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Abstract—In this paper, a novel transformation connecting
an arbitrary Planar Array to a virtual Uniform Linear Array
(ULA) with a larger number of sensors is proposed. The array
orientation, number of sensors and phase characteristics of
the virtual array are a function of the array shape of the
planar array. The two parameter manifold (azimuth,elevation)
of a planar array of N sensors is a conoid surface embedded
into an N -dimensional complex space which can be described
by two families of curves (θ-curves and φ-curves). While the
family of φ-curves have hyperhelical shape, the family of θ-
curves do not. The proposed transformation will allow the θ-
curves to be transformed to the manifold of a virtual ULA that
has hyperhelical shape. This will allow a planar array system
to be analysed or designed by analysing or designing simple
hyperhelical curves associated with the virtual linear array.

Notation

A, a Scalar

A, a Column vector

A Matrix

(.)
T

Transpose

(.)
H

Hermitian Transpose

� Hadamard product

� Hadamard division

exp (A) Element-by-element exponential of the

vector A
Jn (a) Bessel of the first kind of order n and

argument a
Jn (a) Element-by-element Bessel function of the

vector a
ab Element by element power of the vector a
0N Column vector of N zeros

1N Column vector of N ones

R Set of real numbers

C Set of complex numbers

I. INTRODUCTION

An array system is defined as a collection of sensors

which are distributed in 3 dimensional real space with a

common reference point. Array signal processing is concerned

with the exploitation of this spatial diversity to solve three

main problems. These are namely signal detection, source

parameter estimation and signal reception (i.e. beamforming)
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which are all employed in a wide variety of military and

civilian applications in both RF and acoustic environments.

Examples include Towed Arrays, Multiple Input Multiple

Output (MIMO) Radar, Synthetic Aperture Radar and Arrayed

Wireless Sensor Networks. The distribution of the array sen-

sors (i.e. the array geometry) directly influences the overall

capabilities of any array processing system. Hence, it is crucial

to fully understand the geometrical aspects of such a system.

Consider an array of N omnidirectional sensors with sensor

locations given in Cartesian coordinates by the N × 3 matrix

in units of half-wavelengths[
rx, ry, rz

]
∈ RN×3 (1)

The array response vector, or array manifold vector of a

plane wave arriving from azimuth angle θ and elevation φ
is modelled as

S (θ, φ) = exp
(
−j
[
rx, ry, rz

]
k (θ, φ)

)
(2)

where k (θ, φ) is the wavenumber vector which is defined in

metres (m) and units of half-wavelengths
(
λ
2

)
as

k (θ, φ) =
2π

λ
[cos θ cosφ, sin θ cosφ, sinφ]

T
in m(3a)

= π [cos θ cosφ, sin θ cosφ, sinφ]
T

in
λ

2
(3b)

In Equation 3a, λ is the wavelength of the planewave (e.g.

carrier) and c denotes its propagation speed. The manifold

vector in Equation 2 contains all the information about the

array geometry when a planewave of wavelength λ is incident

on the array from the direction (θ, φ). Note that since the

source is operating in the far field of the array, the manifold

vector has no dependence on the range ρ of the source from

the array reference point.

In Equation 2, S (θ, φ) denotes the manifold vector of an

array of N sensors where (θ, φ) are directional parameters.

As these parameters vary, the point S will trace out a surface

embedded in an N dimensional complex space CN . This is

known as the array manifold which is a surfaceM embedded

into N -dimensional complex space and is formally defined as

M M
=
{
S (θ, φ) ∈ CN , ∀ (θ, φ) : θ, φ ∈ Ω

}
(4)

where Ω denotes the parameter space of the source direction

which in the most general case is

Ω = {(θ, φ) : θ ∈ [0◦, 360◦) and φ ∈ (−90◦, 90◦)} (5)
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Schmidt states in [1] that the array manifold fully describes

the array system and its capabilities. According to [2], this

makes it possible to analyse or design an array system by

analysing or designing the "mathematical object" associated

with the array manifold. In turn this illustrates the importance

of understanding the array manifold within array processing.

For example, there may be a requirement for the array to have

a good resolution performance in a certain source direction

whilst still being able to operate adequately in others. In this

case, an understanding of the effect of array geometry on the

properties of the manifold will allow an appropriate array to

be designed (for example see [3]). Furthermore, given an array

geometry, an understanding of the corresponding manifold

allows array ambiguities to be uncovered. This indicates where

the mapping from the parameter space to the manifold is not

one to one which is crucial to understand when analysing data

received from an array system (see Chapter 6 in [2] for more

information).

Differential geometry holds the key to characterising the

properties of the array manifold. However, this only provides

local properties of a complex shape which in general makes

it difficult to study in its entirety. Hyperhelices are special

curves in differential geometry which can be fully described

by a set of curvatures allowing local properties to be ap-

plied globally. For example, a hyperhelix embedded into N -

dimensional complex space can be fully described by at most

2N curvatures which remain fixed at any point on the curve.

The manifold described in Equation 4 is a surface which may

be fully described by two families of curves. These are namely

the θ-curves and the φ-curves. For a planar array geometry,

the φ-curves will all be hyperhelices but the θ-curves will

not be. This makes the properties of the θ-curves difficult

to characterise. In contrast, a linear array geometry creates

an array manifold which is a curve instead of a surface and

always has hyperhelical shape. In this paper, a transformation

connecting a planar array and a set of virtual ULA’s (one for

each θ-curve) with a much larger number of sensors will be

presented. This will allow the θ-curves for a planar array

which are not hyperhelices to be mapped to hyperhelices in a

much larger complex space.

Initially, in Section II, the array signal model for the planar

and linear array geometries will be developed from the general

model in Equation 2. The properties of their manifolds will

also be discussed in terms of differential geometry. In Section

III, the transformation between the Planar Array and the

virtual ULA will be developed. In Section ??, an analysis of

the properties of the virtual array produced by the proposed

transformation for a number of planar array geometries will

be given as well as a representative example proving the

correctness and applicability of the transformation. Finally, in

Section V, the paper will be concluded.

II. PLANAR AND LINEAR ARRAY SIGNAL MODELS

Consider a linear array geometry of N omnidirectional sen-

sors
(
ry = 0N and rz = 0N

)
. The manifold vector in contrast

to the generalised form in Equation 2 becomes

S (θ) = exp (−jπrx cos θ) (6)

Note that now Equation 6 spans only one parameter θ and

creates a curve A embedded into N -dimensional complex

space CN formally defined as

A M
=
{
S (θ) ∈ CN , ∀ θ : θ ∈ Ω

}
(7)

where Ω denotes the parameter space which in contrast to

Equation 5 is reduced to

Ω = {θ : θ ∈ [0◦, 180◦)} (8)

In [2], it is shown that the manifold of a linear array

of sensors with a uniform or non-uniform, symmetric or

asymmetric geometry is a hyperhelical curve embedded into

N -dimensional complex space. The number of dimensions

spanned by the hyperhelix is determined by the number of

symmetrical sensors about the array centroid [4]. In general,

a space curve can be fully represented by a set of numbers

(known as curvatures) for each point on the curve that fully

describes it. Consequently, these curvatures describe the array

of sensors and its performance. However, hyperhelices are

very important and useful space curves since these curvatures

remain constant at different points on the curve and hence are

easier to characterise. Symmetric linear arrays are a subset of

linear arrays which produce hyperhelices which are said to

stand upright (zero inclination angle). This implies that the

manifold exists entirely in RN dimensions of the complex

space.

In a planar array geometry of N omnidirectional sensors

(rz = 0N ), the manifold vector in comparison to Equation 6

becomes more complex

S (θ, φ) = exp
(
−jπ cosφ

(
rx cos θ + ry sin θ

))
(9)

Note that now Equation 9 spans two parameters (θ, φ) in its

parameter space and hence creates a surface M embedded in

N dimensional complex space CN . This creates a two para-

meter manifold consistent with the formal definition provided

in Equation 4. The parameter space Ω for a planar array is

larger than for the linear array as described in Equation 5 but

more restrictive than the general case as described in Equation

8.

Ω = {(θ, φ) : θ ∈ [0◦, 360◦) and φ ∈ [0◦, 90◦)} (10)

In [5], it has been proven that the manifold surface of a planar

array of N omnidirectional sensors is a conoid embedded

into N dimensional complex space. Furthermore, it has been

proven that this surface can be mapped to a real plane

without any loss of information. The surface can be described

by two families of curves. These are namely the θ-curves
(φ = constant) and the φ-curves (θ = constant). In [6],

it has been proven that φ-curves are complex hyperhelices

whilst θ-curves are not. This implies that the local properties

of the θ-curves change, making them more complex to

characterise. An alternative is using the "cone" angles which
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provides α-curves and β-curves which are both hyperhelical

(see Chapter 5 in [2] for more information) and hence can

describe the manifold surface by a set of constant curvatures

which is valid at any point on the manifold. This allows the

analysis performed for the manifold of linear array geometries

to be applied to these curves to characterise the planar array

manifold.

In this paper, a novel transformation that connects a θ-

curve of a Planar Array to a hyperhelical curve representing

the manifold of a virtual ULA with a larger number of

sensors is proposed. This allows the θ-curves of a planar

array embedded into N dimensional complex space to now be

expressed as hyperhelical curves lying with zero inclination

angle in a larger complex space. In turn, this will allow

planar array systems to be fully analysed or designed using

the framework developed for linear arrays. The virtual ULA

has a number of sensors, orientation and phase characteristics

which describes the shape of the planar array. The proposed

transformation connecting the virtual and planar manifold

vectors is a function of the planar array geometry and the

φ parameter but is independent of θ. In the next section of

this paper, this transformation will be developed.

III. VIRTUAL LINEAR ARRAY TRANSFORMATION

Consider a planar array of N omnidirectional sensors de-

scribed by the N × 3 matrix in units of half-wavelengths[
rx, ry, 0N

]
(11)

The corresponding manifold vector describing the response of

a plane wave arriving from (azimuth, elevation) = (θ, φ) is

given by

S (θ, φ) = exp
(
−jπ cosφ

(
rx cos θ + ry sin θ

))
(12)

which may be re-written as follows

S (θ, φ) = exp
(
−jπR (φ)� cos

(
θ1N − ψ

))
(13)

where

R (φ) =
[
R1 (φ) , R2 (φ) , · · · , RN (φ)

]T
=

√
r2x + r2y cos (φ) (14)

ψ =
[
ψ1, ψ2, · · · , ψN

]T
= tan−1

(
ry � rx

)
(15)

With reference to [7], page 795, a complex exponential can be

expanded as an infinite summation of Bessel functions Jn (z)

exp (jz � sin (A)) =

∞∑
q=−∞

{Jq (z)� exp (jqA)} (16)

Thus using Equation 16 with

z = −πR (φ) (17)

A =
(
θ +

π

2

)
1N − ψ (18)

Equation 13 can be re-written as follows

S (θ) =
[
S1 (θ) , S2 (θ) , · · · , SN (θ)

]T
=

∞∑
q=−∞

Jq (−πR (φ))

� exp
(
jq
((
θ +

π

2

)
1N − ψ

))
(19)

where Jq (−πR (φ)) represents a real vector of Bessel func-

tions with its ith element Jq (−πRi (φ)) a scalar Bessel

function of first kind with integer order q. That is

Jq (−πR (φ)) =


Jq (−πR1 (φ))
Jq (−πR2 (φ))

...

Jq (−πRN (φ))

 ∈ RN (20)

However,

As |q| > |πRi (φ)| , Jq (−πRi (φ))→ 0, ∀i (21)

Hence, a good approximation to Equation 19 can be formed

by only summing between −Q and Q instead of −∞ and ∞.

This approximation will introduce an error vector ε which is

defined as

ε =
[
ε1, ε2, · · · , εN

]T
Using this, Equation 19 becomes

S (θ) =

Q∑
q=−Q

Jq (−πR (φ))

� exp
(
jq
((
θ +

π

2

)
1N − ψ

))
+ ε (22)

Let us define the matrix B ∈ RN×(2Q+1) as

B ,
[
B1, B2, · · · , BN

]T
= [J−Q (−πR (φ)) , J−Q+1 (−πR (φ)) , · · ·

· · · , J+Q−1 (−πR (φ)) , J+Q (−πR (φ))] (23)

where

Bi =


J−Q (−πRi (φ))
J−Q+1 (−πRi (φ))

...

J+Q−1 (−πRi (φ))
J+Q (−πRi (φ))

 ∈ R(2Q+1)×1 (24)

Then

S (θ) =


BT1 exp

(
jrQ

(
θ + π

2 − ψ1
))

BT2 exp
(
jrQ

(
θ + π

2 − ψ2
))

...

BTN exp
(
jrQ

(
θ + π

2 − ψN
))
 (25)

where

rQ = [−Q,−Q+ 1, · · · ,+Q− 1, Q]
T ∈ R2Q+1 (26)

denotes the locations of the virtual array sensors in units of

half-wavelength. i.e.

Si (θ) = BTi exp
(
jrQ

(
θ +

π

2
− ψi

))
+ εi (27)
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The following azimuth transformation is defined to allow the

field of view of the planar array to be transformed to that of

a linear array

θ = π − π cos (θv) + 1TNψ (28)

where θv represents the azimuth angle of the source in the field

of view of the virtual linear array. Note that the transformation

implies that θv = 0◦ corresponds to θ = 1TNψ. Equation 27,

now becomes

Si (θv) =
(
BTi � exp

(
−jrTQψi

))
· exp

−j
πrQ cos θv + rQ

(π
2
− 1TNψ

)
︸ ︷︷ ︸

u




+εi (29)

=
(
Bi � exp

(
−jrQψi

))T
· exp

(
−j
(
πrQ cos θv + u

))
+ εi (30)

Combining these expressions for each of the N sensors in the

planar array, Equation 25 becomes

S (θ) =



BT1
BT2

...

BTN

� exp
(
−jψrTQ

)


· exp
(
−j
(
πrQ cos θv + u

))
+ ε (31)

=
(
BT � exp

(
−jψrTQ

))︸ ︷︷ ︸
,T∈CN×(2Q+1)

·exp
(
−j
(
πrQ cos θv + u

))︸ ︷︷ ︸
,Sv(θv)∈C(2Q+1)×1

+ ε (32)

Hence

S (θ) = TSv (θv) + ε (33a)

where

T (φ) =
(
BT � exp

(
−jψrTQ

))
(33b)

Sv (θv) = exp
(
−j
(
πrQ cos θv + u

))
(33c)

Here, Sv (θv) has the form of the general expression of a

hyperhelix. This corresponds to a virtual array of Nv virtual

sensors where Nv = 2Q+1. The virtual sensors are located on

a line which is at an angle 1TNψ anticlockwise from the positive

x-axis associated with the planar array at locations described

by the Nv × 1 vector rQ in units of half-wavelengths. Since

rQ is made of integers ranging from −Q to Q, it is clear that

a virtual ULA with half unit wavelength inter-sensor spacing

is formed. Furthermore, the array reference point of the virtual

array will be at the reference point of the planar array which

will also be the array centroid of the virtual array. Hence,

the virtual array will be fully symmetric. Each virtual sensor

has a corresponding phase which is described by the Nv × 1

Fig. 1. The planar array geometries to be analysed

vector u. The number of virtual sensors, their electrical phase

characteristics and the orientation of the array (and hence the

hyperhelix described by different curvatures) is a function

of the geometry of the planar array. Note that the virtual

manifold vector Sv is independent of the φ parameter. The

transformation matrix T connecting the planar and linear array

manifold vectors is a function of the planar array geometry

and the φ parameter but is independent of θ. Knowing the

geometry of the planar array, the virtual linear array and its

corresponding array manifold can be deduced. This approach

could also be extended to provide a transformation connecting

a 3D array to a virtual linear array.

IV. REPRESENTATIVE EXAMPLES

In this section, the transformation developed in Section

III will be applied to four different omnidirectional planar

array geometries of N = 9 sensors and an analysis of the

resulting virtual array properties will be performed. Following

this, a representative example illustrating an application for the

transformation will be given. Initially, consider the planar array

geometries given in Figure 1. Note that following Equations

14 and 21, R (φ) and hence Nv is dependent on the location

of the planar array reference point. However, the location of

this point is arbitrary and doesn’t affect the performance of

the array system. Therefore its location should not affect the

properties of the virtual array either. Hence, for each of the

planar array geometries in Figure 1, the array reference point is

fixed at the array centroid to overcome this issue. Furthermore,

note that each of the planar arrays have λ
2 intersensor spacing

resulting in each geometry having a different array aperture as

illustrated in Figure 1.

As stated previously, the planar array manifold can be

expressed as two families of curves - the θ-curves and φ-

curves. The transformation derived in the previous section
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Fig. 2. The virtual Uniform Linear Arrays corresponding to the Planar Array

geometries in Figure 1

Fig. 3. Phase response of the virtual sensors in Figure 2

produces a virtual ULA for each θ-curve (fixed φ). Initially

take the θ-curve when φ = 0◦. Allowing a transformation

error of ε < 10−121N , the virtual linear array geometries

created using the proposed transformation are illustrated in

Figure 2. Here, the sensors denoted with x represent the last

sensor in the virtual array. The corresponding electrical phase

characteristics for the virtual arrays are given in Figure 3.

Figure 2 shows that as the aperture of the planar array

increases, the number of virtual sensors and hence the aperture

of the virtual linear array (since virtual sensors have λ
2

spacing) will increase also. This is intuitive since the array

aperture is related to R (φ) and Equation 21 implies a larger

number of virtual sensors will be required if R (φ) increases.

Furthermore, the effect of the symmetricity of the planar array

upon the orientation of the virtual linear array as well as

the electrical phase characteristics of the virtual array sensors

Fig. 4. Curvatures of the virtual Uniform Linear Arrays corresponding to

the Planar Arrays in Figure 1

is also apparent. The X array which is fully symmetric in

the x and y axes implies that 1TNψ = 0. This causes the

corresponding virtual array to lie on the x-axis and the phase

characteristics to be described by u = π
2 rQ which will result

in the virtual sensors taking one of only 4 unique values.

The Y array which is symmetric in the y axis implies that

1TNψ = ±π2 . This causes the corresponding virtual array to lie

on the y-axis and the phase characteristics to be described by

u = ±rQ which will result in the virtual sensors taking one of

only 2 unique values. The circular and random arrays which

aren’t symmetric in the x or y axis take other non-trivial values

of 1TNψ. Hence, the corresponding virtual arrays lie at some

orientation between 0 and 2π and have phase characteristics

which may take up to Nv unique values. Each of the virtual

array geometries detailed above forms a hyperhelix in Nv
dimensional complex space. Figure 4 gives the curvatures of

these arrays.

The MUltiple SIgnal Classification (MUSIC) algorithm [1]

is a superresolution direction finding algorithm which parti-

tions the observation space into signal and noise subspace - the

space spanned by the columns of Es (the signal eigenvalues)

or En (the noise eigenvalues) respectively. Assuming a fixed

elevation φ, the MUSIC algorithm searches the corresponding

θ-curve. For a planar array the θ-curve will not be hyperhelix.

However, the signal or noise subspace can be transformed into

virtual subspaces spanned by the columns of Esv or Env where

Esv = THEs and Env = THEn (34)

Note that in Equation 34, T is the transformation matrix de-

fined in Equation 33b. Then the hyperhelix of the virtual array

manifold can be searched using the MUSIC cost function. For

example, consider the circular array in Figure 1 in the presence

of two sources at (θ, φ) = (150, 0)
◦

and (200, 0)
◦

assuming

an infinite observation interval. Estimating the noise subspace

and transforming this on to the virtual noise subspace using
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Fig. 5. MUSIC Spectrum produced by searching the Virtual Array corre-

sponding to a UCA of N = 9 sensors with sources at (θ, φ) = (150, 0)◦

and (200, 0)◦ under an infinate number of snapshots

Equation 34, the MUSIC spectrum produced by searching

the virtual array manifold Sv , corresponding to the virtual

array geometry of the circular array in Figure 1, is shown

in Figure 5. Within this example T and Sv are produced

for ε < 10−121N . Note also that since the manifold is now

a hyperhelix, in this example root-MUSIC could have been

applied to avoid an iterative search of the manifold.

In general, for each θ-curve, a new virtual linear array and

associated transformation matrix T will be required to meet

the fixed error bound ε. However, since the only parameter to

change between the different θ-curves is R (φ), only the num-

ber of sensors in each virtual array will change. Specifically,

as the elevation angle increases, fewer virtual sensors Nv will

be required to meet the error bound ε and hence the virtual

array aperture will reduce. The phase characteristics u of the

remaining sensors and the orientation of the array 1TNψ will

remain the same in the virtual array corresponding to each of

the θ-curves. Furthermore, the structure of the transformation

matrix T will remain the same but will contain a different

number of columns. It can be shown that the number of virtual

sensors as a function of the azimuth angle (fixed φ), remains

fixed for a fixed error bound ε. However, the number of virtual

sensors needed to represent each of the θ-curves is not. This is

illustrated in Figure 6 for each of the 4 planar array geometries

constructed for the error bound ε < 10−121N . Here, it is clear

that for small elevation angles different numbers of virtual

sensors are required for different array geometries. However,

as φ increases, smaller numbers of virtual sensors are required

which tends to a fixed point independent of the planar array

geometry. This is representative of the length of the θ-curves
in the planar array manifold which become smaller as φ
increases, due to the conoid shape of the manifold surface.

Fig. 6. Number of Virtual Sensors required to represent the θ-curves for

the 4 different planar array geometries to an error of ε < 10−121N .

V. CONCLUSIONS

In this paper a novel transformation given by Equation 33b

connecting an arbitrary planar array to a virtual ULA has been

presented based on the expansion of the planar array manifold

vector using a summation of Bessel functions. This allows θ-

curves on the planar array manifold which in general are not

hyperhelices to be analysed in a much larger complex space as

a set of curves which are hyperhelices. Representative exam-

ples illustrate the properties of the virtual array produced for

different planar array geometries. Furthermore, the correctness

and applicability of the transform is shown by solving the

MUSIC algorithm using a hyperhelical array manifold. It is

shown how different θ-curves produce virtual arrays with a

differing number of virtual sensors relating to the length of

the θ-curve. This transformation has the potential to be used

for the design and analysis of planar arrays.
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