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Abstract—This paper presents a novel model-based Bayesian
filter called the adaptive kernel Kalman filter (AKKF). The
proposed filter approximates the arbitrary probability distri-
bution functions (PDFs) of hidden states as empirical kernel
mean embeddings (KMEs) in reproducing kernel Hilbert spaces
(RKHSs). Specifically, particles are generated and updated in
the data space to capture the properties of the dynamical
system model, while the corresponding kernel weight vector
and matrix associated with the particles’ feature mappings are
predicted and updated in the RKHS based on the kernel Kalman
rule (KKR). We illustrate and confirm the advantages of our
approach through simulation, offering detailed comparison with
the unscented Kalman filter (UKF), particle filter (PF) and
Gaussian particle filter (GPF) algorithms.

Index Terms—Adaptive kernel Kalman filter, kernel Kalman
rule, kernel mean embedding, non-linear Bayesian filter

I. Introduction
Non-linear/non-Gaussian estimation problems in dynamic

systems arise in many fields including statistical signal pro-
cessing, target tracking, satellite navigation, and so on. In
order to make inference about a dynamic system, dynamical
state-space models (DSMs) are required, including a process
model describing the evolution of the hidden states with time,
and a measurement model relating the observations to the
states. From a Bayesian perspective, the filter for dynamical
system inference is designed to estimate the hidden states
by recursively computing the posterior probability density
function (PDF). Historically, the main focus of sequential
Bayesian filters has been on model-based systems where there
exists an explicit formulation of the DSM [1]. However, more
recently data-driven Bayesian filters have been proposed where
the DSM is unknown or partially known but data examples of
state-observation pairs are provided [2]. In both scenarios the
filters can be broken down into prediction and update stages.

The Kalman filter (KF) provides the optimal Bayesian so-
lution for linear DSMs when both the prediction and posterior
distributions are Gaussian. The extended Kalman filter (EKF)
is a common form for the application of the KF to nonlinear
systems [3], by using the first derivatives to approximate the
observation function by a linear system of equations which
can cause poor approximation performance when the model is
highly non-linear or when the posterior distributions are multi-
modal. The unscented Kalman filter (UKF), an alternative to
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the EKF, was proposed in [4] and uses a weighted set of
deterministic particles (so called sigma points) in the state
space to approximate the state distribution. Compared with
the EKF, the UKF can significantly improve the accuracy of
the approximations, but divergence can still occur as in both
filters the state distributions are essentially approximated as
Gaussian. A more general solution to the non-linear Bayesian
filter can be found in the bootstrap particle filter (PF) proposed
in [5], in which the hidden state distributions are represented
through a weighted set of random particles. Resampling is a
necessary step in the bootstrap PF which induces an increase in
complexity and is hard to parallelize [6]. To avoid the need for
resampling, some specific implementations of the bootstrap PF
have been proposed that further approximate the hidden state
distribution at each time with a Gaussian, such as the Gaussian
particle filter (GPF) [6], and the Gauss–Hermite filter [7].

Different from the approaches above, a number of works
have used the recently formulated kernel Bayes rule (KBR)
to develop data-driven Bayesian filters based on kernel mean
embeddings (KMEs) [2], [8]. Here the unknown measurement
model was inferred from prior training data. Owing to the
virtue of KMEs, these methods can effectively deal with
problems that involve unknown models or strong non-linear
structures [9]. However, the feature space for the kernel
embeddings remains restricted to the feature space defined by
the training data set. Therefore, the performance of these filters
relies heavily on there being sufficient similarity between the
training data and the test data [10].

Inspired by the KBR [8] and kernel Kalman rule (KKR)
[11], we explore the potential of KMEs within full model
based filters and introduce a new hybrid filter called the
adaptive kernel Kalman filter (AKKF). The main contributions
of this paper can be summarized as:
• We derive a new model based Bayesian filter that is a

hybrid of kernel based methods and PFs, in which both
the prediction and posterior distributions are embedded into
a kernel feature space but the known measurement and
transition operators are used to calculate the update rules.
This is in contrast to the PF where the prediction and
posterior distributions are calculated through empirical PDF
estimates in the data space.

• The proposed filter can avoid the problematic resampling
in most PFs. In passing, we also highlight a missing link
between the UKF sigma point method and the kernel con-
ditional embedding operator.

The rest of the paper is set out as follows. The KME and KKR
are reviewed in Section II. Section III presents the proposed
AKKF. Simulation results for bearing–only tracking (BOT)
problem are presented in Section IV and finally conclusions
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are drawn in Section V.

II. Preliminaries

In this section, we briefly review the frameworks of the
KME and data-driven KKR, see [8] and [11] for details.

A. Kernel Mean Embedding

A reproducing kernel Hilbert space (RKHS) denoted as Hx

on the data space X with a Kernel function kx(x, x′) is defined
as a Hilbert space of functions with the inner product 〈·, ·〉Hx

that has some additional properties [8]. The KME approach
represents a conditional distribution P(X|y) by an element in
the RKHS as,

µX|y := EX|y
[
φx(X)

]
=

∫
X

φx(x)dP(x|y). (1)

where φx(x) ∈ Hx represents the feature mapping of x in
RKHS Hx for all x ∈ X. µX|y is a family of points, each
indexed by fixing Y to a particular value y. By defining the
conditional operator CX|Y as the linear operator which takes
the feature mapping of a fixed value y as the input and
outputs the corresponding conditional KME [10], the KME
of a conditional distribution defined in (1), under certain
conditions, is calculated as,

µX|y = CX|Yφy(y) = CXY (CYY + λI)−1 φy(y). (2)

Here, CXY and CYY represent the covariance operators in
the tensor product feature spaces Hx ⊗ Hy and Hy ⊗ Hy,
respectively. The term λ is a regularization parameter to ensure
that the inverse is well defined.

If instead of access to the true underlying distribution, as
required by (1), an empirical estimate of the PDF is available
through a particle representation, the KMEs can be estimated
directly from these particles. Hence, given the sample set
DXY = {(x{1}, y{1}), . . . , (x{M}, y{M})} which are drawn i.i.d. from
P(X,Y) with the feature mappings Φ :=

[
φx(x{1}), . . . , φx(x{M})

]
and Υ :=

[
φy(y{1}), . . . , φy(y{M})

]
, the estimate of the conditional

embedding operator ĈX|Y is obtained as a linear regression in
the RKHS [12], as shown in the illustration in Fig. 1. Then,
the empirical KME of the conditional distribution is calculated
by a linear algebra operation as,

µ̂X|y = ĈX|Yφy(y) = Φ (GYY + λI)−1 ΥTφy(y) = Φw, (3)

w = (GYY + λI)−1 G:,y. (4)

Here, GYY = ΥTΥ is the Gram matrix for the samples from
the observation variable Y . The input test variable is y ∈ Y.
The kernel weight vector w =

[
w{1}, . . . ,w{M}

]T
includes M

non-uniform weights and is calculated based on the vector
of kernel functions G:,y =

[
ky(y{1}, y), . . . , ky(y{M}, y)

]T
. In

summary, an empirical KME can represent a PDF over a
basis at RKHS with the corresponding weight vector, which
has the advantages of low computational cost and low sample
complexity.

Fig. 1: KME of the conditional distribution P(X|y) is embedded as a point in kernel
feature space as µX|y =

∫
X
φx(x)dP(x|y). Given the training data sampled from P(X,Y),

the empirical KME of P(X|y) is approximated as a linear operation in RKHS, i.e., µ̂X|y =

ĈX|Yφy(y) = Φw. Legend: · samples, ×: empirical KME, ∗: KME.

B. Kernel Kalman Rule

The KKR was proposed in [11] as a recursive least squares
estimator for KMEs of posterior distributions. In the pro-
posed empirical KKR [11], the mean embedding and co-
variance operator are predicted and updated similar to the
way a conventional KF does but relying on the training
data set DX̃XY = {(x̃{1}, x{1}, y{1}), . . . , (x̃{M}, x{M}, y{M}). Here,
x̃{i} denotes the preceding state of x{i}, i = 1, . . . ,M, and y{i}

is the corresponding observation. The feature mappings of
training data are represented as Φ̃ :=

[
φx(x̃{1}) . . . , φx(x̃{M})

]
,

Φ :=
[
φx(x{1}) . . . , φx(x{M})

]
and Υ :=

[
φy(y{1}) . . . , φy(y{M})

]
,

respectively. The estimate of the preceding state is given by
the KME µ̂+

xn−1
and the covariance operator Ĉ+

xn−1,xn−1
. Based on

the derivations in [11], the kernel Kalman filter prediction and
update steps consist of the following:

µ̂−xn
= ĈX|X̃ µ̂

+
xn−1
, (5)

Ĉ−xn,xn
= ĈX|X̃Ĉ

+
xn−1,xn−1

ĈT
X|X̃ +V. (6)

µ̂+
xn

= µ̂−xn
+ Qn

(
φy(yn) − ĈY |X µ̂

−
xn

)
, (7)

Ĉ+
xn,xn

= Ĉ−xn,xn
− QnĈY |XĈ

−
xn,xn

. (8)

Here, the conditional embedding operators for the distributions
P(X|X̃) and P(Y |X), represented by ĈX|X̃ and ĈY |X , are calcu-
lated based on training data as ĈX|X̃ = Φ

(
Kx̃x̃ + λK̃

)−1
Φ̃ and

ĈY |X = Υ (Kxx + λK)−1 Φ, respectively. The Gram matrices are
Kx̃x̃ = Φ̃TΦ̃ and Kxx = ΦTΦ. The covariance of the transition
residual matrix is represented as V, and the kernel Kalman
gain operator Qn is given by [11],

Qn = Ĉ−xn,xn
ĈT

Y |X

(
ĈY |XĈ

−
xn,xn
ĈT

Y |X + R
)−1

. (9)

where R is the covariance of the residual of the observation
operator.
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It should be noted that the existing filters based on the KKR
are fully data driven and therefore of use when the DSM is
not available and the test data has high similarities to the
training data. Data-driven based KKR filters have been used
for tracking problems that include the position estimate of a
target which follows rotation in a circle or oscillatory rotation
[11]. However, the data-driven based filters are only effective
when training data provides a good description for the current
state, and will fail when the target moves out of the training
space. To mitigate this shortcoming, we present a new type
of kernel Kalman filter defined for model based scenarios in
Section III.

III. Adaptive Kernel Kalman Kilter
Inspired by the data-driven based KKR [11] and PF, the

proposed adaptive kernel Kalman filter aims to take all the
benefits of the KKR and PF. The proposed AKKF is executed
in both data space and kernel feature space. In the kernel
feature space, the kernel weight vector and positive definite
weight matrix are estimated using the KKR, which requires
an embedding of the state update function to update the
estimate from time n − 1 to time n. Then an embedding
of the measurement function is used to update the prior
estimate at time n to the posterior estimate at time n. In data
space, the embeddings for the state process and measurement
functions are obtained as follows: a proposal distribution is
generated using information from the kernel space at time
n − 1, which is then propagated through the non-linear DSM.
The following subsections will derive the proposed AKKF,
with the implementation is summarized in Algorithm I.

A. Embedding the Posterior Distribution at Time n − 1
Let the particles and corresponding kernel feature mappings

at time n − 1 be represented by x{i=1:M}
n−1 and φx(x{i=1:M}

n−1 ),
respectively. Given also the previous weight vector w+

n−1 and
positive definite weight matrix S +

n−1, the empirical KME and
covariance operator for the posterior p(xn−1|y1:n−1) are:

µ̂+
xn−1

= Φn−1w+
n−1, (10)

Ĉ+
xn−1 xn−1

= Φn−1S +
n−1ΦT

n−1. (11)

where the feature mappings is calculated as Φn−1 =[
φx(x{1}n−1), . . . , φx(x{M}n−1)

]
[11]. Specifically, suppose xn−1 =[

xn−1,1, . . . , xn−1,d
]T is a d-dimension vector and the quadratic

kernelis utilized. Then, its feature mapping is [13],

φx(xn−1) =
[
x2

n−1,d, . . . , x
2
n−1,1,

√
2xn−1,d xn−1,d−1, . . . ,

√
2xn−1,2xn−1,1,

√
2xn−1,d, . . . ,

√
2xn−1,1, 1

]T
.

(12)

Therefore, from (10), the empirical KME µ̂+
xn−1

is represented
in terms of the expectations of X2

n−1 and Xn−1, as µ̂+
xn−1

=[
E(X2

n−1),
√

2E(Xn−1X′n−1),
√

2E(Xn−1), 1
]T

. Then, the E(Xn−1)
and E(X2

n−1) are extracted from µ̂+
xn−1

and passed to the data
space. As pointed out in [14], the approximation of a
Gaussian distribution is easier to realize than the approxima-
tion of an arbitrary non-linear function. Hence, the proposed
AKKF uses a new weighted sample representation called

Algorithm 1 Adaptive kernel Kalman filter

Require: DSM: process model and measurement model.
1: Initialization: Set the initial particles in the data space

x̃{i=1:M}
0 ∼ Pinit, w0 = 1/M [1, . . . , 1]T.

2: for n = 1 : N do
3: Prediction:

• First, in the data space: x{i}n = f (x̃{i}n−1, u
{i}
n ),

⇒ Second, in the kernel feature space with basis Φn:
w−n = Γn−1w+

n−1, S −n = S̃ +
n−1 + Vn.

4: Update:
• First, in the data space: y{i}n = h(x{i}n , v

{i}
n ),

⇒ Second, in the kernel feature space with basis Φn:
w+

n = w−n +Qn

(
G:,yn −Gyyw−n

)
, S +

n = S −n −QnGyyS −n .
µ̂xn = Φnw+

n .
5: Proposal particles draw:

• First, in the data space:
x̃{i=1:M}

n ∼ N
(
E (Xn) ,E

(
X2

n

)
− E (Xn)E (Xn)T

)
.

⇒ Second, in the kernel feature space with basis Ψn:
w̃+

n = Γnw+
n , S̃ +

n = ΓnS +
n ΓT

n .
6: end for

proposal particles to approximate the KME that can be exactly
propagated through the non-linearity. The proposal particles
are generated according to the importance distribution as,

x̃{i=1:M}
n−1 ∼ N (E (Xn−1) ,Cov (Xn−1)) , (13)

Cov (Xn−1) = E(X2
n−1) − E (Xn−1)E (Xn−1)T . (14)

The feature mappings of the proposal particles are represented
as Ψn−1 =

[
φx(x̃{1}n−1), . . . , φx(x̃{M}n−1)

]
. Then, the posterior distri-

bution p(xn−1|y1:n−1) can also be embedded using the new basis
Ψn−1 and therefore the weight vector and covariance operator
are transformed into Ψn−1 as,

µ̂+
xn−1

= Ψn−1w̃+
n−1, (15)

Ĉ+
xn−1 xn−1

= Ψn−1S̃ +
n−1ΨT

n−1. (16)

Substituting (15) into (10), and (16) into (11), respectively,
the proposal kernel weight vector w̃+

n−1 and matrix S̃ +
n−1 are

calculated as,

w̃+
n−1 =

(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+
n−1 = Γn−1w+

n−1, (17)

S̃ +
n−1 = Γn−1S +

n−1ΓT
n−1, (18)

where Γn−1 defined in (17) represents the change of basis from
Φn−1 to Ψn−1, Kx̃x̃ = ΨT

n−1Ψn−1 represents the Gram matrix of
the proposal particles at time n − 1, Kx̃x = ΨT

n−1Φn−1 is the
matrix between the particles and proposal particles at time
n − 1, and λK̃ is the regularization parameter to modify Kx̃x̃.

B. Prediction from Time n − 1 to Time n

The proposal particles at time n− 1 are propagated through
the process function to achieve the prediction particles, i.e.,

x{i}n = f (x̃{i}n−1, u
{i}
n ), i = 1 . . . M. (19)
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where u{i}n represents a process noise sample drawn from
the process noise distribution. Then, the transitional proba-
bility p(xn|xn−1) is embedded using the new basis defined
by the feature mappings of the prediction particles Φn =[
φx(x{1}n ), . . . , φx(x{M}n )

]
, and is approximated as:

p(xn|xn−1) 7→ µ̂−xn
= Φnw−n = Ĉxn |xn−1 µ̂

+
xn−1
,

= Φn
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+
n−1,

(20)

where w−n is the prior kernel weight vector and Ĉxn |xn−1 rep-
resents the empirical transition operator. Next, the empirical
predictive covariance operator Ĉ−xn xn

with the corresponding
prior kernel weight matrix S −n is computed as,

Ĉ−xn xn
= ΦnS −n ΦT

n = Ĉxn |x̃n−1 Ĉ
+
xn−1 xn−1

ĈT
xn |x̃n−1

+Vn,

=Ĉxn |x̃n−1Ψn−1S̃ +
n−1ΨT

n−1Ĉ
T
xn |x̃n−1

+Vn = ΦnS̃ +
n−1ΦT

n +Vn.
(21)

Here, Vn represents the transition residual matrix,

Vn =
1
M

(
Ĉxn |x̃n−1Ψn−1 − Φn

) (
Ĉxn |x̃n−1Ψn−1 − Φn

)T
,

=Φn

[
1
M

((
Kx̃x̃ + λK̃ I

)−1 Kx̃x̃ − I
) ((

Kx̃x̃ + λK̃ I
)−1 Kx̃x̃ − I

)T
]

︸                                                                  ︷︷                                                                  ︸
Vn

ΦT
n ,

(22)
where Vn is the finite matrix representation of Vn. Based on
(20)-(22), the prior w−n and S −n are calculated as,

w−n =
(
Kx̃x̃ + λK̃ I

)−1 Kx̃xw+
n−1 = Γn−1w+

n−1, (23)
S −n = S̃ +

n−1 + Vn. (24)

C. Update at Time n

The observation particles are updated based on the obser-
vation model as,

y{i}n = g(x̃{i}n , v
{i}
n ), i = 1 . . . M. (25)

where v{i}n represents a measurement noise sample drawn
from the measurement noise distribution. The kernel map-
pings of observation particles in the kernel feature space
are Υn =

[
φy(y{1}n ), . . . , φy(y{M}n )

]
. The posterior KME and the

corresponding covariance operator are calculated as [11],

µ̂+
xn

= Φnw+
n = µ̂−xn

+ Qn

[
φy(yn) − Ĉyn |xn µ̂

−
xn

]
, (26)

Ĉ+
xn xn

= ΦnS +
n ΦT

n = cov(φx(xn) − µ̂+
xn

). (27)

where w+
n and S +

n represent the posterior kernel weight and
matrix, respectively. The kernel Kalman gain operator denoted
as Qn is derived by minimizing the residual error Ĉ+

xn xn
.

According to derivations in [11], Qn is calculated as,

Qn = Ĉ−xn xn
CT

yn |xn

(
Ĉyn |xn Ĉ

−
xn xn
ĈT

yn |xn
+ R

)−1
. (28)

where R is the covariance matrix of the observation operator
residual and is approximated as R = κI. The empirical
likelihood operator is calculated as,

Ĉyn |xn = Ĉyn xn Ĉ
−1
xn xn

= Υn

(
ΦT

n Φn + λK I
)−1

ΦT
n ,

= Υn (Kxx + λK I)−1 ΦT
n = ΥnK−1

xx ΦT
n .

(29)

Here, the Gram matrix of particles at time n is calculated as
Kxx = ΦT

n Φn, and λK is the regularization parameter to modify
the covariance operator Kxx. In this paper, λK is set to be 0.
Substituting (21) and (29) into (28), Qn can be calculated as,

Qn = ΦnS −n ΥT
n

(
ΥnS −n ΥT

n + κI
)−1

= Φn S −n
(
GyyS −n + κI

)−1︸                 ︷︷                 ︸
Qn

ΥT
n .

(30)
where Qn is the finite matrix representation of Qn in terms of
the current basis Φn. The Gram matrix of the observation at
time n is Gyy = ΥT

n Υn. Then, the updated KME vector and
matrix are given by,

µ̂+
xn

= Φnw+
n = Φn

[
w−n + Qn

(
G:,yn −Gyyw−n

)]
, (31)

Ĉ+
xn xn

= ΦnS +
n ΦT

n = Ĉ−xn xn
− ΦnQnGyyS −n ΦT

n . (32)

where the kernel vector of the measurement at time n is G:,yn =

ΥT
nφy(yn). Based on the derivations above, the weight mean

vector and covariance matrix are finally updated as,

w+
n = w−n + Qn

(
G:,yn −Gyyw−n

)
, (33)

S +
n = S −n − QnGyyS −n . (34)

IV. Simulation Results

Bearing–only tracking (BOT) is one of the fundamental
problems in target tracking systems. In this section, we report
the tracking performance of different filters applied to BOT
problems of a single target using a single sensor in a 2-D
space. The corresponding dynamical state-space model (DSM)
is described by the equations:

xn =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 xn−1 +


0.5 0
1 0
0 0.5
0 1

 un, (35)

yn = tan−1
(
ηn

ξn

)
+ vn. (36)

Here, n represents time index and n = 1, . . . ,N. The hidden
states are xn = [ξn, ξ̇n, ηn, η̇n]T , where (ξn, ηn) and (ξ̇n, η̇n)
represent the target position and the corresponding velocity in
X-axis and Y-axis, yn is the corresponding observation. The
process noise un follows Gaussian distribution un ∼ N(0, σ2

uI2)
and σu = 0.001. Following [6], the prior distribution for
the initial state is specified as x0 ∼ N(µ0,P0) with µ0 =

[−0.05, 0.001, 0.7,−0.05]T and,

P0 =


0.1 0 0 0
0 0.005 0 0
0 0 0.1 1
0 0 0 0.01

 .
Fig. 2 and Fig. 3 display two representative trajectories and

the tracking performance obtained by four filters: UKF, GPF,
PF, and the proposed AKKF using a quadratic kernel. The
observer is located at [0, 0]. The numbers of particles used for
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Fig. 2: Trajectory-1: Example of tracking a moving target in two dimensions with the
PF, UKF, GPF, and AKKF filters.
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Fig. 3: Trajectory-2: Example of tracking a moving target in two dimensions with the
PF, UKF, GPF, and AKKF filters, where UKF diverges.
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Fig. 4: LMSE performance comparison of the PF, UKF, GPF, and AKKF filters for
Trajectory-1.

PF, GPF and AKKF are 50, while the benchmark performance
is given by a PF with 2000 particles. Fig. 4 and Fig. 5 shows
the average logarithmic mean square error (LMSE) obtained
for 100 random realizations of trajectory-1 and trajectory-2
as a function of particle number denoted as M. From the
simulation results, we can arrive at the following conclusions.
First, for BOT problems, the tracking performance of PF,
GPF and AKKF is obviously better than UKF which shows
divergence for trajectory-2 as shown in Fig. 3. Second, the
proposed AKKF shows significant improvement compared to
the PF and GPF with small particle numbers, as shown in Fig.
4 and Fig. 5.
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Fig. 5: LMSE performance comparison of the PF, UKF, GPF, and AKKF filters for
Trajectory-2.

V. Conclusions

This paper provided a novel model based kernel Kalman
filter. By embedding the probabilities into kernel spaces, more
feature information of the hidden states and observations can
be captured and recorded. Therefore, the proposed AKKF
out performs existing algorithms when applied to a BOT
problem.
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