Corrections to “On the Existence and Uniqueness of the Eigenvalue Decomposition of a Parahermitian Matrix”

Stephan Weiss, Jennifer Pestana, Ian K. Proudler, and Fraser K. Coutts

In [1], we stated that any positive semi-definite parahermitian matrix \(R(z) : \mathbb{C} \to \mathbb{C}^{M \times M} \) that is analytic on an annulus containing at least the unit circle will admit a decomposition with analytic eigenvalues and analytic eigenvectors. In this note, we further qualify this statement, and define the class of matrices that fulfills the above properties yet does not admit an analytic EVD. We follow the notation in [1].

I. RELLICH’S ANALYTIC EVD ON THE UNIT CIRCLE

For a self-adjoint matrix \(A(x), x \in \mathbb{R} \), Rellich [2] has shown that eigenvalues and eigenvectors exist that are analytic in \(x \). If \(R(z) \) is evaluated on the unit circle, \(z = e^{j\Omega} \), \(R(e^{j\Omega}) \) is self-adjoint s.t. \(R(e^{j\Omega}) = R^H(e^{j\Omega}) \). Further, \(R(e^{j\Omega}) \) is \(2\pi \)-periodic in \(\Omega \). In [1], we incorrectly assumed that the analytic eigenvalue decomposition (EVD) of \(R(e^{j\Omega}) \) is also \(2\pi \)-periodic, but provide the following correction below.

Theorem 1 (Analytic EVD on the unit circle): For a self-adjoint analytic \(R(e^{j\Omega}) \), Rellich’s EVD on the unit circle is given by

\[
R(e^{j\Omega}) = Q(e^{j\Omega/N}) \Lambda(e^{j\Omega/N}) Q^H(e^{j\Omega/N}),
\]

where the diagonal \(\Lambda(e^{j\Omega/N}) \) and unitary \(Q(e^{j\Omega/N}) \) can be analytic in \(\Omega \) for some \(N \in \mathbb{N} \).

Proof: The EVD of \(R(z) \) on the unit circle can be generally written as \(R(e^{j\Omega}) = U(\Omega) \Gamma(\Omega) U^H(\Omega) \), whereby Rellich [2] guarantees the existence of eigenvalues and eigenvectors in \(\Gamma(\Omega) \) and \(U(\Omega) \), respectively, that are analytic in \(\Omega \in \mathbb{R} \) without making any assumption about their periodicity. We initially focus on the diagonal elements of \(\Gamma(\Omega) \), i.e. the analytic eigenvalues \(\gamma_m(\Omega), m = 1 \ldots M, \) only.

Let \(\{ \gamma_m(\Omega_0) \} \) be the set of \(M \) eigenvalues of \(R(e^{j\Omega_0}) \) at a specific frequency \(\Omega_0 \). Because of its \(2\pi \) periodicity, \(R(e^{j\Omega_0}) = R(e^{j(\Omega_0+2\pi)}) \), and the sets \(\{ \gamma_m(\Omega_0) | m \in \{ 1 \ldots M \} \} \) and \(\{ \gamma_m(\Omega_0 + 2\pi) | m \in \{ 1 \ldots M \} \} \) must contain the same values. Therefore, \(\gamma_m(\Omega_0) = \gamma_{m(\Omega_0 + 2\pi)} \) for some \(\mu(m) \in \{ 1 \ldots M \} \), but \(\mu(m) \neq m \) cannot be assumed. Inspecting segments of analytic eigenvalues \(\gamma_m(\Omega) \) over a \(2\pi \) interval, therefore we see that the end point of one eigenvalue segment, \(\gamma_m(\Omega_0 + 2\pi) \), must coincide with the starting point of another eigenvalue segment, \(\gamma_m(\Omega_0) \), for some \(\mu \).

Because of the above ‘chain’ rule, analytic eigenvalues must be functions that are shifted in frequency by at least \(2\pi N \), for some \(N \in \mathbb{N} \). Therefore, they are \(2\pi N \)-periodic and can be denoted as \(A(e^{j\Omega/N}) = F(\Omega) \). Eigenvectors can only be analytic when eigenvalues are analytic, and due to this association have to exhibit the same periodicity, s.t. \(Q(e^{j\Omega/N}) = U(\Omega) \).

Example 1: The matrix \(R_1(z) = [2, 1 + z^{-1}; z + 1, 2] \) from [3], [4] has the eigenvalues \(\lambda_{1,2}(\Omega) = 2 \pm (z^{1/2} + z^{-1/2}) \). On the unit circle, \(\lambda_{1,2}(\Omega) = 2 \pm 2 \cos(\Omega/2) \) is \(4\pi \)-periodic, as shown in Fig. 1. Note that values for \(\Omega_0 = \frac{\pi}{2} \) and \(\Omega_0 = \frac{7\pi}{2} + 2\pi \) are identical but belong to different functions that are analytic in \(\Omega \).

An analytic continuation \(z = e^{j\Omega} \) is only possible if \(N = 1 \); otherwise expressions in the variable \(z^{1/N} \) result, which are not analytic. Therefore, in the case \(N > 1 \) an analytic EVD of \(R(z) \) does not exist. Nonetheless, it is possible to approximate non-analytic functions by Laurent polynomials; e.g. polynomial EVD algorithms in [8] will converge towards \(2\pi \)-periodic, spectrally majorised eigenvalues for \(R_1(z) \).

II. MODULATED EIGENVALUES AND PSEUDO-CIRCULANT MATRICES

To characterise analytic matrices \(R(z) \) that do not admit an analytic EVD, we consider as a basic building block a parahermitian matrix \(R_\lambda(z) : \mathbb{C} \to \mathbb{C}^{N \times N} \), whose eigenvalues at an \(N \)-times oversampled rate are \(N \) frequency-shifted or modulated versions of a single function \(\lambda(z) \).

\[
\Lambda(z) = \text{diag}\left\{ \lambda(z), \lambda(z e^{j\frac{2\pi}{N}}), \ldots, \lambda(z e^{j(N-1)\frac{2\pi}{N}}) \right\}.
\]

These eigenvalues will remain invariant under any paraunitary similarity transform. We are specifically interested in paraunitary matrices \(W(z) \) that yield

\[
R_\lambda(z^N) = W(z) \Lambda(z) W^H(z),
\]

where

\[
R_\lambda(z^N) = W(z) \Lambda(z) W^H(z),
\]
such that when undersampled by a factor \(N \) and evaluated on the unit circle, will possess a structure equivalent to (1). This is the case for \(W(z) = D(z)T \), with \(D(z) = \text{diag} \{1, z^{-1}, \ldots, z^{-N+1}\} \) and \(T \) an \(N \)-point DFT matrix scaled to be unitary [5], [6]: \(T \) creates a matrix \(T \lambda(z)T^H \), which is circular and possesses elements that are \(N \)-times oversampled but time-shifted and thus offset against each other [7]; \(D(z) \) then removes these shifts such that the non-zero entries are aligned.

With the above choice for \(W(z) \), the parahermitian matrix \(R(z) \) in (3) can be viewed as arising from the subband coding problem in Fig. 2. The signal \(v[n] \) is modelled by an uncorrelated zero-mean and unit-variance noise process \(u[n] \) and an innovation filter \(h[n] \). For this problem, the cross-spectral density matrix \(R(z) \) of the signals \(x_i[n] \), \(i = 1 \ldots N \), is pseudo-circular [6], [7],

\[
R(z) = \begin{bmatrix}
\phi_0(z) & \phi_1(z) & \ldots & \phi_{N-1}(z) \\
\phi_1(z) & \phi_0(z) & \ldots & \phi_{N-2}(z) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{N-1}(z) & \phi_{N-2}(z) & \ldots & \phi_0(z)
\end{bmatrix}
\]

(4)

The terms \(\phi_n(z) \), \(n = 0 \ldots N - 1 \), are the \(N \)-polyphase components of the power spectral density (PSD) of \(v[n] \). Based on the innovation filter \(H(z) \to h[n] \) in Fig. 2, we therefore have \(\lambda(z) = H(z)H^*\lambda = \sum_{n=0}^{N-1} \phi_n(z)z^{-n} \).

Thus any problem with modulated eigenvalues can be brought into pseudo-circular form by a similarity transform (3). Conversely, any pseudo-circular matrix has modulated eigenvalues. Hence (3) and (4) are equivalent. Therefore shifted eigenvalues are directly connected to pseudo-circular matrices and the subband coding problem.

Example 2: The earlier example, \(R_1(z) \), arises from a subband coding problem for \(N = 2 \) with innovation filter \(H(z) = 1 + z^{-1} \) and therefore PSD \(\lambda(z) = z + 2 + z^{-1} \).

III. GENERAL PARAHERMITIAN MATRICES

A parahermitian matrix \(R(z) : \mathbb{C} \rightarrow \mathbb{C}^{M \times M} \) can potentially consist of blocks of pseudo-circular matrices \(R_{\lambda_i}(z) : \mathbb{C} \rightarrow \mathbb{C}^{N_i \times N_i}, i = 1 \ldots I \), each of the type characterised in (4) and created by the structure in Fig. 2, originating from a single \(N_i \)-times oversampled eigenvalue \(\lambda(z) \) as in (2).

\[
R(z) = V(z)\text{diag}\{R_{\lambda_1}(z), R_{\lambda_2}(z), \ldots, R_{\lambda_I}(z)\} V^H(z).
\]

(5)

Note that these eigenvalues remain invariant under a similarity transform by an arbitrary parahermitian \(V(z) \). The maximally possible fundamental period \(2N_{\text{max}} \pi \) of the analytic eigenvalues of any \(R(z) \), given its dimension \(M \), when evaluated on the unit circle is

\[
N_{\text{max}} = \max_{N_i \in N} \text{lcm}\{N_1, N_2, \ldots, N_I\} \quad \text{s.t.} \quad \sum_{i=1}^{I} N_i = M
\]

In Section III we have established that for a parahermitian analytic matrix \(R(z) \) a parahermitian similarity transform \(V(z) \) exists such that \((5) \) results with pseudo-circular blocks on the main diagonal. If any of these \(I \) blocks has a dimension \(N_i > 1 \) (i.e. if \(I < M \)), then the eigenvalues \(\lambda_{\text{min}}(z) \) associated with these blocks do not exist as analytic functions. This motivates an amendment to Theorem 3 in [1]:

Theorem 2 (Existence and Uniqueness of Eigenvalues of a Parahermitian Matrix EVD): For an analytic parahermitian matrix \(R(z) : \mathbb{C} \rightarrow \mathbb{C}^{M \times M} \), eigenvalues \(\lambda_{\text{min}}(z) \), \(m = 1 \ldots M \), exist as absolutely convergent Laurent series if these are selected to be spectrally majorised on the unit circle. Analytic eigenvalues \(\lambda_{\text{min}}(z) \) exist unless a parahermitian similarity transform exists that brings \(R(z) \) into the form (5) with pseudo-circular blocks on the diagonal, with at least one of a dimension greater than one. For cases where analytic eigenvalues do not exist, a spectrally majorised solution can be found for the eigenvalues, which is absolutely convergent on the unit circle.

Proof: See [1] and above.

From a practical point of view, there currently is no algebraic mechanism to check condition (5). Therefore, only if \(R(z) \) arises from a subband coding-type application as depicted in Fig. 2 are we able to say that eigenvalues do not exist as analytic functions in \(z \). Note that while analytic eigenvalues would be favoured for almost all application of a parahermitian matrix EVD, it is subband coding which requires spectrally majorised eigenvalues in order to maximise the coding gain [6], [7].

In terms of impact, in subband coding, its pseudo-circular structure is ideally exploited when estimating \(R(z) \) [6]. If the pseudo-circular property is not enforced for an estimate \(\hat{R}(z) \), then estimation errors will likely mask this property, such that \(\hat{R}(e^{j\Omega}) \) will subsequently possess \(2\pi \)-periodic eigenvalues on the unit circle, and can have eigenvalues that are analytic in \(z \).
Example 4: If $\mathbf{R}_1(\mathbf{z})$ is perturbed by a parahermitian error term at -100dB, then the eigenvalues of this perturbed, no longer pseudo-circulant system, as shown in Fig. 3, are 2π-periodic on the unit circle, and now exist as analytic functions in \mathbf{z}.

V. CONCLUSION

In this note, wrt. [1], a corrected condition for the existence of analytic eigenvalues of a parahermitian matrix $\mathbf{R}(\mathbf{z})$ has been derived. The main results in [1] on the existence of analytic eigenvalues and eigenvectors still hold; however, analytic eigenvalues do not exist if $\mathbf{R}(\mathbf{z})$ can be brought into block-diagonal form containing pseudo-circulant blocks by means of a paraunitary similarity transform.

REFERENCES

