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Abstract—An interesting challenge in orbital estimation prob-
lems for space surveillance using optical sensors is that, since
both the orbital mechanics and the sensor observation process
are non-linear, the standard filtering solutions such as Kalman
filters are inapplicable and lead to divergent results. Naı̈ve par-
ticle filtering solutions also fail since they require many particles
to accurately represent the posterior distribution. However,
since the sensor observation noise is modelled as a multivari-
ate Gaussian distribution, it may be expected that the same
single-object probability distributions, once projected into the
augmented sensor space (a full spherical frame centred on the
sensor), assume a simpler form that can be approximated by a
multivariate Gaussian distribution. In this paper, a sequential
Monte Carlo filter is proposed for the orbital object estimation
problem, which exploits the structure of the measurement like-
lihood probability by introducing a proposal distribution based
on a linear Kalman filter update.
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1. INTRODUCTION
Obtaining an accurate picture of the position and dynamics
of Earth-orbiting objects has been a research topic under
growing attention lately, partly due to the growing relevance
of safeguarding important assets in orbit from collision with
debris or other man-made objects. A diverse range of earth-
or ground-based sensors is available to survey space and
so gain information on where the objects are [1], but care-
ful statistical techniques must be used to minimise errors
induced due to sensor inaccuracy and imperfect modelling
of object dynamics. Several problems present themselves
when attempting to exploit sensor measurements in order to
determine the state of space-based objects:

• Sensors are limited in their field of view, and can only
survey a fraction of near-Earth space at any given time;
• No sensor gives perfect measurements, and these inaccu-
racies manifest themselves as noise in the obtained measure-
ments;
• Even when the object of interest is in the sensor’s field of
view, the sensor may fail to detect it;
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• Sensors only give partial information about the state of the
object, and so variables such as object velocity need to be
estimated over time;
• The relation between measurements and object state is non-
linear, which can complicate the state estimation process.

The need to establish a clear estimate of the situation of
orbital objects around Earth in spite of these difficulties,
and the limited pool of available sensors that can provide
data to do so, motivates the development of robust tracking
techniques to accomplish this goal. The most commonly
sensors that are used for space situational awareness (SSA)
are radar and telescopes [1], neither of which is able to fully
observe the state of the objects of interest. Radar measures
azimuth, elevation, range and range rate of change through
the Doppler effect, while telescopes measure azimuth, el-
evation, and their rates of change using optical properties
of their sensors. Due to the lack of information in either
case, it is necessary to integrate measurements over time in
order to recover estimates of the full sensor state. Optical
sensors are particularly interesting in this context, as they can
observe objects that are out of the acquisition range of radar
systems and do not need to reflect energy off objects in order
to observe them, and will be the focus of this article.

This article presents a state estimation method that addresses
the previously mentioned issues in an orbital tracking sce-
nario, using measurements obtained from an optical sensor in
order to construct an initial estimate for the orbit of an object
based on a single measurement, and then integrate subsequent
measurements to refine the estimate of its state. Although the
method presented here is meant to track a single object, it
can potentially be embedded in multi-sensor multiple target
tracking frameworks such as the one presented in [2].

The rest of the article is divided as follows. First, the frame-
work of Bayesian state estimation is introduced, followed by
a description of the implemented filter. After this, results are
shown, and conclusions are presented.

2. BAYESIAN STATE ESTIMATION
Even though the instruments used to observe Earth-orbiting
objects are highly sophisticated, as with any sensor, mea-
surements obtained with them are prone to being corrupted
by noise. Additionally, sensors such as astrometric radar
and electro-optical sensors do not observe the full state of
the target, and the unobserved parameters are only known
to be somewhere within an admissible region. Due to this,
it is advantageous to estimate statistically the probability
distribution of the state of the object rather than only a point
estimate, as this also gives a measure of the uncertainty
of the parameters. Bayesian estimation is a particular type
of statistical estimation which uses Bayes’ rule to update
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a probability distribution, called the ‘prior’, using known
information about the process and measurement, into a new
distribution called the ‘posterior’ [3]. The problem of estima-
tion for objects in orbit deals with using measurements from
a sensor that observes the surveyed object in order to deduce
a set of features of interest, such as position and velocity,
alongside the associated estimation uncertainties.

Tracking can be defined as the process by which measure-
ments obtained from an object of interest are used to maintain
an estimate of its state [4]. It is evident that this can be
readily cast into the framework of Bayesian estimation, and
indeed research in tracking was revolutionised when Kalman
published his seminal work relating the concept of system
state estimation and probability theory [5]. This problem has
been widely studied and is crucial for such relevant problems
as the exploration of space, robotics, finance, and many
others. The appeal of state estimation lies on the fact that it
naturally accounts for the inherent uncertainty in the obtained
measurements and in the modelling of the observed process,
and reflects this in the variance of the estimated probability
distribution. Additionally, it gives a reliable way of using
previously acquired information to make predictions about
the target state, even in situations where measurements are
not available, and to infer information about variables that
are not directly observed by the sensor.

Figure 1. Data flow of a Bayesian filter.

Recursive Bayesian estimation, or Bayesian filtering, is a
framework which attempts to track the state of a time-varying
system in a statistically optimal way [3]. It does so by using
the dynamic model of the system to perform a prediction step,
and then using the likelihood function of received measure-
ments conditioned on the state to perform an update step.
The dynamic model is integrated into the prior through the
Chapman-Kolmogorov equation, while the likelihood func-
tion adjusts it when measurements are received using Bayes’
rule. This can be expressed as follows:

pk|k−1(x) =

∫
f(x|x′)pk−1|k−1(x

′) dx′ (1)

pk|k(x) =
gk(zk|x)pk|k−1(x)∫

gk(zk|x′)pk|k−1(x′) dx′ , (2)

where the following definitions are used:

pk|k−1(x) predicted density up to time k,
f(x|x′) probability of the target having state x given

previous state x′,
pk|k(x) updated density up to time k, and

gk(zk|x) likelihood of observing measurement zk
conditioned on state x.

This generic filter is called the Bayes Filter. The general data
flow for filters of this class can be seen in Fig. 1. Tractable
implementations of the Bayes filter require choosing ap-
propriate forms for the estimated probability distributions

in order to be able to compute the predicted and updated
probability distributions.

In a spatial tracking scenario, where it is attempted to recover
the full state of an earth-orbiting object based on measure-
ments from a sensor, the following steps must be carried out:

• Initialise the track using an initial measurement from the
sensor (initial orbit determination),
• Predict the state of the object based on the motion model
(orbit propagation),
• Correct this prediction using subsequent measurements
given by the sensor, and
• Extract the state estimate from the resulting probability
distribution.

The state itself is usually the position and velocity of the
object of interest (e.g. a satellite, a piece of debris, or an
asteroid) at each time step, while the type of measurements
that will be considered in this article will be those coming
from optical telescopes, which are assumed to yield azimuth,
elevation and the rates of change of these angles. It is
not possible to directly recover the range of the object and
its rate of change from measurements of this type. This
also implies that track initialisation needs to be carried out
carefully, in order to accurately represent the uncertainty
of the unobserved parameters. The proposed filter will be
described in the next section.

3. FILTER DESCRIPTION
As it was previously mentioned, the Bayesian paradigm is a
good fit for the problem of state estimation for Earth-orbiting
objects. Designing a single-target filter following this frame-
work involves coming up with solutions to the problems of a)
track initialisation, b) time prediction, c) data update, and d)
state extraction. The state of interest at time step k, denoted
xk, will be the position and velocity of the Earth-orbiting
object in the Earth-centred inertial (ECI) frame, i.e., xk =
[xk, yk, zk, ẋk, ẏk, żk]

′, where prime denotes transposition.
The measurements used for the data update come from a
telescope, consisting of azimuth, elevation and their rates
of change, in a frame of reference with origin in the sensor

location, and will be denoted zk = [θk, ϕk, θ̇k, ϕ̇k]
′.

Due to the non-linearities involved in track initialisation, state
prediction and update, the particle filtering framework was
used to construct the filter. Particle filtering is an approach
which permits a high degree of flexibility in the design of
priors, transition kernels and likelihood functions [6]. This
is particularly useful in this case, due to the non-linear
transformations between the different parameterisations of
the state space that are used – although the prediction step
is most naturally carried out in Cartesian space, the use of a
full spherical frame is more convenient for track initialisation
and update.

Mapping between spaces

The steps that need to be carried out to track objects in
orbit using measurements from a ground-based telescope
pose several challenges. Although some of the opera-
tions can be carried out linearly in the object state space,
the non-linearities involved in the data update using this
space can introduce error into the estimation process. To
deal with this, the proposed filter changes between the
object’s state space X and the sensor’s extended state
space S

∗. If xk = [xk, yk, zk, ẋk, ẏk, żk]
′ ∈ X, its
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equivalent vector in the sensor’s state space is given by

ẑk = T (xk, ts,Ws) = [rk, θk, ϕk, ṙk, θ̇k, ϕ̇k]
′, which can be

computed as follows:

rk =
√
x̃2
k + ỹ2k + z̃2k

θk = atan
ỹk
x̃k

ϕk = atan
z̃k√

x̃2
k + ỹ2k

ṙk =
x̃k

˙̃xk + ỹk ˙̃yk + z̃k ˙̃zk
rk

θ̇k =
˙̃ykx̃k − ˙̃xkỹk
x̃2
k + ỹ2k

ϕ̇k =
˙̃zk(x̃

2
k + ỹ2k)− z̃k(x̃k

˙̃xk + ỹk ˙̃yk)

r2
√
x̃2
k + ỹ2k

,

where x̃k = [x̃k, ỹk, z̃k, ˙̃xk, ˙̃yk, ˙̃zk]
′ = Ws(xk − ts), with ts

and Ws respectively the translation vector and rotation matrix
from the geocentric reference frame to the sensor Cartesian
reference frame. Rotating and translating the measurement is
necessary as if the sensor is stationary on the surface of the
Earth, it will capture measurements from different positions
and orientations as the Earth rotates through time. Note
that the transformation T is a bijection and thus it is always
possible to map back to X by applying its unique inverse.

The advantage of using this parameterisation is that the
mapping from the extended sensor state space S

∗ to the
measurement space S is linear, which is advantageous for the
filter update. Indeed, it is straightforward to obtain an optical

measurement zk = [θk, ϕk, θ̇k, ϕ̇k]
′ from ẑk ∈ S

∗:

zk = H ẑk,

with

H =

⎡
⎢⎣
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎦ .

Track initialisation

The challenge in initialising a track from a telescope mea-
surement is that, if no additional information is known, it is
not possible to exactly determine the range and range rate
of the observed object in the initial time step. However,
the couple (r0, ṙ0) can be bounded using internal energy
constraints, as proposed in [7, 8]. As only objects in closed
orbits will be considered for this filter, the internal energy can
be considered to be non-positive, that is,

E =
1

2
|ṙ|2 − μ

|r| ≤ 0, (3)

where μ is the product of the mass of the Earth and the
gravitational constant, and r is the geocentric inertial position
vector of the object of interest. The vectors r and ṙ can be
expressed as follows:

r = rs + rρr

ṙ = ṙs + ṙρr + rθ̇ρθ + rϕ̇ρϕ,

where rs is the geocentric inertial position vector of the
sensor, and

ρr = [cos θ cosϕ, sin θ sinϕ, sinϕ]′,
ρθ = [− sin θ cosϕ, cos θ cosϕ, 0]′, and

ρϕ = [− cos θ sinϕ,− sin θ sinϕ, cosϕ]′.

Following the approach laid out in [7], the energy constraint
(3) can be reformulated with this representation as follows:

2E = ṙ2 + w1ṙ + T (r)− 2
μ√
S(r)

< 0, (4)

where

S(r) = r2 + w5r + w0,

T (r) = w2r
2 + w3r + w4,

w0 = ‖rs‖2,
w1 = 2〈ṙs,ρr〉,
w2 = θ̇2 cos2 ϕ+ ϕ̇2,

w3 = 2〈rs, θ̇ρθ + ϕ̇ρϕ〉,
w4 = ‖ṙ‖2, and

w5 = 2〈rs,ρr〉.

From here, a rejection sampling approach is used to draw
samples from a uniform distribution over the admissible
region. To do this, a range value is randomly sampled from a
region of interest, defined to be between 1.5 and 20 times the
radius of the earth. Having chosen this value, the boundaries
of inequality (4) are determined to find the admissible values
for ṙ:

ṙ ∈ (−w1/2− ζ,−w1/2 + ζ) (5)

ζ =
1

2

√
w2

1 − 4(T (r)− 2μ/
√
S(r)) (6)

If ζ is complex, the chosen value for r is discarded and
another value is sampled, until a real solution is found.
When it is, a value for the range rate is sampled from the
admissible values determined by the inequality to give an
admissible (r, ṙ) couple. To add diversity to the remaining
four parameters, these are sampled from a Gaussian distri-
bution centred on the observed parameters themselves, with
covariance matrix reflecting the uncertainty on the measured
quantities. This process is repeated until the desired amount
of samples has been found. This process is summarised in
Algorithm 1.

Time Prediction

Time prediction is the operation through which the proba-
bility distribution of the tracked object is changed to reflect
its dynamics after an amount of time passes. The transition
matrix for the object can be obtained using Shepperd’s ap-
proach [9] based on Goodyear’s general solution for the two-
body problem [10]. Since a Particle filter approach is being
followed, computing the predicted distribution is as simple as
using the transition matrix to predict the state for each particle
in the prior distribution, and adding a measure of noise which
accounts for the increased uncertainty in the absence of an
observation. The weights in this case are unchanged. This
process is summarised in Algorithm 2
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Algorithm 1: Track initialisation algorithm

Data:
• Measurement z = [θ, ϕ, θ̇, ϕ̇]
• Range limits rmin, rmax
• Covariance for observed parameters R

Result: Initialised particle distribution {x(i)
0 , w

(i)
0 }Ni=1

for i = 1 . . . N do
solution found← false
while not solution found do

Sample r(i) ∼ U(∇min,∇max)
Evaluate w0, w1, w2, w3, w4, w5, T (r), S(r)
Evaluate ζ from (6)
if ζ is real then
solution found← true

end

end
Sample ṙ(i) ∼ U(−w1/2− ζ,−w1/2 + ζ)

Sample [θ(i), ϕ(i), θ̇(i), ϕ̇(i)]′ ∼ N (·; z,R)

x
(i)
0 ← T−1([r(i), θ(i), ϕ(i), ṙ(i), θ̇(i), ϕ̇(i)]′)

w
(i)
0 ← 1/N

end

Algorithm 2: Prediction algorithm

Data:
• Particle distribution {x(i)

k−1, w
(i)
k−1}Ni=1 at time step k − 1

• Covariance matrix of the process noise Qk
• Elapsed amount of time Δt
• Translation and rotation to sensor Cartesian frame ts,Ws

Result: Predicted particle distribution {x(i)
k|k−1, w

(i)
k|k−1}Ni=1

for i = 1 . . . N do
Sample εi ∼ N(0, Qk)

Φ ← Shepperd matrix(x(i)
k−1,Δt)

x
(i)
k|k−1 ← Φx

(i)
k−1 + εi

w
(i)
k|k−1 ← w

(i−1)
k

end

Data Update

Although the state space X is convenient to perform state
prediction, constructing a measurement likelihood function
in this space is complicated due to the non-linearity of the
mapping between both spaces (See Section 3). As it was seen
before, however, the transformation between the extended
sensor state space S

∗ and the measurement space S is linear,
which simplifies estimation. Since both spaces are useful, a
hybrid approach is proposed which makes use of them both.
If no measurements are received, the prediction step is carried
out as described in Section 3. However, if a measurement
is received, the linearity of the measurement likelihood is
exploited to obtain the updated distribution. The proposed
algorithm first maps the particles to the augmented sensor
space S

∗ and approximates the resulting particle distribution
as a Gaussian distribution. This distribution is updated using
linear Kalman update in this space, and the resulting Gaussian
distribution, which will be denoted π(x|x0:t, z0:t), is used to
sample the new point cloud. Note that although particles
are used to represent this distribution, these are unweighted
as opposed to a traditional bootstrap filter. This approach
has been successfully used in applications such as multiple-

object tracking using stereo cameras [11], and multiple object
tracking for SSA using radar [2]. This process is illustrated
in Algorithm 3.

Algorithm 3: Update algorithm

Data:
• Predicted particle distribution {x(i)

k|k−1}Ni=1 at time step k

• Measurement z = [θ, ϕ, θ̇, ϕ̇]
• Covariance matrix of the noise Rk

Result: Updated particle distribution {x(i)
k }Ni=1

for i = 1 . . . N do
ŷ−i ← T (x

(i)
k|k−1, ts, Rs)

end
μ−
k ← mean({y−i }Ni=1)

Σ−
k ← covariance({y−i }Ni=1)

Compute Kalman Filter updated mean and covariance
ξ ← z −Hμ−

k

S ← HΣ−
k H

′ +Rk

K ← Σ−
k H

′S−1

μk ← μ−
k +Kξ

Σk ← (I −KH)Σ−
k

for i = 1 . . . N do
Sample yi ∼ N(μk,Σk)

x
(i)
k ← T−1(yi, ts, Rs))

end

State Extraction

Due to the nature of orbital mechanics, the spread of particles
after prediction will tend to lay along the same orbit and thus
take a banana-shaped distribution. Taking the Expected A
Posteriori (EAP) estimate from the distribution in the Carte-
sian space X, then, will introduce bias in the estimated orbit.
To solve this, the proposed method maps the distribution into
the augmented sensor frame S

∗, computes the EAP in this
space, and then maps this value back into X as the filter
output. The situation is illustrated in Figure 2, where it can
be seen that the filter estimate agrees more with the estimated
orbit as predicted by the orbital dynamics. The method is
described in Algorithm 4.

Algorithm 4: State estimate extraction process

Data:
• Particle distribution {x(i)

k , w
(i)
k }Ni=1 at time step k

Result: Estimated state x̂k
for i = 1 . . . N do
ŷi ← T (x

(i)
k , ts, Rs)

end
μk ← mean({yi}Ni=1)
x̂k ← T−1(μk, ts, Rs))

4. RESULTS
To demonstrate the performance of the filter, a simulated
orbital scenario was generated with two different objects in
orbit. The orbits were created from the initial orbital elements
utilizing Runge-Kutta 7/8 numerical integration, taking into
account the Earth’s gravitational field up to order and degree
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Figure 2. EAP of the Cartesian distribution (red circle)
compared to the proposed state estimate (green circle).

T. a (km) e i Ω ω ν
1 26352.5 0.6 11.3◦ 69.0◦ 351.0◦ 80.0◦
2 42164.0 0.012 10.0◦ 61.0◦ 349.0◦ 82.0◦

Table 1. Target index, semi-major axis (a), eccentricity (e),
inclination (i), right ascension of the ascending node (Ω),

argument of perigee (ω) and true anomaly (ν).

12, third body perturbations of the Sun and Moon as well as
direct radiation pressure. More details about the propagation
models used for this simulation can be found in [12]. The
shape of the objects was assumed to be spherical, and the
area to mass ratio was simulated as 0.02 for both objects. The
remaining target characteristics are listed in Table 1, and an
illustration of the scenario can be seen in Figure 3.

The simulated sensor is a ground-based telescope with a field
of view of 8◦ × 8◦, at a latitude of 20◦. A standard deviation
of a quarter of an arcsecond was assumed for each of the four
observed quantities - azimuth, elevation, and their rates of
change. Measurements were triggered each time the objects
passed the sensor’s field of view, at a rate of one measurement
every twenty seconds. The orientation of the telescope was
different for both simulations, in order to obtain meaningful
information about each orbit. The simulated trajectories and
the field of the sensor can be seen in Fig. 3. The filter was
executed with 2000 particles in every case.

The main challenges present in the simulated scenarios are
the following:

1. Tracks must be initialized from an initial measurement,
which does not contain full information on its state, and
refined through subsequent observations,
2. When an object exits the narrow field of view of the sensor,
the uncertainty in the estimation grows continually until it is
observed again, and
3. The uncertainty on the estimated distribution must be
reduced once measurements are available again.

For target one, the main issue is that measurements are
acquired only during two periods in the simulation, although
the length of time is sufficient to correctly establish the orbit
of the object. In Fig. 4, the results of the estimation for

a sample run of the filter can be seen. The periods where
the target is observed are shown in red, where initialisation
and correction are performed. The dotted black lines show
the estimated trajectory when only prediction is performed.
Visually, the estimated orbit agrees well with the ground
truth. In terms of quantitative performance metrics, the
estimation is evaluated using the root mean squared error
(RMSE) to analyse the filter’s accuracy, and the Mahalanobis
distance to determine if the estimated distribution accurately
reflects the uncertainty in the estimation, which can be seen
in Fig. 5. To give a sense of scale to the Mahalanobis
distance, for a 6-dimensional multivariate Gaussian random
variable, 95% of the probability density is contained within
a Mahalanobis distance of 12.5916. These metrics were
obtained by averaging over 50 Monte Carlo runs.

Target two presents different challenges. As it can be seen
in Fig. 6, the target is only observed for very brief amounts
of time, after which the information must be propagated for
a long amount of time before being able to observe it again.
In spite of this, the filter manages to initialise the orbit rea-
sonably well, and correct its estimate as new measurements
arrive. As before, 50 Monte Carlo runs were executed, and
the average performance metrics can be seen in Fig. 7. Even
in spite of the very short time spans where the target is seen,
the estimation error is kept reasonably low, and as before the
Mahalanobis distance shows that the estimated distribution
accurately represents the uncertainty with respect to the true
trajectory.

Comparison to Other Approaches

The typical filters that are used to track single targets in the
presence of non-linear motion and measurement models are
the extended Kalman filter (EKF), and the particle filter. The
EKF is based on a linearisation of these models, and is based
on the assumption that the prior distributions are reasonably
close to a Gaussian. As it was seen previously, however, the
initial orbit determination algorithm which is used to initialise
these filters is drawn from an uniform distribution in a region
with non-linear bounds in the extended sensor space, which
should not be expected to be Gaussian. Even if after a series
of observations the estimated posterior is localised enough
that it can be considered to be Gaussian in Cartesian space,
the prediction process will propagate the distribution along an
orbit, creating a banana-shaped distribution which cannot be
considered Gaussian in this space. To show this numerically,
the BHEP Gaussianity test [13] was applied to the particle
clouds produced by the filter for target 1, and the resulting
p-value was averaged over 200 Monte Carlo runs, which
can be seen in Figure 8. The test compares the empirical
characteristic function of the sampled distribution against that
of a Gaussian distribution, the null hypothesis being that the
samples come indeed from a distribution of this type. If the p-
value drops below a chosen significance level, the assumption
of Gaussianity can be rejected. As it can be seen in the figure,
the test rejects Gaussianity for a period after the particle cloud
is initialised. After this, it can be considered Gaussian as it
becomes more localised. After observations cease to be used
to correct the distribution, the Gaussianity of the distribution
degrades until it can no longer be considered Gaussian. Due
to this reason, it can be concluded that the EKF is unfit to
estimate this type of distributions.

In cases where the shape of the filtered distribution is un-
known or cannot be analytically described, the standard ap-
proach is the bootstrap particle filter [14]. For comparison,
this filter was used to estimate the satellite trajectories for the
same data used in these experiments, using 5000 particles.
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As it was expected, however, the filter diverged in every case.
This is due to a combination of the highly non-linear motion
and measurement models and the high dimensionality of the
data.

5. CONCLUSIONS
In this article, an algorithm was presented which uses tele-
scope measurements to track orbital objects in space, by
exploiting the fact that the measurement model is linear in the
sensor’s extended measurement space. The major advantages
of this method are that the resulting estimation is proba-
bilistic, and so gives information on the uncertainty of the
estimate; that track initialisation is also done probabilistically
and allows for information to be sequentially integrated into
the distribution in order to refine it, and that it is easily
embeddable in more sophisticated multiple target tracking
solutions. To evaluate the performance of the method, it
was applied to two simulated objects in orbit, showing good
performance even when measurements were scarce due to the
limited field of view of the object.
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Figure 3. Illustration of the simulated scenario, including the two targets orbiting Earth and the sensor’s field of view. The
wider orbit with higher eccentricity is target 1, and the smaller one is target 2.

Figure 4. Simulated eccentric orbit (target 1) and estimation results. The blue line shows the actual trajectory, the thick red
lines the estimated trajectory in periods where the target is observed and dotted black when not. The blue sphere represents the

Earth.
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scale), followed by the Mahalanobis distance between the estimated distribution and the ground truth trajectory. The lengths of

time when the target is observed are shaded in blue.
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Figure 6. Simulated low earth orbit (target 2) and estimation results. The blue line shows the actual trajectory, the thick red
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Figure 7. Performance metrics for the estimation of the second orbit. Above, RMSE for position and velocity (logarithmic
scale), followed by the Mahalanobis distance between the estimated distribution and the ground truth trajectory. The lengths of

time when the target is observed are shaded in blue. The values shown are the average over 50 Monte Carlo runs.
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