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Abstract—The augmented complex Kalman filter (ACKF) has
been recently proposed for the modeling of noncircular complex-
valued signals for which widely linear modelling is more suitable
than a strictly linear model. This has been achieved in the
context of neural network training, however, the extent to
which the ACKF outperforms the conventional complex Kalman
filter (CCKF) in standard adaptive filtering applications remains
unclear. In this paper, we show analytically that the ACKF
algorithm achieves a lower mean squared error than the CCKF
algorithm for noncircular signals. The analysis is supported by
illustrative simulations.

I. INTRODUCTION

Standard applications of adaptive systems normally use the
signal magnitude as the main source of information. However,
many real world applications rely on information from both the
magnitude and direction or are multidimensional (e.g. radar,
sonar and wind). This has lead to research towards extending
the results from real-valued adaptive filters and standard com-
plex domain filters to those employing augmented complex
statistics and widely linear modelling. One popular adaptive
system is the Kalman filter, which is optimal in the sense
of second order statistics. Both the complex and real version
of the Kalman filter exist, however the augmented complex
version have only been deployed for the training of neutral
networks and assume a random walk state foundations [1].

The implementation of the Kalman filter uses complete
specifications of both dynamical and statistical model param-
eters of a system. In order to give the best results, the Kalman
filter requires that the model parameters to be an accurate rep-
resentation of the system. These statistical model parameters
for complex valued signals are, however, not straightforward
extensions of their real valued counterparts.

The second order statistical properties of a complex signal
z is usually characterised by its covariance r = E{zz∗}.
However, this is not sufficient for a complete second-order
description, and it is necessary to consider another moment
called the pseudocovariance p = E{zz}. It is only for the
special class of complex signals known as second order circu-
lar or proper, that is, those with rotation invariant probability
distributions and have vanishing pseudocovariance, that the
their covariance function suffices to give the complete second-
order description. However most real world processes are

noncircular, either due to the different signal powers in the
real and imaginary parts, or due to nonstationarity.

Several augmented or widely linear adaptive filtering algo-
rithms have been developed by accounting for the information
in both the covariance and pseudocovariance. These include
the augmented complex least mean square [2], the augmented
complex IIR filter [3], the augmented complex recursive least
squares [4] and the augmented complex affine projection
algorithm [5]. These are all based on the widely linear model

y = hTx+ gTx∗ (1)

where y is the output, h and g are complex coefficient vectors,
whereas x is the input vector and x∗ is its complex conjugate.

The second order statistics of a complex random vector z
are not fully described by its covariance, Rz = E{zzH}, as is
the case for a real random vector. A second moment function
called the pseudocovariance Pz = E{zzT } (also known as the
relation function or complementary covariance) is also needed
in order to fully capture the second order statistics [6]. A
complex-valued signal is said to be non-circular (or improper)
if z and ejθz have different probability density functions for
any value of θ; otherwise it is circular (or proper) [7]. A
circular signal, for which Pz = 0, is fully described by its
covariance alone. However for a non-circular signal, Pz 6= 0,
the pseudocovariance can not be ignored as it contains crucial
information [8]. To cater for both Rz and Pz we can use
the augmented signal vector za =

[
zT zH

]T
for which the

covariance matrix becomes

Rza =

[
Rz Pz

P∗z R∗z

]
(2)

Hence, the use of widely linear (or augmented) signal models
are expected to offer better second order performance and
modelling capabilities for non-circular systems.

In this paper we consider the augmented complex Kalman
Filter (ACKF), which uses both the pseudocovariance matrix
and the covariance matrix in its statistical model parameters in
order to achieve increased performance gains for noncircular
signals. We show that the augmented complex Kalman filter
always has the same or better performance than the conven-



tional complex Kalman filter (CCKF), for the generality of
complex signals, both circular and noncircular.

II. ANALYSIS OF THE ACKF
A Kalman filter is an optimal sequential state estimator

for linear dynamical systems, in the sense that it achieves
the minimum mean squared error (MMSE). It is essentially
a recursive filter that estimates the state of a linear dynamic
system from a series of noisy observations. Its applications
include state estimation for vehicular navigation systems,
training of recurrent neural networks (RNNs) and time varying
channel estimation. Consider a state space model given by [9]

xn = Fn−1xn−1 +wn (3)
yn = Hnxn + vn (4)

where xn is the state to be estimated (of dimension p×1) and
yn is the noisy observation (of dimension q× 1). The vectors
wn and vn are respectively the state noise and measurement
noise. They are zero mean with covariance matrices Qn and
Rn respectively. The matrix F is the state transition matrix
(of dimension p× p) whereas H is the observation matrix (of
dimension q×p). Based on the widely linear model in (1) the
augmented state space model can be written as [1]

xan = Fan−1x
a
n−1 +wa

n (5)
yan = Ha

nx
a
n + van (6)

where xan =

[
xn

x∗n

]
, yan =

[
yn

y∗n

]
, wa

n =

[
wn

w∗n

]
, van =

[
vn

v∗n

]
,

Fan =

[
Fn 0

0 F∗n

]
and Ha =

[
Hn 0

0 H∗n

]
.

The covariance matrices of the augmented system and
measurement noises, wn and vn, then become

Qa
n =

[
Qn Pn

P∗n Q∗n

]
(7)

Ra
n =

[
Rn Un

U∗n R∗n

]
(8)

where Pn and Un are the pseudocovariance matrices of wn

and vn.
The MMSE estimator x̂an|n = E[xan|ya0 ,ya1 , ...,yan] of xan

based on {ya0 ,ya1 , ...,yan} can then be computed sequentially
using the following recursion:

Prediction:

x̂an|n−1 = Fan−1x̂
a
n−1|n−1 (9)

Minimum Prediction MSE Matrix:

Ma
n|n−1 = Fan−1M

a
n−1|n−1(F

a
n−1)

H +Qa
n (10)

Kalman Gain Matrix:

Gn = Ma
n|n−1(H

a
n)
H [Ha

nM
a
n|n−1(H

a
n)
H +Ra

n]
−1 (11)

Correction:

x̂an|n = x̂an|n−1 +Gn(y
a
n −Ha

nx̂
a
n|n−1) (12)

Minimum MSE Matrix:

Ma
n|n = (I−GnH

a
n)M

a
n|n−1 (13)

The minimum MSE estimate of xn is x̂an|n and can be
expressed as

x̂an|n = (Fan−1 −GnH
a
nF

a
n−1)x̂

a
n−1|n−1 +Gny

a
n (14)

For x̂a0|0 = E{x0} = 0 we have the following time
evolution for x̂an|n

x̂a0|0=0

x̂a1|1=G1y
a
1

x̂a2|2=(Fa1 −G2H
a
2F

a
1)G1y

a
1 +G2y

a
2

x̂a3|3=(Fa2 −G3H
a
3F

a
2)(F

a
1 −G2H

a
2F

a
1)G1y

a
1

+(Fa2 −G3H
a
3F

a
2)G2y

a
2 +G3y

a
3

x̂a4|4=(Fa3−G4H
a
4F

a
3)(F

a
2−G3H

a
3F

a
2)(F

a
1−G2H

a
2F

a
1)G1y

a
1

+(Fa3 −G4H
a
4F

a
3)(F

a
2 −G3H

a
3F

a
2)G2y

a
2

+(Fa3 −G4H
a
4F

a
3)G3y

a
3 +G4y

a
4

...
x̂an|n=WnYn (15)

where

Yn = [yan
T ,yan−1

T ,yan−2
T , . . .,ya1

T ]T

and

Wn=



[Gn]
T

[(Fa
n−1−GnH

a
nF

a
n−1)Gn−1]

T

[(Fa
n−1−GnH

a
nF

a
n−1)(F

a
n−2−Gn−1H

a
n−1F

a
n−2)Gn−2]

T

...

[(
∏m=n

2
(Fa

m−1 −GmHa
mFa

m−1))G1]
T



T

The length of the vector Yn and columns of the matrix
Wn increase with n. The weight matrix Wn can be seen as
a function of the current and all the previous Kalman gains.

If the state and observations noises have a Gaussian distri-
bution, then the Kalman filter is optimal in the MMSE sense
and the weight matrix Wn is hence the minimum variance
linear weighting matrix. The mean square error of any linear
estimator,W

′

nYn, may be compared with the mean square
error for the optimal widely linear estimator x̂an|n = WnYn

by writing [10, p. 327]

E{(xn −W
′

nYn)(xn −W
′

nYn)
H}

= E{(xn −WnYn)(xn −WnYn)
H}

+E{(WnYn−W
′

nYn)(WnYn−W
′

nYn)
H}

≥ E{(xn −WnYn)(xn −WnYn)
H} (16)

The cross-terms on the right-hand side vanish because the error
xn −WnYn is orthogonal to every measurable function of
Yn.

For an initialisation with Ma
0|0 = E{x0x

H
0 } = 0, the

Kalman gain can be shown to be a recursive function of Qa
n



and Ra
n. The optimal weight matrix Wn, which is a function

of the Kalman gain, is therefore also a function Qa
n and Ra

n. A
particular choice for a potentially suboptimal weight matrix,
W

′

n, is a weight matrix that is a function of QL
n and RL

n ,
where

QL
n =

[
Qn 0

0 Q∗n

]
(17)

RL
n =

[
Rn 0

0 R∗n

]
(18)

which corresponds to the conventional complex Kalman filter
that does not take into account the pseudocovariances Pn and
Un. Hence the augmented complex Kalman filter always has
the same or better performance than the conventional complex
Kalman filter, because of its utilisation of the pseudocovari-
ances and consequently the full available augmented complex
statistics.

III. SIMULATIONS
The performances of CCKF and ACKF were examined for

their ability to track an autoregressive AR(4) process

xn = 1.79xn−1 − 1.85xn−2 + 1.27xn−3

−0.41n−4 + un, n ≥ 1 (19)

with the driving noise defined as

E{un−iu∗n−l} = cuδi−l

E{un−iun−l} = puδi−l (20)

Where δ is the discrete Dirac delta function. We used the
ratio of the magnitude of the pseudocovariance (p) to the
variance (c) as measure for the circularity of the complex
random variables, that is

K =
|p|
c

The driving noise u(n) is circular if its pseudocovariance
is zero (i.e. K = 0) and noncircular for all other values of K.
Figure 1 shows a real-imaginary scatter plot for two different
realisations of u(n) with different levels of circularity. Note the
circular symmetry for the circular signal and the non-circular
shape for K = 0.95.

The performance of ACKF was assessed for the one-step
ahead prediction of an AR(4) process, the noncircular Lorenz
attractor, the chaotic Ikeda map and some real world Wind data
using different AR models. The Wind data1 was collected from
measurements of the wind speeds in the north-south and east-
west directions. These were then used to form the real and
complex parts of a signal.

The Kalman filter was used to track the output of a noisy
auto regressive process of order q, AR(q), that is generated
according to the equation

xn =

p∑
k=1

akxn−k + un (21)

1The wind data was provided by Prof. Aihara’s team at the Institute of
Industrial Science, University of Tokyo, Japan.

where un is the driving noise. It is assumed that xn is observed
in the presence of complex white noise vn such that

yn = xn + vn (22)

The Kalman filter state space and observation equations then
become [11]

xn =



a1 a2 ... ap−1 ap

1 0 ... 0 0

0 1 ... 0 0

...
...

. . .
...

...
0 0 ... 1 0


xn−1 +



un

0

0

...
0


(23)

yn = [1, 0, ..., 0]xn + vn (24)

where xn = [xn, xn−1, ..., xn−p+1]
T is the state vector. We

can then augment the Kalman filter parameters as in (3) and
(4), to obtain the augmented complex Kalman filter.

For a quantitative assessment of the performance, the stan-
dard prediction gain Rp = 10 log(σ2

y/σ
2
e) was used, where

σ2
y and σ2

e are the variances of the input signal and the
output error. Figure 2 shows a comparison of the performance
of the CCKF and the ACKF for the AR(4) process. Figure
2a illustrates the results for a circular observation noise of
unit variance and a driving noise of unit variance but with
various degrees of non-circularity, while Figure 2b shows the
performance for a noncircular observation noise with a circular
state noise. For both sets of results the two filters gave the same
performance for the circular signals, i.e. K = 0. However, for
noncircular noises, the ACKF outperformed the CCKF; the
performance of the ACKF relative to CCKF, increased as the
degree of non-circularity of the signals increased.

Table I summarises the prediction gains of CCKF and
ACKF for the one-step ahead prediction of an AR(4) process,
the Lorenz attractor, the Ikeda map and real world Wind data.
In conformance with the analysis, in all the cases, the ACKF
had the better prediction gain.

TABLE I
ONE-STEP AHEAD PREDICTION GAINS Rp FOR THE VARIOUS CLASSES

SIGNALS

Signal Rp(dB) (CCKF) Rp(dB) (ACKF)

AR(4)(K=0) 11.97 11.97

AR(4)(K=0.9) 11.97 13.08

AR1(Lorenz) 67.46 70.07

AR4(Lorenz) 79.18 79.66

AR2(Ikeda) 1.22 2.27

AR4(Ikeda) 4.90 5.73

AR1(Wind) 22.13 22.98

AR2(Wind) 23.01 23.67

AR4(Wind) 23.33 23.64

AR6(Wind) 23.72 23.76



(a)

(b)

Fig. 1. A geometric view of circularity via a real-imaginary scatter plot. (a)
a circular signal (K = 0); (b) a non-circular signal (K = 0.95).

IV. CONCLUSION

We have introduced an augmented complex Kalman filter
(ACKF) algorithm and have examined its performance in
relation to the conventional complex Kalman filter (CCKF).
The analysis has shown that it have the potential to offer
significant performance gains over the CCKF for noncircular
signals and similar performance to the CCKF for circular
signals. Simulations for both synthetic and real world signals
support the analysis.
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