusion techniques such as Covariance Intersection

(CI) [7]. However, CI only utilizes the mean and covariance of the

estimates and cannot exploit any additional distribution information

such as the number of modes. The generalisation of CI to general

probability distributions was first proposed by Mahler [8] and in-

dependently derived by Hurley [9]. This generalisation replaces the

product form of Bayes Rule with an Exponential Mixture Density

(EMD–equivalently a weighted geometric mean). Theoretical [10],

[11] and practical analysis [12], [13] has demonstrated that this gen-

eralisation has a sound theoretical basis. Although Mahler originally

proposed the EMD fusion rule within the context of applying FISST

in distributed data fusion problems [8], his discussion included no

proofs of the validity of the proposed method, no implementation

strategy of how such a method could be realised, and no demonstra-

tion of the performance of the method.

In a companion paper [14], we have developed the forms of several

widely-used multi-object distributions using the exponential mixture

density form. Although these forms are compact and easy to write

down, there is no guarantee that these lead to algorithms with good

computational performance. Therefore, in this paper we consider the

problem of developing initial implementations of these algorithms.

We use a Monte Carlo approach within the Probabilistic Hypothesis

Density (PHD) framework.

The structure of this paper is as follows. In Section II, we describe

multi object PHDs and the EMD fusion rule. Section III formalises

the problem statement and desribes our Monte Carlo-based realisation

of the EMD fusion rule. An example illustrating the algorithm is

provided in Section IV and conclusions are given in Section V.



II. FINITE SET STATISTICS

In this section we provide an overview of multi-object density

functions, their Probability Hypothesis Densities (PHDs) and fusion

of multi-object posteriors together with the implications on the

corresponding PHD.

A. Multi-object density functions and PHDs

The problem of tracking multiple targets in clutter has traditionally

been performed using MHT. However, many years of experience has

shown that MHT can be both brittle and computationally expensive.

Recent developments based on random finite sets have developed

classes of multitarget tracking algorithms which are both robust and

operate in linear time.

Within the framework of random finite sets, the state is represented

by the random set variable X = {x1, ..., xN}. Both the cardinality of

the set, N , and the values of the individual random variables xi are

random and xi takes values from the space X . X is characterized by

the multi-object density f(X), which leads to the following definition

of a set integral:

∫

f(X)δX := f(∅) +
∞
∑

n=1

1

n!

∫

f({x1, ..., xn})dx1...dxn. (1)

The multi-object density f({x1, ...xn}) is constructed from the joint

density f(x1, ...xn) via the expression

f({x1, ...xn}) := n!p(n)f(x1, ...xn),

where p(n) is the distribution of the cardinality of X and the factorial

term is required to take all possible permutations of the unordered

elements of X into account1.

The combinatorial nature of the multi-object densities renders a

multi-object extension of the conventional recursive Bayesian filtering

in which the posterior is propagated intractable. However, approxi-

mation strategies for propagating the first-order moment, known as

the Probability Hypothesis Density (PHD), have proven to be very

successful [16]2. The PHD D(x) of X is a function over the single

element state space X and
∫

S

D(x)dx = E{|X ∩ S|}. (2)

where |.| is the set cardinality. In other words, the integral of the PHD

over a region S is the expected number of targets in S [15]. In general,

it can be written as some single-object probability distribution s(x)
multipled by the expected number of targets (the expectation of the

cardinality distribution, i.e, E{n} =
∑∞

n=1 np(x)) [15].

For any given multi-object distribution, the resulting PHD can be

written in the form of some single-object probability distribution s(x)
multipled by the expected number of targets [15], i.e.

D(x) = s(x) ·
∞
∑

n=1

n · p(n). (3)

B. Exponential Mixture Densities for Multi-Object Posteriors

The proposal that the generalisation of Covariance Intersection is

the Exponential Mixture Density was proposed by Mahler specifi-

cally to extend FISST to suboptimal distributed environments [8].

1To be precise, f(x1, ...xn) is a symmetric function of its arguments (see,
e.g., pg.364 of [15], for further details).

2It might be noted that the computational costs of FISST are much worse

than those for MHT. However, the PHD approximation derived from FISST
is both computationally cheaper and better-behaved than MHT.

This generalisation has proved to be extremely valuable for dis-

tributed estimation in the single-target case [10]–[13]. Consider

two multi-object posteriors, f0(X|Z1:k
0 ) and f1(X|Z1:k

1 ), condi-

tioned on measurement set sequences Z1:k
0 and Z1:k

1 respectively.

The measurement sets come from two different sensor suites. The

goal is to construct the fused estimate f(X|Z1:k
0 ∪Z1:k

1 ). How-

ever, Bayesian solution requires the maintainance of the distribution

over common information, f(X|Z1:k
0 ∩Z1:k

1 ) which is not tractable.

Instead, the EMD fusion rule approximates the joint distribution

f(X|Z1:k
0 ∪Z1:k

1 )≈fω(X|Z1:k
0 , Z1:k

1 ), where [8]

fω(X|Z1:k
0 , Z1:k

1 ) =
f0(X|Z1:k

0 )(1−ω)f1(X|Z1:k
1 )ω

∫

f0(X|Z1:k
0 )(1−ω)f1(X|Z1:k

1 )ωδX
, (4)

where ω ∈ [0, 1] is a free variable and can be selected using an infor-

mation criterion such as minimising the entropy of fω(X|Z1:k
0 , Z1:k

1 ).

The EMD fusion rule is not practical for more than a few targets

and so utilisation of approximation strategies, such as the PHD

filter [2], are required. In our accompanying paper on robust fusion of

multi-object densities [14], we derived explicit formulae for specific

tractable types of multi-object posteriors to fuse. The most general of

the cases that was considered was that of independently, identically

distributed cluster (i.i.d. cluster) processes. We summarise the form

of the PHD of the updated distribution in this scenario.

C. EMD Fusion of IID Cluster Processes

Suppose that we have two posteriors, f0 and f1, that we wish to

fuse that are of the form of an i.i.d. cluster process, i.e.,

f0(X) = n! · p0(n)
∏

x∈X

s0(x),

f1(X) = n! · p1(n)
∏

x∈X

s1(x),

where s0(x) and s1(x) are densities on the single-object state-space

and p0(n) and p1(n) are cardinality distributions in the number of

targets. Then the fused first-moment, or PHD, is found with

Dω(x) = sω(x) ·
∞
∑

n=1

n · pω(n), (5)

where the updated i.i.d. location density and cardinality distribution

are

sω(x) =
s
(1−ω)
0 (x)sω

1 (x)
∫

s
(1−ω)
0 (y)sω

1 (y)dy
(6)

pω(n) =
p
(1−ω)
0 (n)pω

1 (n)
(

∫

s
(1−ω)
0 (x′)sω

1 (x′)dx′
)n

∑∞
m=0 p

(1−ω)
0 (m)p

(w)
1 (m)

(

∫

s
(1−ω)
0 (y)sω

1 (y)dy
)m .

(7)

In the next section, we investigate a practical implementation of the

Generalised Covariance Intersection using Monte Carlo representa-

tions of the intensity functions.

III. MONTE CARLO FUSION OF IID CLUSTER PHDS

A. Problem Definition

Suppose that there are 2 sensors observing a common region and

at time k collect noisy measurements Zk
0 and Zk

1 respectively due

to multiple targets and clutter with non–zero probability of missing

either of the targets. The sensors run local CPHD filters utilizing

Sequential MC realizations and produce a particle representation



of the PHD for the multi-object scene together with a cardinality

distribution. The posterior PHD from the jth sensor is given by

D
k|k
j (x|Z1:k

j ) ≈ µ̃
k|k
j s̃

k|k
j (x), (8)

where µ̃
k|k
j and s̃

k|k
j (x) are the estimates of the expected number

of targets and the localisation density respectively3. The localisation

density estimate is represented by using a set of Nj particles of the

form

s̃j(x) =

Nj
∑

i=1

ζ
(i)
j δ(x − x

(i)
j ) (9)

where ζ
(i)
j is the weight of the particle x

(i)
j . Note that if the points

x
(i)
j for i = 1, . . . , Nj are sampled from a proposal distribution q(x),

i.e. x
(i)
j ∼ q(x), then

ζ
(i)
j ∝

sj(x
(i)
j )

q(x
(i)
j )

. (10)

Our problem is, having received
{

ζ
(i)
j , x

(i)
j

}

for j = 0, 1, to

find a particle representation for the EMD given by (6), which

is the localisation density component of the fused PHD under the

assumption that the multi-object scene admits an i.i.d. cluster model.

B. Particle Representation of an Exponential Mixture Density

The evaluation of (6) is not trivial for a number of reasons.

First, given a particle representation of sj(x), only an approximate

evaluation, i.e. s̃j(x), is possible for which Kernel Density Estimation

(KDE) methods are employed [17]. A KDE approximation is given

by

s̃j(x) =
1

VhS(Nj)

Nj
∑

i=1

ζ
(i)
j K

(

x − x
(i)
j

h

)

(11)

where K(·) is a Kernel function (often selected from the class of

radial basis functions), h is the scale factor or bandwidth (BW)

and Vh is the volume of K which depends also on h. S(Nj) is

a normalisation constant.

Given s̃j(x), another difficulty is that it is computationally infea-

sible to evaluate s̃ω(x) on a conventional grid due to the curse of

dimensionality. In addition, for the case in which further processing

based on the EMD is needed, e.g., in order to proceed fusion by intro-

ducing PHDs output by additional sensors, a particle representation
{

ζ
(i)
ω , x

(i)
ω

}

is preferable to approximate evaluations of sω(x).

C. Particle Representation of the EMD Fusion Rule

For the particle set to represent sω(x), a reasonable choice is the

union of the already received sets of particles, i.e.

Pω = P0 ∪ P1 (12)

where

P0 = {x(1)
0 , x

(2)
0 , ..., x

(N0)
0 }

P1 = {x(1)
1 , x

(2)
1 , ..., x

(N1)
1 }

Therefore we seek ζ
(k)
ω for x(k) ∈ Pω such that for an arbitrary

density q(x), if x(k) ∼ q(x), then ζ
(k)
ω satisfies the relation given by

(10), which specialises to

ζ(k)
ω ∝

s1−ω
0

(

x(k)
)

sω
1

(

x(k)
)

q(x(k))
. (13)

3For the rest of the paper, we drop the superscripts k|k and omit the
conditioning notation for posteriors where they can be identified from the
context.

Consider all samples x(i) ∈ P0 which are generated from some

distribution q(x). Then, considering (10), it holds that q(x(i)) ∝
s0(x

(i))/ζ
(i)
0 for i = 1, ..., N0 which after substituting in the right

hand side (RHS) of (13) yields

ζ(i)
ω ∝ ζ

(i)
0 s−ω

0 (x(i))sω
1 (x(i)) (14)

enabling us to utilize the RHS to compute weights for representing

sω(x) with the particle set P0.

Similarly, for x(i) ∈ P1, the weight ζ
(i)
ω is obtained after substi-

tuting the relation q(x(i)) ∝ s0(x
(i))/ζ

(i)
0 in (13) as

ζ(i)
ω ∝ ζ

(i)
1 s1−ω

0 (x(i))sω−1
1 (x(i)) (15)

Hence, for the particles in P0 and P1 the RHSs of (14) and (15)

respectively provide weights for the particle representation of the

EMD sω(x) . For our case, since the evaluation of sj(x) is possible

only through its KDE given by (11), we substitute s̃j(x) in place of

sj(x) in (14) and (15).

After obtaining {ζ(k)
ω , x(k)|x(k) ∈ Pω} it is also possible to obtain

an equal weighted representation after resampling. Let us denote these

set of particles, i.e. the elements of Pω selected through resampling

based on ζ
(k)
ω s, by P ]

ω . Note that, P ]
ω ⊆ Pω .

For ω = 0, it is expected that most of the elements of P ]
ω , would

be from P0. In other words,
∣

∣

∣
P ]

ω ∩ P0

∣

∣

∣
�
∣

∣

∣
P ]

ω ∩ P1

∣

∣

∣
(16)

Symmetrically, for ω = 1, most of the elements of P ]
ω are expected

to be from P1, i.e.
∣

∣

∣
P ]

ω ∩ P1

∣

∣

∣
�
∣

∣

∣
P ]

ω ∩ P0

∣

∣

∣

This is supported through experiments with EMDs of Gaussian mix-

tures which are not presented in this paper due to space limitations.

However, this has not been our experience, in the case of the

localisation densities of PHDs. It might be argued that the problem

is due to the inaccuracy of the KDE approximation possibly related

to the selection of the BW h, which has a major influence on the

behaviour of the approximation [17]. Given a particle representation,

there is a number of methods for finding h including the rules of

thumb (RUT) schemes which yield straightforward computations and

least square cross validation (LCV) which is an iterative scheme

requiring more resources [18]. In Fig. 1(a), equal weighted particles

(particles after resampling) representing the localisation component

of posterior PHDs output by two CPHD filters (i.e., s0(x) and s1(x)
respectively) are presented. For ω = 0, after calculating the weights

given by (14) and (15) based on the KDEs with RUT, the particle set

Pω is resampled and P ]
ω is obtained (magenta particles in Fig. 1(b)).

Note that, for the case, P ]
ω should represent s0(x), and have a

significantly higher number of common elements with P0 compared

to P1. However, besides the particles from P0, a large number of

particles from P1 are leaked which is best seen in Fig. 2. We zoom

in the left–mid cluster in Fig. 1(a) and present the elements of P0

(blue circles) , P1 (black triangles) and P ]
ω (boxed particles) over that

region. Due to inaccurate estimating the BW, there is a significant

number of particles in P1 which do not intersect with P0 yet have

non-trivial weights (i.e., ζ
(i)
ω are not negligible), and appear in P ]

ω

after resampling (cyan boxed triangles).

This phenomenon is apparent also for ω = 1 (Fig. 1(c)) implying

an inaccurate particle representation of sω(x) for 0 < ω < 1. KDEs

based on LCV pose the same problem (Fig. 1(d),(e)).

We utilize a similar approach to adaptive KDE, and first, treat

sj(x) as a mixture density of G components, i.e.,



sj(x) =
1

G

G
∑

i=1

gi
j(x)

which is a convenient assumption in a multi-object tracking scenario

with G as the number of targets. Given a particle representation for

a mixture density, it is possible to identify the components through

clustering [19]. Clustering of particles representing a PHD is also

(a) P0 and P1 (b) (RUT) ω = 0

(c) (RUT) ω = 1 (d) (LCV) ω = 0

(e) (LCV) ω = 1 (f) (CF) ω = 0

(g) (CF) ω = 1 (h) (CF) ω = 0.5

Fig. 1. Equal weighted particles at time step k of a multi-object tracking
scenario representing; (a) localisation densities associated with the posterior
PHD of CPHD filter 0 (blue circles) and filter 1 (black triangles), (b) EMD
for ω = 0 based on RUT KDE (magenta) overlayed on (a), (c) similar for
ω = 1, (d) EMD for ω = 0 based on LCV KDE, (e) similar for ω = 1
(LCV), (f) EMD for ω = 0 based on clustered fusion utilizing RUT (CF),
(g) similar for ω = 1, (h) similar for ω = 0.5.

Fig. 2. Leakage of spurious particles to the EMD representation for ω = 0:
The particles representing s0(x), i.e., P0 (blue circles), and s1(x), i.e., P1

(black triangles), respectively, are seen (zoomed in the mid–left clusters in

Fig. 1(a) ). For the case, most of the elements of P
]
ω (boxed particles) should

be from particle set P0. However, due to inaccurate BW estimation, among
the particles in P1, there is a significant number of those which do not lie in

the intersection with P0 yet have non-trivial weights and appear in P
]
ω after

resampling (cyan boxed triangles).

of concern for state estimation in the context of SMC realisation of

CPHD filters [20].

We consider the CPHD update equation (Theorem 2 in [21]) in

which the weight of each particle is updated by a sum of contributions

from each observation as well as a term due to a possible missed

detection. We label each particle based on the maximum contribution,

either with one of the observations or as missed detection. Such

a scheme is introduced in [20] and it is shown that the mean

of clusters that are persistently associated with an observation in

consecutive time steps yield a principled multi–object state estimate.

Hence, after clustering both P0 and P1, we employ an association

procedure to determine overlapping clusters and form individual

EMDs accordingly. For the case, the association can be performed

with polynomial complexity using, e.g., the Hungarian algorithm 4 .

An example for this approach is provided in Fig. 1(f)–(h) in which

the selection of P0 or P1 is apparent through selection of ω = 0 or

ω = 1 respectively, as well as the improvement in localisation for

ω = 0.5. An automatic selection mechanism for ω as described in

Section II-B is left out of the scope of this work.

IV. EXAMPLE

As an example scenario we consider 4 targets moving with constant

velocity in the common region of interest of two sensors located

at [−100,−100]T and [1100,−100]T respectively. All targets are

born at step 1 and remain in the scene for an observation interval

of 150 steps (Figure 3). Each sensor has a detection probability of

pD = 0.95 and make AWGN measurements in the polar coordinates

with σφ = 0.035 and σR = 0.1 in the azimuth and range respectively.

The clutter is Poisson over the region of interest with rate λ = 10.

The sensors utilise SMC CPHD filters and at each time step,

the localisation densities of the posterior PHDs are fused using

the method described in Section III-B for ω = 0, 0.09, ..., 1. For

assessment of the localisation performance, we compute the OSPA

localisation metric [22] at each time step after producing state

estimates simply by taking the mean of the clusters.

In Figure 4, averaged results for 100 Monte Carlo trials are

presented. At each time step, we select the fusion result as that for

the ω which achieves the minimum OSPA. It is seen that the fusion

rule exploits the supplementary information provided by different

sensors and improves the localisation accuracy significantly. Another

4Note that, in arbitrary networks, this scheme extends in a similar fashion
with the utilisation of CI. Note, also that, the multi–sensor CPHD/PHD filters,
i.e., the centralised solutions, are intractable, in general [16].
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Fig. 3. Example scenario; 4 targets start to move from locations indicated
by circles and are observed by two sensors shown by the diamond and the
triangle.

observation is that, for this scenario, for a wide range of values of ω
for 0 < ω < 1, the improvement in localisation is similar. This can be

seen in Figure 5 where we present the mean value of minimum OSPA

achieving ω at each time step together with ±1 standard deviation

bounds. Hence, fixing ω at 0.5 would produce near optimal results

on the average.

V. CONCLUSIONS

In this work, we considered a multi-sensor mutli-target tracking

scenario and presented our preliminary results on distributed fu-

sion of multi-object posteriors. Specifically, we exploit the merits

of Covariance Intersection, which is well established for single

object posteriors, in a multi-object setting. Under the i.i.d. cluster

assumption for the multi-object scene, principled fusion is possible

through PHDs which are produced by Bayesian multi-object filters.

We have developed a Monte Carlo realisation for generalisation of the

Covariance Intersection through Exponential Mixture Densities and

demonstrated the improvement provided in localisation of multiple

targets.

ACKNOWLEDGMENTS

This work was supported by EPSRC-DSTL project “Generic Dis-

tributed Target Tracking Algorithms in Sensor Networks with Finite

Set Statistics” (EP/H011990/1 and EP/H011990/1) in the University

Defence Research Centre (UDRC). Dr Clark is a Royal Academy of

Engineering/ EPSRC Research Fellow.

REFERENCES

[1] R. P. S. Mahler, “Statistical Multisource Multitarget Information Fusion,”
Artech House, 2007.

[2] R. Mahler, “Multitarget Bayes filtering via first-order multitarget mo-
ments,” IEEE Trans. AES, vol. 39, No.4, pp. 1152–1178, 2003.

[3] ——, “PHD Filters of Higher Order in Target Number,” IEEE Trans.

AES Vol. 43 No 4, pp. 1523–1543, 2007.
[4] B. Vo, S. Singh, and A. Doucet, “Sequential monte carlo methods for

multi-target filtering with random finite sets.” IEEE Trans.AES, vol. 41,
no. 4, pp. 1224–1245, October 2005.

[5] B. T. Vo, B.-N. Vo, and A. Cantoni, “Analytic implementations of
probability hypothesis density filters,” IEEE TSP, Vol 55 No 7 Part 2,
pp. 3553–3567, 2007.

[6] C.-Y. Chong, S. Mori, and K.-C. Chang, “Distributed multitarget multi-
sensor tracking,” Multitarget-Multisensor Tracking: Advanced Applica-

tions; Y. Bar-Shalom (ed.); Artech House Chapter 8, 1990.
[7] J. K. Uhlmann, “Dynamic map building and localization for autonomous

vehicles,” Ph.D. dissertation, University of Oxford, 1995.
[8] R. Mahler, “Optimal/robust distributed data fusion: a unified approach,”

SPIE Defense and Security Symposium, 2000.
[9] M. Hurley, “An information-theoretic justification for covariance in-

tersection and its generalization,” in Proc.s of the FUSION 2002,
Annapolis, MD, USA, 7–11 July 2002.

[10] S. J. Julier, “Fusion without independence (keynote abstract),” in Pro-

ceedings of the IET Seminar on Tracking and Data Fusion: Algorithms

and Applications, Birmingham, UK, 15–16 April 2008, pp. 1–5.

[11] S. J. Julier, T. Bailey, and J. K. Uhlmann, “Using exponential mixture
models for suboptimal distributed data fusion,” in Proc. of the 2006

IEEE Nonlinear Stat. Signal Proc. Workshop (NSSPW’06), Cambridge,
UK, 13–15 September 2006, pp. 160–163.

[12] S. Julier, “An Empirical Study into the Use of Chernoff Information
for Robust, Distributed Fusion of Gaussian Mixture Models,” IEEE Int.

Conf. on Inf. Fusion, 2006.

[13] L.-L. Ong, T. Bailey, and H. Durrant-Whyte, “Decentralised particle
filtering for multiple target tracking in wireless sensor networks,” in
Proc.s of the 11th ICIF, Cologne, Germany, 30th June – 3rd July 2008.

[14] D. Clark, S. Julier, R. Mahler, and B. Ristić, “Robust multi-object sensor
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Fig. 4. OSPA localisation distances for CPHD filter 1 (dashed blue line),
CPHD filter 2 (dotted red line) and the fusion output (solid magenta line)
averaged over 100 MC runs vs. time step.
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Fig. 5. Mean of the min. OSPA achieving ω (solid line) vs. time steps
together with ±1σ bounds.


