

Anomaly Detection

Josef Kittler

Dept. Electronic Engineering, University of Surrey J.Kittler@surrey.ac.uk

Support by EPSRC and dstl is gratefully acknowledged

Aims

- To introduce the subject of anomaly detection, its content and relevance
- To introduce the terminology of anomaly detection
- To riview/introduce the mathematical background required

Outline

- Introduction to anomaly detection
- Problem formulation
- Statistical hypothesis testing
- One class classification (SVM)
- Critique of classical anomaly detection
- Complementary mechanisms for anomaly detection
- Anomaly detection system architecture
- Incongruence detection
- Dempster Shaffer reasoning (Prof David Parish)

Introduction to anomaly

Anomaly –

- an important notion in human understanding of the environment
- deviation from normal order or rule
- failure to relate sensor data to a meaning
- manifest in weak or no support for domain specific hypotheses
- Many synonyms signifying different nuances
 - rarity, irregularity, incongruence, abnormality, unexpected event, novelty, innovation, outlier

In science/engineering

- prove disprove hypothesis
- fault detection
- outdated model requires adaptation

Diverse applications

- Many applications formulated as anomaly detection problems
 - surveillance
 - novel object detection
 - abnormal communication network activity
 - medical diagnostics
 - video segmentation
 - suspicious behaviour

Anomaly detection problem formulations

Classification problem

- Abnormality types known
- Detection problem
 - Samples of normal class and negative examples available
- Hypothesis testing problem
 - Only samples of normal class available
 - One class classification problem

Prior art in anomaly detection

- Edgeworth (1888)
- Hundreds of papers
- Many approaches
 - statistical, NN, classification, clustering, information theoretic, spectral
- Excellent surveys
 - Markou&Singh (SP 2003, statistical, neural)
 - Hodge&Austin (AI Review 2004)
 - Agyemang&Barker&Alhajj (Int Data Anal 2006)
 - Chandola&Banerjee&Kumar (ACM Surveys 2010)
 - Saligrama&Konrad&Vodoin (SPM2010, video)

Anomaly detection as a problem in classification

- Microcalcification detection: anomaly in tissue texture
- Anomaly class known
- Anomaly detection solved as a classification problem

Two Class Problem

 Many decision boundaries can separate these two classes.

Classification

Support Vector Machine (SVM)

SURREY If not Linearly Separable

Slack variable ξ_i we allow "error" in classification

Extension to Non-linear Decision Boundary

SVM solves this using kernel function Kernel tricks for efficient computation

Minimizing ||w||² produces a "good" classifier

Classical anomaly model

Conventional mathematical model

- outlier of a distribution
- empirical distribution deviates from the model distribution

Hypothesis testing

- This typically involves some proposition, referred to as a null hypothesis and a test statistics.
- If the outcome of the test statistics is consistent with its known distribution model p(x), then the null hypothesis is accepted.
- An outlier of that distribution would lead to the hypothesis rejection.
- Example: pdf is uniform over support domain S

 $p(x) = const \ x \epsilon S$

For any x outside S the hypothesis would be rejected

Normal (Gaussian) distribution

Gaussian distribution

$$p(x) = [(2\pi)^n |\Sigma|]^{-\frac{1}{2}} exp\{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

- where μ is its mean vector and Σ is the covariance matrix
- Gaussian extends to infinity, hence technically no observation is an outlier
- An observation is considered an outlier at a given level of significance, i.e. if the test statistics value is beyond a boundary corresponding to some vestigial probability outside it, such as 5% or 1%.

Examples of gaussians

100) 0 100 $\Sigma =$ $\mu =$

Examples of gaussians

100 0 0 25 $\Sigma =$

Examples of gaussians

60 40 40 60 $\Sigma =$ $\mu =$

Anomaly detection as one class classification

• Consider a set of points $X = \{x_1, ..., x_N\}$ where x_i is a realisation of a multivariate random variable x drawn from a probability distribution with probability density function p(x).

Data support domain estimation

- We would like to estimate the support domain S of x so that its future observations lie within S with probability 1-α where parameter α is the confidence level specified by the user.
- Fundamentally different from the two class formulation
- Possible approaches
 - Parametric/nonparametric density estimation
 - Quantile function estimation
 - Convex hull enclosure
 - One class SVM

One class SVM

- The aim of one class SVM is to enclose the available one class training set
- Solution should generalise well

Kernel space

• We look for a solution in the feature space $\Phi(x)$ using the kernel representation, i.e.

$$k(x,y) = \Phi(x)^T \Phi(y) \tag{1}$$

- The kernel function, e.g. Gaussian, defines high dimensional feature space implicitly
- The solution defined in terms of a linear boundary in the feature space

$$f_{w,\rho}(x) = sgn[w^T \Phi(x) - \rho]$$
(2)

where w is a weight vector and ρ is an offset parametrising the hyperplane defining the boundary.

Objective function

- The function $f_{w,\rho}(x)$ takes value 1 for $x \in S$ and -1 elsewhere
- It delineates the training set at a specified level of confidence
- The function can be learnt by minimising objective function

$$R[f_{w,\rho}(x)] = R^{emp}[f_{w,\rho}(x)] + w^T w$$
(3)

where R^{emp} measures the empirical risk, that is misclassification of points in the training set and the term $w^T w$ regularises the solution by looking for the maximum margin between the training data and the origin.

Slack variables

- The hyperplane $w^T \Phi(x) = \rho$ separates the training set from the origin.
- Overfitting to data is minimised by allowing "outlier" training points to fall on the wrong side of the boundary. However, their number is controlled by penalising such points x_j by employing slack variable ξ_j

Constrained optimisation

- The use of slack variables and the regularisation term control the trade-off between empirical risk and overfitting
- The optimisation problems can be stated as

$$\min_{w,\xi,\rho} \frac{1}{2} ||w||^2 + \frac{1}{\nu N} \sum_{i=1}^N \xi_i - \rho$$
subject to $w^T \Phi(x) \ge \rho - \xi_i, \ \xi_i \ge 0$
(4)

where $\nu \epsilon(\alpha, 1]$ denotes the upper bound on the training data points that may be outliers

Solve by method of Lagrange multipliers

Dual optimisation problem

- Accordingly, the two constraints are introduced into the objective function with the associated coefficients β_i and γ_i respectively
- This leads to the dual optimisation problem

$$\min \frac{1}{2} \sum_{i,j} \beta_i \beta_j k(x_i, x_j)$$

subject to $0 \le \beta_i \le \frac{1}{\nu N}, \ \sum_i^N \beta_i = 1$ (5)

- The Kunt-Tucker conditions imply that if $\beta_i > 0$ and $\gamma_i > 0$ the inequality constraints become equality constraints
- ρ can be recovered as

$$\rho = w^T \Phi(x_i) = \sum_{j=1}^N \beta_j k(x_i, x_j)$$
(6)

SURREY Relationship to sphere fitting

 Note, for a kernel k(x, y) whose value depends only on the distance between the points x − y

$$k(x_i, x_i) = constant \ \forall i \tag{7}$$

- Hence, all points lie on a hypersphere
- Finding the smallest hypersphere is equivalent to maximising the marging between data and the origin

Relationship with the Parzen estimator

- When $\nu = 1$
 - The constraints become

$$\begin{array}{l} 0 \leq \beta_i \leq \frac{1}{\nu N} \\ \sum_{i=1}^N \beta_i \end{array}$$

- and they imply β_i = 1/N, ∀i
 The expansion Σ^N_{i=1} β_ik(x_i, x) is a Parzen estimator

Example

- 25 samples from a Gaussian
- Parameter v=0.5

Discriminant Boundary

Example of coefficients

Example: A linear case

- Consider the case when $\Phi(x) = x$
- Example: Two Gaussians
- One class SVM result in a greater Type 1 errors (leakage) and smaller Type 2 errors (false alarms).
- Instead of separating the data from the origin, we may formulate the problem so as to separate the data from the centroid as:

$$f_{w,\rho}(x) = sgn\{w^T[\Phi(x) - \frac{1}{N}\sum_{j=1}^N \Phi(x_j)] - \rho\}$$
(9)

1 class SVM vs 2 class SVM

One-Class SVM (Class 1 Only)

Example: A linear case

Comments

Selection of meta parameters

- Kernel bandwidth
- Parameters
- Applicable to high dimensional problems
- Nonlinear boundary facilitated by the kernel trick

One class SVM summary

- Quantile estimation formulated as kernel machine learning
- High probability regions are estimated subject to regularisation
- One class SVM solution compared with two class SVM

Classical model and its critique

- Multiple models
- Discriminative classifiers
- Ambiguity of interpretation
- Contextual reasoning
- Hierarchical representation
- Data quality
- Model pruning

Different aspects of anomaly

Different aspects of anomaly

-Distribution drift -Novelty detection

Incongruence/unexpected event

- Magritte's La duree poignard
- Model base pruning
 - Computational efficiency
- Hierarchical representation

Data quality/ decision confidence

- Data quality
 - effect of noise on the notion of normality
 - need to measure data quality
 - notion of data quality and its dependence on context
- Confidence in classifier output

$$\Delta_c(x) = \frac{P(\omega_i | x) - e_i}{1 - 2e_i}$$

Challenges of a more comprehensive approach

Meaning of data quality

- Quality is relative, not absolute
- Different levels of representation
- Data quality measures
 - Multiple aspects of quality
 - Measures of quality
 - Overall quality/fusion

Distribution drift

Anomaly detection system architecture

- Classical model deficient
 Outlier detection not enough
 Other mechanisms required
 - Data quality detection
 - Incongruence detection
 - Decision confidence estimation
 - Drift detection
 - As well as outlier detection
 - Reasoning (fusion)

Nuances of anomaly

- No anomaly
- Noisy measurement
- Unknown object
- Corrupted
 measurement
- Congruent labelling
- Unknown structure
- Spurious measurement errors

- Unexpected structural component
- Unexpected structural component & structure
- Measurement model drift

Context of anomaly detection

Designing an operational system with anomaly detection capability

- Data collection
- System architecture
- Representation
- Machine learning
- Context modelling
- High level reasoning
- Validation

Incongruence detection

- Detecting differences between observations and expectations (anomaly, rare event, incongruence)
- Basic principle comparison of outputs of weak and strong classifiers (Ketabdar et al 2007)
- Dirac Project (Burget et al 2008, Weinshall et all [2009-2012])
- Exemplified by out-of-vocabulary word detection
 - Phoneme recognizer (weak classifier)
 - HMM speech recognizer (strong, contextual classifier)

Classifier incongruence

Testing for incongruence

- need an incongruence measure
- understand its properties
- sensitivity to noise

 $P(\omega_j|x)$ classifier 1 output

 $\tilde{P}(\omega_j|x)$ classifier 2 output

Kulback-Leibler divergence: measures mutual information between the two distributions

$$\Delta_{BS} = \sum_{j=1}^{r} \tilde{P}(\omega_j | x) \log \frac{\tilde{P}(\omega_j | x)}{P(\omega_j | x)}$$

- Known as Bayesian surprise
- Chi-square measure

$$\psi^2 = \sum_{i=1}^m \frac{[P(\omega_i | \mathbf{x}) - \tilde{P}(\omega_i | \mathbf{x})]^2}{P(\omega_i | \mathbf{x}) + \tilde{P}(\omega_i | \mathbf{x})}$$

- Assumption: estimation errors Gaussian
- Variance proportional to the sum of probabilities

Properties of Chi-square

- Errors for non dominant classes are magnified (scaled by small variance)
- Joint zero entries are ignored
- Even when the probabilities of the dominant hypotheses agree, the sum over all the other hypotheses could be high
- The test statistics based on the assumption that the sampling distribution of errors is a product of Gaussian with zero mean and different variance for each class posterior

Bhattacharyya distance

Bhattacharyya (geometric) distance

$$T_B = \sqrt{\sum_{i=1}^{m} P(\omega_i | \mathbf{x}) \times \tilde{P}(\omega_i | \mathbf{x})}$$

- Properties:
 - Distance different for different distributions, even if the two classifier outputs are identical for all hypotheses
 - Works as a matched filter
 - Measure can be affected by disagreements in the probabilities of minor hypotheses
 - Using as a reference the classifier output with the lowest entropy, the measure would yield much higher value than the posterior distribution with the highest entropy

Bhattacharyya distance

Properties (cont)

- If the class probabilities are uniformly distributed, max value of the matching distribution is $\frac{1}{m}$. For observed zero-one distribution the surprise measure will have the same output value as for an optimal match. On the other hand for zero-one distribution as a reference, the maximum possible value is 1. An observed uniform distribution would yield surprise measure equal to $\frac{1}{m}$.
- Effect of errors can be gauged from $\sqrt{\sum_i [P(\omega_i | \mathbf{x}) + \eta_{\omega_i}]} [\tilde{P}(\omega_i | \mathbf{x}) + \tilde{\eta}_{\omega_i}]$. It looks robust but because of non negativity constraints, etc. there will be some bias.

Kolmogorov-Smirnov test

Kolmogorov-Smirnov test is defined as follows. Let the cumulative probability values c_i and \tilde{c}_i denote

$$c_i = \sum_{k=1}^{i} P(\omega_k | \mathbf{x}) \tag{4}$$

and similarly

$$\tilde{c}_i = \sum_{k=1}^i \tilde{P}(\omega_k | \mathbf{x}) \tag{5}$$

Then Kolmogorov-Smirnov test of incongruence can be defined as

$$T_{KS} = max_i |c_i - \tilde{c}_i| \tag{6}$$

57

Properties of K-S test

Resilience to estimation noise

Defined as

$$T_{CM} = \frac{1}{2} \sum_{i=1}^{m} [P(\omega_i | \mathbf{x}) + \tilde{P}(\omega_i | \mathbf{x})](c_i - \tilde{c}_i)^2$$

- Measures cumulative sum differences weighted by sum of probabilities (variance)
- All terms contribute, not only the max term
- This may impact on error robustness

Bayesian surprise measure

Properties

- It goes to infinity for any hypothesis ω for which $P(\omega|x) \rightarrow 0$ while $\tilde{P}(\omega|x) \neq 0$. This can occur even for insignificant hypotheses and result in producing false alarms of incongruence.
- Not symmetric
- Divergence difficult to calibrate
- Classifier decision agnostic

Delta measure

Defined as

$$\Delta_{avg} = \frac{1}{4} \{ |P(\mu|x) - \tilde{P}(\mu|x)| + \delta(\mu, \tilde{\mu}) |\tilde{P}(\tilde{\mu}|x) - \tilde{P}(\mu|x)| + |\tilde{P}(\tilde{\mu}|x) - P(\tilde{\mu}|x)| + \delta(\mu, \tilde{\mu}) |P(\mu|x) - P(\tilde{\mu}|x)| \}$$

where $\delta(\mu, \tilde{\mu})$ function is defined as

$$\delta(\mu,\tilde{\mu}) = \begin{cases} 0 & if \quad \mu = \tilde{\mu} \\ 1 & if \quad \mu \neq \tilde{\mu} \end{cases}$$

 Dominant hypotheses taken into account, non dominant ignored

Estimation errors

Class probabilities corrupted by noise

$$\hat{P}(\omega|\mathbf{x}) = P(\omega|\mathbf{x}) + \eta_{\omega}(\mathbf{x})$$

satisfying

$$\sum_{i}^{m} \eta_{\omega}(\mathbf{x}) = 0$$

 $0 \le \eta_{\omega}(\mathbf{x}) + P(\omega|\mathbf{x}) \le 1$

Error sensitivity

Probabilities estimates affected by errors $P(\omega|\mathbf{x}) + \eta_{\omega}(\mathbf{x})$ $\tilde{P}(\omega|\mathbf{x}) + \tilde{\eta}_{\omega}(\mathbf{x})$

Constraints

$$\sum_{i}^{m} \eta_{\omega}(\mathbf{x}) = 0 \qquad \qquad 0 \le \eta_{\omega}(\mathbf{x}) + P(\omega|\mathbf{x}) \le 1$$

Estimation error distribution

Gaussian $q(\eta) = N(0, \sigma)$

with folded tails

UNIVERSITY OF

$$P \leq 0.5$$

$$p(\eta) = \begin{cases} 0 & \eta < -P \\ p(\eta) + p(-\eta - 2P) & \eta \geq -P \end{cases}$$

$$P > 0.5$$

$$p(\eta) = \begin{cases} 0 & \eta > 1 - P \\ p(\eta) + p(2 - 2P - \eta) & \eta \leq 1 - P \end{cases}$$

• Pdf curves of Δ_{avg} for classifier output similarity with estimation error noise N(0,0.1)

Label agreement

67

Label disageement

68

Results of simulation studies to determine decision threshold

Error sensitivity of incongruence measures

Scenario

- Identical class probabilities
- Estimation error st.dev 0.05

Thresholding

- One of the classifier incongruence measures can be used as a test statistics to detect incongruence
- An error sensitivity analysis would need to be carried for the chosen measure to estimate the test statistics distribution
- An appropriate decision threshold could then be determined to achieve a specified level of significance