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Abstract—In this paper an efficient technique to generate
novel libraries of phase-coded waveforms with constant envelope
aimed at optimizing signal retrieval is presented. The modulation
technique is based on the Fractional Fourier Transform (FrFT),
where the signal waveforms retain their constant modulus.
Reconstruction of sequences from the FrFT based waveforms
is explored by means of the Error Reduction Algorithm (ERA),
while the constant envelope property is kept unchanged. Addition-
ally comparison between reconstructed and original sequences is
also carried out in terms of performance and cross-correlation
properties of the signals. Simulation results demonstrate the
effectiveness of the novel waveform libraries considering design
parameters such as resolution, interfering power, orthogonality
and signal bandwidth.

Keywords: Fractional Fourier Transform (FrFT); Constant En-
velope (CE); Fractional Waveform Libraries; Error Reduction
Algorithm (ERA).

I. INTRODUCTION

Recently radar applications such as target detection and
tracking are getting higher attention and becoming more de-
manding, providing further challenges to the signal process-
ing research community. Among these challenges, waveform
design plays an important role, especially for applications in
electromagnetically crowded scenarios and where covertness is
required. Driven by the beneficial implementation of DSP tech-
nology, signal waveform designs have been improved allowing
remarkable increase in detection, tracking and classification
performance. As modern radar systems are increasingly being
required to operate in continuously altering and overcrowded
electromagnetic environments, their effective operation can
be restricted due to severe interference mitigation, frequency
occupancy, security, and performance constraints [1]. In the
presence of these difficulties, the selection of robust waveform
design that allows good Doppler resolution, short delays,
high signal energy using low peak power and high spectrum
efficiency poses a major challenge. Good spectral efficient
waveforms are an essential component in modern radar imag-
ing systems [2]. Several design methods based on fixed and
adaptive radar waveforms have been extensively investigated
providing waveforms suitable for different applications in
[3], [4] and [5]. However most proposed designs involve an
adjustment between some of their characteristics such as range
resolution versus side lobe levels (SLL) [1], [2].

Recently we proposed a new approach for producing radar
waveform libraries using the fractional Fourier Transform
(FrFT) [6]. These novel libraries were shown to provide

significant advantages in terms of delay resolution, interference
and side lobe level reduction. Increased performance is shown
in terms of orthogonality and reuse of waveform for the
same canonical sequence (e.g. Barker 13) but with different
fractional orders when higher values of chip sampling rate
are used [7]. Despite the fact that FrFT based waveforms
libraries offer good properties, unlike the original classical
sequences (Barker 13, Frank, P4, etc.), they do not preserve
constant envelope (CE) property. Constant modulus or Peak-
to-Average Power Ratio (PAPR) is an essential characteristic
for real world applications, as radar signal amplifiers usually
work in a saturation condition that maximizes their efficiency
but preventing amplitude modulation in waveforms at the
same time. In [8] two optimisation algorithms were introduced
for maximizing the Signal to Interference plus Noise Ratio
(SINR) in a collocated MIMO radar system taking into account
constant modulus and similarity constrains. Both algorithms
have been showed good performance trading however with
hight complexity.

In this paper a new technique that uses FrFT phase coded
waveforms to achieve constant modulus by means of the
error-reduction or Gerchberg-Saxton algorithm (GSA) [9] is
presented. Furthermore Zadoff-Chu sequences [10] are used as
a starting point in the algorithm given their constant modulus
and good autocorrelation properties. The generated waveforms
are validated based on their ambiguity function (AF) extracting
important characteristics such as delay, Doppler resolutions,
side lobes, bandwidth, interference and interference power
ratio. An analysis of the cross-interference and waveform reuse
is also presented. Finally simulation results are presented to
demonstrate the effectiveness of the new technique and the
abilities of the proposed new waveform libraries.

The remainder of the paper is organized as follows. Section
II introduces the fractional Fourier transform and a formulation
of the constant amplitude problem. The Error Reduction Al-
gorithm is presented in Section III as a mean of generating the
FrFT based constant amplitude waveform libraries. Results and
performance analysis are presented in Section IV for a sample
of novel waveform libraries while Section V concludes the
paper.

II. PROBLEM FORMULATION

A. Fractional Fourier Tranform (FrFT) based Waveforms

Fractional Fourier transforms (FrFTs) belong to the class of
linear time-frequency representations (TFRs) firstly introduced
by Namias in 1980 [11]. The FrFT transforms a function
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to any intermediate domain between time and frequency. To
compute FrFT the angle of axis rotation, θ, is used in the time-
frequency plane as the fractional power of the ordinary Fourier
transform. It has been used in a wide rage of applications
such as waveform propagation, filter design, signal analysis
and pattern recognition. Letting x[u′] be an arbitrary signal of
length U , its ath-order discrete FrFT is defined as [12]:

FrFTa
[
x[u]

]
= Xa[u] =

U/2∑
u′=−U/2

Ka[u, u′]x[u′] (1)

where a is the fractional transformation order (corresponding
to a rotation angle θ = aπ2 with a ∈ R) and Ka[u, u′] is the
FrFT kernel defined as [12]:

Ka[u, u′] =


A0 exp {jπ[(u2 + u′2) cot θ − 2uu′ csc θ]}
if θ is not a multiple of π
δ[u− u′] if θ is a multiple of 2π
δ[u+ u′] if θ + π is a multiple of 2π

(2)
where δ(.) is the Dirac delta function, A0 = ej

θ
2√

j sin θ
and

j =
√
−1.

The FrFT is an invertible linear transform, continuous in the
angle θ, which satisfies the basic conditions for it to be
meaningful as a rotation in the time-frequency plane.

The FrFT can be applied to common waveforms, such as
phase-modulated waveforms with different codes (e.g. Barker
or P4 codes) [6] ,[7] . Let s[n[ represent a canonical waveform
(e.g. the traditional Barker 13 code) from which the Fractional
Fourier transform library elements, Sai [u] with i = 1, ..., L are
obtained by applying (1). Thus a fractional waveform library
is defined as:

S = [Sa1 [u], Sa2 [u], . . . , SaL [u]] (3)

where ai ∈ [0, 1] , and L represents the total number of
waveforms populating the library. Note that for ai = 0 the
corresponding rotation angle θ = 0, resulting in the canonical
waveform. The value of L depends on several aspects such
as the original waveform used, waveform reuse, orthogonality
requirements and applications.

An analytical representation of each fractional library el-
ement requires the cardinality of the waveform Ω (i.e. the
number of chips used in a code sequence) and the number
of samples per chip r to be introduced. The total digital signal
length is obtained as: N = Ω × r, denoting the total number
of waveform samples. Defining c = [c1, c2, . . . , cN ] as the
vector of N samples for the original waveform, the resulting
canonical waveform, s[n], can be expressed as:

s[n] =
N∑
k=1

ckδ[n− k] (4)

Now applying the FrFT to (4) and using the properties pre-
sented in [13] the set of fractional library elements can be
written as:

Sa[u] =
N∑
k=1

ckFrFTa[δ[n− k]] =√
1− j cot θ

2π

N∑
k=1

cke
j k

2+u2

2 cot θ−juk csc θ (5)

where FrFTa[.] represents the Fractional Fourier Transform
of the ath order as defined in (1) and (2).

From (5) the lth-element of S is the sum of N chirped
functions weighted by the original waveform sequence with a
modulation rate that depends on a and k. Since the number
of chirped components depends on N , and this is the product
of the code cardinality and the chip sampling rate r, different
waveforms can be obtained from a given canonical waveform
by changing r.

B. Constant Envelope

For a better understanding of the Constant Envelope con-
straint let y[u] be an arbitrary waveform. The vector y[u] can
be represented as:

y[u] = |y[u]|ejη[u] (6)

where |.| denotes the absolute value and η(u) is the phase of
the waveform. For y[u] the requirement of Constant Envelope
(CE) means that its amplitude must be kept constant for all u,
which is equivalent to:

|y[u]| = A, ∀u (7)

where A is a suitable positive constant that can be also used
to sustain the energy of y[u] at a desired level [14].

Typically in current power amplifiers high linearity implies
low power efficiency and vice-versa [15]. This low efficiency
operation is due to the fact that the amplifying device must
be biased to an average output power level low enough to
accommodate peak input signal levels without over-driving
the amplifying device. Therefore linearity requirement can be
met by driving the power amplifier well below its saturation
point. To achieve better performance the use of non-linear
components is required. Non-linear power amplifiers preserve
only phase and no amplitude information. The previous work
describing the use of the FrFT to form libraries of useful
waveforms did not satisfy the CE constraint [7], [6]. In this
particular case the CE constrain problem can be described
as finding waveforms with constant modulus that also have
similar behaviour to the FrFT modulated waveforms.

III. ERROR-REDUCTION ALGORITHM

The error-reduction or Gerchberg-Saxton algorithm (GSA)
was first introduced in connection with the problem of re-
constructing phase from two intensity measurements [16].
The algorithm can be described by the following simple four
steps [9]: (1) Fourier transform an estimate of the reference
sequence; (2) replace the modulus of the resulting computed
Fourier transform with the reference Fourier modulus to form
an estimate of the Fourier transform; (3) inverse Fourier trans-
form the estimate of the Fourier transform; and (4) replace the
modulus of the resulted computed sequence with the reference
sequence modulus to form a new estimate of the reference
sequence. In a more general definition GSA transforms back
and forth between the frequency and time domain, satisfying
the constraints in one before returning to the other resulting to
decreased error at each iteration.

For this particular case the reference sequence is a non-
CE fractional Fourier modulated waveform Sa(u) and gk(u)
is a CE sequence which iterates closer to Sa(u) in every
execution of the GSA loop. Zadoff-Chu [10] sequences are



chosen as starting point of GSA due to its faster and better
performance compared to random initial seeds according to the
results presented in [17]. To generate Zadoff-Chu sequences
a modified formula is implemented that supports both odd
and even sequence lengths [18]. Additionally to apply the CE
constrain on the new waveforms the modulus of the referenced
sequence has been replaced with a constant, A, in the fourth
step of GSA. The kth loop of this modified version of GSA
can be described by the following four steps:

Gk[f ] = |Gk[f ]|ejφk[f ] = F
[
gk[u]

]
, (8)

G′k[f ] = |Ŝa[f ]|ejφk(f) = |F
[
Sa[u]

]
|ejφk[f ] (9)

g′k[u] = |g′k[u]|ejψ
′
k[u] = F−1

[
G′k[f ]

]
, (10)

gk+1[u] = Aejψk+1(u) = Aejψ
′
k[u] (11)

where F [.] is the Fourier transform and, φk and ψk are the
phases in time and frequency domain of gk[u]. A graphical
representation of the algorithm is provided in Fig. 1 where the
modified GSA loops are repeated.

Fig. 1. Block diagram of the Gerchberg-Saxton algorithm.

IV. SIMULATION RESULTS: ANALYSIS AND EVALUATION

In the following subsections a detailed performance anal-
ysis of two example novel libraries is presented. Generated
libraries for the conventional Barker 13 and P4 25 codes [1]
are analysed in terms of PAPR, AF performance parameters
and orthogonality for varying fractional order a and different
chip sampling rates r.

A. Analysis Framework

To verify the CE constraint the PAPR of the both con-
stant and non-constant envelope waveforms are evaluated for
altering fractional orders and different chip sampling rates.
Additionally to quantify the effectiveness of the novel libraries
various AF performance parameters are examined using the
following:

• Delay and Doppler resolution, computed as the −3 dB
width of the zero-Doppler and zero-delay cut of the
ambiguity function respectively;

• Delay and Doppler side lobe level, computed as the
level of the first side lobe of the zero-Doppler and
zero-delay cut of the ambiguity function respectively;

• Modulated signal bandwidth, computed as the −3 dB
width of the transmitted signal spectrum;

• Interfering power, computed as the power outside the
main lobe;

• Interfering power ratio, computed as the ratio between
the power in the side lobes of the ambiguity function
and main lobe power.

In the presented analysis, constant envelope fractional wave-
forms are compared with their originals in terms of the
performance parameters defined above. By definition better
performance results for smaller values of all parameters. Or-
thogonality properties of a library are evaluated assuming that
both waveforms Sai(u) and Saj (u) are generated from the
same conventional sequence c but using different fractional
order, ai 6= aj . We define that Sai(u) and Saj (u) are
orthogonal if their cross-correlation is below the side-lobe level
(SLL) of original sequence c. In the present analysis canonical
Barker 13 and P4-25 are used as original sequences with SSL
−22.18 dB and −22.22 dB respectively.

B. Results

The performance parameters and waveform reuse are
evaluated for the Barker 13 and P4 25 canonical sequences
using 50 and 200 samples per chip. Specifically the PAPR
of the fractional libraries is illustrated in Fig. 2. As it can
be seen the non-CE waveforms tend to have higher peak-to-
average power ratio as the fractional order increases for both
canonical sequences. On the other hand the CE waveforms
have unity PAPR for all fractional orders which confirms the
CE constraint. In both cases the sampling rate r does not
have any significant impact.

The performance and orthogonality of CE and non-CE
FrFT modulated Barker 13 code are compared in Fig. 3 using
r = 50. Figure. 3(a) shows that delay resolution is identical for
both cases, while Doppler resolution is improved for higher
fractional orders after using the CE constraint. Figure 3(b)
demonstrates that delay and Doppler sidelobes have the same
behaviour for both CE and non-CE waveforms. Additionally
interference and interference power ratio perform similarly
for both cases as it is shown in Fig. 3(c). The orthogonality
map presented in Fig. 3(d) indicate the poor reuse of the
CE waveforms as wide continuous black blocks (above SSL
threshold) correspond to high reuse interval compared to
non-CE [7].

Similarly to Fig. 3, Fig. 4 illustrates the performance and
orthogonality using r = 200. It can be observed that after
increasing r the performance of CE and non-CE waveforms
has been increased similarly in terms of resolution and
sidelobes. Also interference and interference power ratio have
been decreased, for both cases with CE waveform performing
better at high fractional orders.

To compare different canonical sequences, simulations are
repeated using P4 25 code sequence for both cases of r = 50
and r = 200 samples per chip. Results presented in Fig. 5
and Fig. 6 indicate similar behaviour in terms of performance
to Barker 13 code for both CE and non-CE waveforms. On
the other hand P4 25 code sequence performs better than
Barker 13 one in terms of orthogonality and waveform reuse
both for low and high values of r.

Table I summarizes maxima (worst cases) of the reuse
intervals extracted for both CE and non-CE fractional libraries.
The reuse intervals are estimated for each value of a by
measuring the gaps in terms of fractional orders between
the used Sai [u] and the first Saj [u] with a cross-correlation
maximum with Sai [u] below the threshold. As it can be
seen CE libraries present higher reuse intervals for small
values of r compared to the non-CE. However both CE
and non-CE libraries have significantly lower reuse interval



for higher values of r. This results to a higher reuse as
the number of orthogonal waveforms in the same library is
given by the ratio of the available fractional order interval
(max(a) = 1 due to symmetry of FrFT) to their maximum
reuse interval. Specifically up to eight orthogonal waveforms
can be obtained in the case of P4 25 with r = 200 (i.e.
1/0.12 ' 8). This number can be increased by limiting the
values of fractional order to ranges of lower reuse interval.
Figure 7 illustrates the case in which the fractional order a
has been limited to values between 0.13 and 1 decreasing
maximum to 0.02 and constituently resulting more than 40
(i.e. 0.87/0.02 ' 43) orthogonal waveforms available. It is
worth noting that different seed sequences (i.e. starting points
in GSA) are used for each individual fractional order in
simulation examples. This is achieved by changing the root
of Zadoff-Chu sequences [18].

Finally no considerable improvement or declination was
observed in terms of bandwidth usage after the modulation in
any simulation.

TABLE I. FRACTIONAL ORDER REUSE INTERVAL FOR DIFFERENT
VALUES OF r

Sequence Constant Envelope non-Constant Envelope
r = 50 r = 200 r = 50 r = 200

Barker 13 1.43 0.21 0.77 0.22
P4 25 0.4 0.12 0.49 0.12
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Fig. 2. Peak-to-Average Power Ratio (PARP) of CE and non-CE Barker
13 (a) and P4 25 (b) fractional waveforms of different fractional order using
r = 50 and r = 200.

V. CONCLUSIONS

In this paper the design of novel waveform libraries is ad-
dressed by a method based on the Fractional Fourier Transform
(FrFT) and the Error Reduction Algorithm (ERA). Recon-
struction of fractional waveforms is achieved by means phase
retrieval applying the Gerchberg-Saxton algorithm (GSA) to
retain the Constant Envelope (CE) property. The main design
algorithms are examined and implemented to generate novel
fractional waveform libraries having improved properties with
regard to resolution, interfering power, orthogonality and signal
bandwidth.

A constructive technique for numerical estimation of CE
waveforms is described and illustrated on several waveform
simulation examples. The performance of the new waveform
library is evaluated as a function of the FrFT order and chip
sampling rate. The results illustrate cases where waveforms
can keep their constant envelope property after transformation
for low and high values of samples per chip using two phased
coded sequences (Barker 13 and P4 25). Future research will
be focused on down-sampling CE FrFT modulated waveforms
with high values of r and evaluate their performance and reuse.
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Fig. 3. Ratios of the AF quality parameter for fractional Barker 13 waveforms
of different a before and after applying CE constraints in terms of resolution
(a), side lobe level (b) and interference (c), and SLL-thresholded maxima
(cases above the thresholds are shown in black) of the cross-correlations
between CE fractional Barker 13 waveforms of different a and different GSA
starting points (d), for r = 50.
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Fig. 4. Ratios of the AF quality parameter for fractional Barker 13 waveforms
of different a before and after applying CE constraints in terms of resolution
(a), side lobe level (b) and interference (c), and SLL-thresholded maxima
(cases above the thresholds are shown in black) of the cross-correlations
between CE fractional Barker 13 waveforms of different a and different GSA
starting points (d), for r = 200.
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Fig. 5. Ratios of the AF quality parameter for fractional P4 25 waveforms of
different a before and after applying CE constraints in terms of resolution (a),
side lobe level (b) and interference (c), and SLL-thresholded maxima (cases
above the thresholds are shown in black) of the cross-correlations between CE
fractional P4 25 waveforms of different a and different GSA starting points
(d), for r = 50.
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Fig. 6. Ratios of the AF quality parameter for fractional P4 25 waveforms of
different a before and after applying CE constraints in terms of resolution (a),
side lobe level (b) and interference (c), and SLL-thresholded maxima (cases
above the thresholds are shown in black) of the cross-correlations between CE
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