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Abstract—Automatic Target Recognition (ATR) is one of the
most challenging areas of the modern radar signal processing
field. In this paper a recognition algorithm for full-polarimetric
SAR images, that is robust with respect to rotations and target
roll, is presented. It is based on the use of the pseudo-Zernike
moments and the Krogager decomposition components, and
exploits multiple sources of information such as polarization and
spatial diversity. The effectiveness of the proposed approach has
been demonstrated with real full polarimetric SAR data.

I. INTRODUCTION

Automatic Target Recognition (ATR) is one of the main
application of modern radar systems. Although it can find
applications in non-military problems, ATR is an essential
requirement in battlefield scenarios, where the correct iden-
tification of a target must be guaranteed with high degree of
confidence. In this context, multiple sources of information are
often available (i.e. spatial, temporal, frequency, waveform and
polarization diversities) and they can be potentially combined
leading to an improvement of the performance.

ATR generally refers to two different tasks: detection and
recognition. The former deals with the problem of locating
a target, while the latter deals with the classification of a
target by means of the exploitation of a priori knowledge
(i.e. a database). In [1] we have presented an algorithm for
target classification from multi-sensor full-polarimetric SAR
data, which exploits both the diversity offered by the use
of different sensors, and the different scattering responses of
an object in each polarimetric channel. More specifically, the
term multi-sensor has been used to indicate that images of
the scene acquired from different view points are used to
perform the classification; however, the developed framework
can also be used with images acquired, for example, with a
multi-frequency sensor. The algorithm takes as input the four
polarimetric components of the object under test, from which
some discriminating features based on the pseudo-Zernike (PZ)
moments are extracted and used to recognize the target by
using a classifier. If multiple views are available, they are
processed separately and then the decisions of all the classifiers
are combined, leading to an estimate of the class to which
the target belongs. The effectiveness of this approach was
demonstrated in [2].

The effectiveness of the use of PZ based features for
radar ATR application was also successfully demonstrated in
[3], where novel features were developed for micro-Doppler
classification.

In this paper a novel extension of the algorithm presented in
[1] is proposed. The Krogager polarimetric decomposition [4]
is applied to the full-polarimetric image, and then, according to
a fusion rule, the classification is performed by exploiting both
the polarimetric and the Krogager components of the target.

The remainder of the paper is organised as follows. Section
II and Section III introduce the Krogager polarimetric de-
composition and the PZ moments, respectively. The proposed
algorithm is presented in Section IV. Relative performance
evaluation results using the GOTCHA dataset [5] are included
in Section V. Section VI concludes the paper.

II. KROGAGER DECOMPOSITION

The physical interpretation of a SAR image, in particular a
full-polarimetric SAR image, can often be extremely difficult.
The objective of a polarimetric decomposition is to express the
scattering matrix (coherent decomposition), or the covariance
matrix if a second order description is needed (incoherent
decomposition), as a combination of canonical objects which
present an easier physical interpretation.

Let S(x, y) denote a 2-by-2 scattering matrix. A coherent
polarimetric decomposition can be expressed as

S(x, y) =

M∑
m=1

cmSm(x, y), (1)

where Sm(x, y) is the response of the m-th canonical object,
cm indicates the weight of Sm(x, y) in the combination leading
to S(x, y), M is the number of components, x and y are the
spatial coordinates. The Krogager polarimetric decomposition
is defined by means of the circular polarization scattering
matrix S(R,L)(x, y), where the letter R indicates the right-
handed circular component and L represents the left-handed
circular component. In a monostatic radar, such as SAR,
the scattering matrix is symmetric, therefore the S(R,L)(x, y)
components can be expressed in terms of the linear polarization
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components as follows [6]

SRR(x, y) =
SHH(x, y)− SV V (x, y)

2
+ iSHV (x, y), (2)

SLL(x, y) =
SHH(x, y)− SV V (x, y)

2
− iSHV (x, y), (3)

SRL(x, y) = SLR(x, y) =
SHH(x, y) + SV V (x, y)

2
, (4)

where i is the imaginary unit. From [7] and neglecting the
(x, y) dependence in order to simplify the equations, the
Krogager polarimetric decomposition is defined as

S(R,L) =

[
SRR SRL

SLR SLL

]
= eiφ

{
kse

iφs

[
0 i

i 0

]
+

kd

[
ei2η 0

0 −e−i2η

]
+ kh

[
ei2η 0

0 0

]}
,

(5)

where ks, kd and kh are real-valued quantities which can be
interpreted as scattering coefficients from a sphere, a diplane
and a helix, respectively. Moreover, φ is the absolute phase
term which depends on the distance between the target and
the sensor, φs represents the displacement of the sphere with
respect to the diplane and the helix components, and η is
their orientation angle. The scattering coefficients ks, kd and
kh may be computed from the circular polarization scattering
components [8] as follows:

ks = |SRL| , (6)

kd = min (|SRR| , |SLL|) , (7)

kh = abs(|SRR| − |SLL|), (8)

where the symbol | · | indicates the modulus of a complex
quantity and abs(·) stands for absolute value.

In several earlier studies, the Krogager decomposition has
been shown to be the most suitable, among other coherent po-
larimetric decompositions, in dividing man-made targets from
natural targets [8]-[9], however it is not capable of distinguish
between different man-made targets [10]. Furthermore, in [11]
is shown that ks, kd and kh are roll-invariant. Consequently
they do not depend on the orientation of the target in roll
(meaning invariance with respect to observation from platforms
with different incidence angles).

III. PSEUDO-ZERNIKE MOMENTS

The PZ moments are used in signal processing for their
low computational complexity and specific properties, such as
invariance with respect to translation and rotation.

Let f(x, y) ∈ R, with f(x, y) ≥ 0; then the complex-
valued PZ moment of f(x, y) is defined as its projection on
the PZ polynomial Wn,l(ρ, θ) of degree n ≥ |l|

ψn,l =
n+ 1

π

∫ 2π

0

∫ 1

0

W ∗n,l(ρ, θ)f(ρ cos θ, ρ sin θ)ρdρdθ,

(9)

Fig. 1. Block diagram of the proposed algorithm.

where the symbol (·)∗ indicates the complex conjugate oper-
ator, ρ =

√
x2 + y2, θ = tan−1(y/x) and

Wn,l(ρ, θ) = Sn,l(ρ)e
ilθ =

n−|l|∑
m=0

ρn−m(−1)m(2n+ 1−m)!

m!(n+ |l|+ 1−m)!(n− |l| −m)!
eilθ.

(10)

Some important properties of the PZ polynomials are provided
in [12]. It is demonstrated that the functions Wn,l(ρ, θ) form
a complete basis and satisfy the orthogonality relation on the
unit disc (i.e for ρ ≤ 1), that is∫ 2π

0

∫ 1

0

W ∗n,l(ρ, θ)Wm,k(ρ, θ)ρdρdθ =
π

n+ 1
δnmδlk, (11)

where δnm = 1 if n = m and 0 otherwise. Hence, since
the number of orthogonal polynomials is (n+ 1)2 (once n is
given), this is also the number of independent PZ moments.
Another important characteristic relates to the modulus of the
polynomial in (10), which is rotational invariant. This makes
also the modulus of the PZ moments rotational invariant.

IV. PROPOSED ALGORITHM

The proposed approach is described in detail in the next
two sub-sections; the former presents the feature extraction
procedure, while the latter introduces the fusion rule.

A. Feature Extraction

The algorithm is based on the use of both the full-
polarimetric image and the Krogager components of the target.
As illustrated in Fig. 1, X

′

j(x, y) and X
′′

j (x, y) are the vectors
whose elements are the four polarimetric components and the
three Krogager components of the target, respectively, that is

X
′

j(x, y) =
[
HHj(x, y),VVj(x, y),

HVj(x, y),VHj(x, y)
]
∈ CB×Q×4

(12)

and
X

′′

j (x, y) =
[
ks,j(x, y),kd,j(x, y),

kh,j(x, y)
]
∈ RB×Q×3,

(13)

where B ×Q is the dimension of the image that includes the
target and the subscripts j indicates that the image comes from
the j-th sensor. More specifically, the matrices ks, kd and kh
contain, pixel-by-pixel, the Krogager components ks, kd and



Fig. 2. Pseudo-Zernike based feature vector extraction block.

kh, which emphasise the single bounce, the double bounce
and the volumetric scattering of the scene; thus, from them is
possible to extract PZ based features which are different from
those extracted from the full-polarimetric image.

The PZ based feature vector extraction block is shown
in Fig. 2. The image Ωj(x, y), which is the result of the
sum of either the magnitude of the polarimetric components
(Ω

′

j(x, y)) or the Krogager components (Ω
′′

j (x, y)), is scaled
and normalized as follows

Ω̃j(x, y) = log10(Ωj(x, y)), (14)

Ωj(x, y) = Ω̃j(x, y)−min Ω̃j(x, y), (15)

Ω̂j(x, y) = Ωj(x, y)/maxΩj(x, y). (16)

The logarithm is performed to reduce the dynamic range of the
image, while (15)-(16) restrict it into the range [0, 1] in order
to obtain features that are independent of different intensity
levels.

Since the polynomials in (10) are defined on the unit disc,
to avoid information loss the support of Ω̂j(x, y) is scaled
before its PZ moments are computed. The output of the PZ
Moments sub-block (Fig. 2) is a vector, Fj , whose length
is (n + 1)2 and whose elements are the modulus of the PZ
moments up to the order n, that is

Fj =
[
|ψ0,0|, . . . , |ψn,−n|, |ψn,−(n−1)|, . . . ,

|ψn,(n−1)|, |ψn,n|
]
.

(17)

From (17), the feature vector, F̂j , is then computed by using
the following linear rescaling

F̂j =
Fj − µFj

σFj

, (18)

where µFj
and σFj

are the mean and the standard deviation of
the vector Fj , respectively. Note that, since the PZ polynomials
in (10) depend on the image size B×Q only, they can be pre-
computed and stored in a look up table, and then used for the
feature extraction from different targets.

The last step in Fig. 2 is the classification, carried out by
using a k-Nearest Neighbour (k-NN) classifier. It returns a
score vector dj ∈ RV , where V is the number of possible
classes, whose elements are the occurrences (normalized to k)
of each class among the k nearest neighbours to F̂j .

B. Fusion Rule

Let J be the number of sensors, or full-polarimetric images,
available to classify the target; this means that 2J score vectors
are input to the fusion rule block in Fig. 1, J for each branch,
that is

d
′

j j = 1, . . . , J, (19)

d
′′

j j = 1, . . . , J. (20)

The adopted fusion rule consists of adding up these vectors and
deciding for the class which presents the largest total score.
Thus

λ =
J∑
j=1

d
′

j +
J∑
j=1

d
′′

j , (21)

where λ = [λ1, λ2, . . . λV ], and then the estimated class is
selected as

v̂ =

{
argmax

v
λ if ∃!(maxλ) > T

unknown otherwise
(22)

The thresholding is performed because the largest value of λ
may not be large enough to consider the classification reliable,
in which case the target under test is declared unknown, which
means that it cannot be classified. Note that the unknown
declaration also occurs when the largest value of λ has more
than one occurrence.

V. PERFORMANCE ANALYSIS

In this section, the algorithm is tested using the GOTCHA
dataset [5], which is a collection of real full-polarimetric
circular SAR images acquired by an airborne X-band sensor
(carrier frequency 9.6 GHz) with a 640 MHz bandwidth at
8 different elevation angles; the set consists of 2880 full-
polarimetric images, 360 for each pass, of several civilian
vehicles and calibration targets.

In the following sub-sections, the training and the test sets
are described, and the results of the analysis are shown.

A. Training Set and Test Set

For our purpose, the full synthetic aperture (360◦) has been
divided into 90 sub-apertures of 4◦ in azimuth each, in order
to have approximately equal range-azimuth resolution cells of
23 cm; thus, the set used is made up of 720 full-polarimetric
images for each of the 9 commercial vehicles considered as
target, which are shown in Fig. 3(a). From the entire scene
(Fig. 3(b)), equal-sized sub-images (51×46 pixels) containing
each vehicle are selected; this means that in (12)-(13) B = 51
and Q = 46.

Six different analyses are presented, as combination of
two configurations for the training set and three configurations
for the test set. The training set is formed by images coming
from the lowest altitude pass; either 10 or 30 images for each
vehicles are used to train the classifiers, selected each 36◦ or
12◦ in azimuth. The test set is formed by all but the images
used for the training. Three configurations are considered: in
the first scenario (Fig. 4(a)), one image is used in order to
classify the target, which is equivalent to having J = 1; in the
other two scenarios, shown in Fig. 4(b) and Fig. 4(c), 2 and



(a) (b)

Fig. 3. GOTCHA Dataset: (a) images of the vehicles used as targets; (b) full-
azimuth and full-polarimetric magnitude SAR image of the area of interest
containing the 9 vehicles.

(a) (b) (c)

Fig. 4. Test configurations: (a) 1, (b) 2 and (c) 3 sensors cases.

TABLE I. THRESHOLDS.

1 Sensor 2 Sensors 3 Sensors
IA 1/3 2/3 4/3

KA 1/3 2/3 4/3

IIK 2/3 4/3 8/3

3 images are used (J = 2 and J = 3) to show the benefits of
the multi-sensor framework.

The results are presented in terms of percentage of
correct classification, defined as the number of targets correctly
classified normalized to the total number of targets under test
and expressed as percentage; note that, besides the targets
classes A to I, a tenth output class is considered, which
contains the objects which have been declared as unknowns
(the chosen thresholds T , defined in (22), are summarised in
Table I). For the case of 1 sensor, all the available images are
used for the testing, that is 710 images for each target if the
training is performed with 10 images, 690 images for the 30
training images case. For the case of 2 and 3 sensors, 71000
or 69000 couples and triples are chosen randomly, depending
on the training configurations; for this reason, the standard
deviation of the correct classification rate, σ, is also computed.
Moreover, the analysis is performed for different values of the
order of the PZ polynomial and using a 3-NN classifier; this
value of k resulted to be the most effective in [2].

B. Results

In this sub-section, the performance of the proposed algo-
rithm, which will be labelled as Integrated Intensity-Krogager
(IIK) approach, is shown and compared with the performance
of the Intensity Approach (IA), proposed in [1], and of the
Krogager Approach (KA); the latter consists of classifying the
target by using only the vector X

′′

j (x, y).
In Fig. 5, the percentage of correct classification and

the percentage of unknowns, which is the number of targets
declared as unknown normalized to the total number of targets
under test and expressed as percentage, are shown for the case
J = 1. As expected, the correct classification rate increases as
the order of the PZ moments increases, while the unknowns
rate has an opposite trend. The IIK approach shows better
performance both when 10 images are used for the training

Fig. 5. Results 1 sensor: percentage of correct classification (left) and
percentage of unknowns (right).

and when 30 images are used. Tables II and III summarise the
performance improvement of the IIK compared to the IA. From
the tables it is seen that in the first case the average increase
in terms of percentage of correct classification is 5.51%, while
the average decrease in terms of percentage of unknowns is
6.95%; in the second case, the improvement of the ratio of
correct classification is 2.16% in average, while the average
decrease of the unknowns rate is 3.18%.

In Fig. 6 and Fig. 7, results for the cases J = 2 and J = 3

Fig. 6. Results 2 sensors: percentage of correct classification (left) and
percentage of unknowns (right).

Fig. 7. Results 3 sensors: percentage of correct classification (left) and
percentage of unknowns (right).

are shown, respectively. From these figures and the second
and the third columns in Table II and III, it is clear that the
exploitation of the spatial diversity leads to better performance
compared to the case J = 1. Moreover, as highlighted above,
the IIK approach presents improvements both in terms of
percentage of correct classification and in terms of percentage
of unknowns. Table IV shows the confusion matrix for the
IIK approach. In this case J = 3, 10 training images are used
and PZ moments order is equal to 10. It can be seen how the



TABLE II. IA - IIK COMPARISON: AVERAGE INCREASES OF THE
CORRECT CLASSIFICATION PERCENTAGE.

1 Sensor 2 Sensors 3 Sensors
10 Training Images 5.51% 3.62% 2.93%

30 Training Images 2.16% 1.92% 1.24%

TABLE III. IA - IIK COMPARISON: AVERAGE DECREASES OF THE
UNKNOWNS PERCENTAGE.

1 Sensor 2 Sensors 3 Sensors
10 Training Images 6.95% 4.16% 2.51%

30 Training Images 3.18% 1.44% 0.74%

TABLE IV. CONFUSION MATRIX: 3 SENSORS CASE, 10 TRAINING
IMAGES, PSEUDO-ZERNIKE MOMENTS ORDER 10.

A B C D E F G H I Unk
A 697 0 0 0 3 0 0 1 1 8
B 0 654 0 0 0 0 37 0 0 19
C 0 0 390 0 0 11 0 253 0 56
D 0 0 0 650 52 0 0 0 0 8
E 0 0 0 8 690 0 0 0 0 12
F 0 0 24 0 0 653 0 9 0 24
G 0 91 0 3 0 0 480 1 0 135
H 0 0 140 0 0 17 0 531 0 22
I 0 0 0 0 0 0 0 0 710 0

TABLE V. CONFIDENCE INTERVALS 1× σ.

2 Sensors 3 Sensors
10 Training Images 0.74% 0.82%

30 Training Images 0.67% 0.74%

target G has the higher percentage of unknowns (about 19.0%)
and is confused with B, while C is confused with H, and vice
versa, in the 35.63% and 19.72% of the cases, respectively. As
mentioned above, for the J = 2 and J = 3 cases the standard
deviation has also been computed; the results, summarised in
Table V, show that the 1× σ confidence intervals are always
less then 1%.

Hence, the proposed approach presents better performance
for all the configurations in which it has been tested. In
particular, from Table II and Table III, it is noted that the best
improvements are achieved in the case in which 10 images
for the training are used; this means that in order to reach
the same performance, the IIK approach requires less a priori
information compared to the IA, which implies less cost,
since the acquisition of a targets database is often expensive
and time consuming. In addition to the general increase of
the percentage of correct classification, the decrease of the
unknowns rate makes the IIK approach even more reliable
than the IA method. Moreover, the PZ moments properties
of translation and rotation independence, combined with the
roll invariant characteristic of the Krogager decomposition,
makes the algorithm robust with respect to both the target
orientation in the image plane and the acquisition elevation
angle. Note that these improvements are obtained only at
cost of a small computational increase, since no additional
information is required as input of the algorithm with respect
to the IA.

VI. CONCLUSION

In this paper a novel ATR algorithm was presented, which
uses one or more full-polarimetric SAR images of a target
to perform the classification. Unlike the IA presented in [1],
the decision is based on the use of both the four polarimetric
components and the three Krogager components of the target.
The framework has been tested by using a full-polarimetric

SAR images set of several civilian vehicles; the results show
that the proposed approach achieves better performance than
the approach presented in [1] in terms of percentage of correct
classification and percentage of unknowns, only at cost of
a slight increase in computational complexity. Moreover, the
properties of rotationally invariant and roll invariant of the
PZ moments and Krogager components, respectively, make
the algorithm robust with respect to the orientation of the
target and to the acquisition elevation angle. Notice that the
framework can also find application in a real-time scenario,
in which several sensors are involved. In such a case, the
information that each sensor has to send to the fusion centre,
only regards its score vectors d

′

j and d
′′

j , and the position of
the target, with low complexity and bandwidth requirements.
Future work will deal with the development of a weighted
fusion rule and the computation of optimal weights on varying
the SAR depression angle.
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