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m To introduce the subject of anomaly
detection, its content and relevance

m To introduce the terminology of anomaly
detection

m To riview/introduce the mathematical
background required
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Problem formulation

Statistical hypothesis testing

One class classification (SVM)

Critique of classical anomaly detection

Complementary mechanisms for anomaly
detection

Anomaly detection system architecture
Incongruence detection
Dempster Shaffer reasoning (Prof David Parish)
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SURREY Introduction to anomaly

m Anomaly -

= an important notion in human
understanding of the environment

m deviation from normal order or rule
m failure to relate sensor data to a meaning
s manifest in weak or no support for domain
specific hypotheses
m Many synonyms signifying different
nuances

m rarity, irregularity, incongruence,
abnormality, unexpected event, novelty,
innovation, outlier
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m In science/engineering
m prove disprove hypothesis
s fault detection
m outdated model requires adaptation
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m Many applications formulated as anomaly
detection problems
m surveillance
m hovel object detection
s abnormal communication network activity
m medical diagnostics
m video segmentation
m suspicious behaviour



arsver ANomaly detection problem
formulations

m Classification problem
s Abnormality types known

m Detection problem

m Samples of normal class and negative
examples available

m Hypothesis testing problem
m Only samples of normal class available
m One class classification problem
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SURREY  Prior art in anomaly detection

m Edgeworth (1888)
m Hundreds of papers

m Many approaches
m statistical, NN, classification, clustering, information
theoretic, spectral
m Excellent surveys
s Markou&Singh (SP 2003, statistical, neural)
s Hodge&Austin (Al Review 2004)
s Agyemang&Barker&Alhajj (Int Data Anal 2006)
s Chandola&Banerjee&Kumar (ACM Surveys 2010)
m Saligrama&Konrad&Vodoin (SPM2010, video)



sy of Anomaly detection as a
problem in classification

m Microcalcification detection: anomaly in
tissue texture

m Anomaly class known

m Anomaly detection solved as a
classification problem
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SURREY Two Class Problem

m Many decision boundariest
can separate these two
classes. O Class 2
., O
(] O
: O
3 O
O O]
B n
Class 1
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SURREY Tf not Linearly Separable

mSlack variable g we allow “error” in
classification




s or Exte_n_smn to Non-linear
Decision Boundary

m SVM solves this using kernel function
m Kernel tricks for efficient computation
= Minimizing ||w||? produces a “good” classifier
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SURREY Classical anomaly model

m Conventional mathematical model
m outlier of a distribution

m empirical distribution deviates from
the model distribution
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SURREY Hypothesis testing

m This typically involves some proposition, referred
to as a null hypothesis and a test statistics.

m If the outcome of the test statistics is consistent
with its known distribution model P(Z), then the
null hypothesis is accepted.

m An outlier of that distribution would lead to the
hypothesis rejection.

m Example: pdf is uniform over support domain S

p(x) = const xeS

m For any x outside S the hypothesis would be
rejected
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g o Normal (Gaussian)
distribution

Gaussian distribution
p(z) = [(2m)"|B]]~Fexp{—}(z — p)TE" (& — p)}

where [l is its mean vector and X is the
covariance matrix

Gaussian extends to infinity, hence technically
no observation is an outlier

An observation is considered an outlier at a
given level of significance, i.e. if the test
statistics value is beyond a boundary
corresponding to some vestigial probability
outside it, such as 5% or 1%.
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Examples of gaussians
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Examples of gaussians
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oo Anomaly detection as one
class classification

e Consider a set of points X = {xq,.....,zy } where z; is
a realisation of a multivariate random variable x drawn
from a probability distribution with probability density
function p(x).




ameeor - Data support domain
estimation

o We would like to estimate the support domain S of z so
that its future observations lie within S with probability
1 —a where parameter « 1s the confidence level specified
by the user.

m Fundamentally different from the two class
formulation

m Possible approaches
s Parametric/nonparametric density estimation
s Quantile function estimation
s Convex hull enclosure
s One class SVM »
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One class SVM

m The aim of one class SVM is to enclose
the available one class training set

m Solution should generalise well
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SURREY Kernel space

e We look for a solution in the feature space ®(z) using
the kernel representation, 1.e.

k(x,y) = <I>(;1?)T<I>(y) (1)

m The kernel function, e.g. Gaussian, defines high
dimensional feature space implicitly

m The solution defined in terms of a linear boundary in
the feature space

Jw.p(x) = sgn..[wT(I)(;zt) — p (2)

where w 1s a weight vector and p 1s an offset parametris-
ing the hyperplane defining the boundary.
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P SURREY  Objective function

e The function f,, ,(x) takes value 1 for zeS and —1
elsewhere

m It delineates the training set at a specified level
of confidence

e The function can be learnt by minimising objective func-
tion

Rlfup(@)] = B[ fy p(@)] + w0 (3)

where R¢™P measures the empirical risk, that is misclas-
sification of points in the training set and the term w’ w
regularises the solution by looking for the maximum
margin between the training data and the origin.
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SURREY Slack variables

o The hyperplane w! ®(z) = p separates the training set
from the origin.

o Overfitting to data 1s minimised by allowing “outlier”
training points to fall on the wrong side of the boundary.
However, their number is controlled by penalising such
points xz; by employing slack variable &;
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SURREY  Constrained optimisation

m The use of slack variables and the regularisation
term control the trade-off between empirical risk
and overfitting

m The optimisation problems can be stated as

. 1 1 N
llllllw,g,p 5”"“"‘“2 + vN Z'L:l gi — P (4)
subject to wl' ®(z) > p—&;, & >0 |

where ve(a, 1] denotes the upper bound on the training
data points that may be outliers

m Solve by method of Lagrange multipliers
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SURREY  Dual optimisation problem

e Accordingly, the two constraints are introduced into the
objective function with the associated coefficients [3; and
v; respectively

e This leads to the dual optimisation problem

ming Y, i.; Bib; k(.lz,frj)

5
subject to 0 < 3; < —% Z Bi =1 )

e The Kunt-Tucker conditions 1mply that if 3; > O and v; >

0 the inequality constraints become equality constraints
e p can be recovered as

N
p=w"®(z;) = Z Bik(zi, x;) (6)
=1
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SURREY Relationship to sphere fitting

e Note, for a kernel k(x,y) whose value depends only on
the distance between the points x — y

k(xi,x;) = constant i (7)

m Hence, all pointslieona |-
hypersphere

m Finding the smallest
hypersphere is equivalent to
maximising the marging
between data and the origin
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R Relationship with the
3 SURREY Parzen estimator

m When v =1

e |he constraints become

0 % Bi < &
Zz’:l -B’L
o and they imply 3; = &7, Vi
o The expansion Z,fi , Bik(z;, x) 1s a Parzen estimator
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m 25 samples from a
Gaussian

m Parameter v=0.5

Example

Samples

Kernel Matrix

5 10 15 20 25

Discriminant Boundary
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SURREY  Example of coefficients

0.000 0.051 0.080 0.080 0.080

E ﬂ
0.024 0.080 0.021 0.000 0.080
0.000 0.000 0.000 0.000 0.000
0.000 0.015 0.080 0.080 0.080

E
0.080 0.080 0.009 0.080
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BSURREY Example: A linear case

o Consider the case when ®(x) =z

m Example: Two Gaussians

e One class SVM result in a greater Type 1 errors (leakage)
and smaller Type 2 errors (false alarms).

o Instead of separating the data from the origin, we may
formulate the problem so as to separate the data from the
centroid as:

1 N
fwplz) = sgn{u' t) =+ 2_: 9)
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SURREY 1 class SVM vs 2 class SVM

5 Training Samples One—Class SVM (Class 1 Only)
Class1| .
© Class2| - xxy .
{—'\‘ % X A
XJ © .j%"
a ! .':2
0 X o
-5 0 5
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Class 1
Class 2

Example: A linear case

One-Class SVM (1)

s One-Clazsa SVM (2)
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Class 1
Class 2

Training Samples

One-Class SVM (1)

One-Class SVM (2)
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m Selection of meta parameters
m Kernel bandwidth
m Parameters

m Applicable to high dimensional
problems

m Nonlinear boundary facilitated by
the kernel trick
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m Quantile estimation formulated as kernel
machine learning

m High probability regions are estimated
subject to regularisation

m One class SVM solution compared with
two class SVM
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SURREY  C|assical model and its critique

m Multiple models

m Discriminative classifiers

m Ambiguity of interpretation
m Contextual reasoning

m Hierarchical representation
m Data quality

m Model pruning

ANOMALY DETECTION

MODEL
OUTLIER
DETECTOR

A

ANOMALY
FLAG

SENSOR

E——

SINGLE
HYPOTHESIS
MODEL

A 4

ACTION
DRIVER




B 8URREY  Different aspects of anon.




HURREY  Different aspects of anomal

-Distribution drift
-Novelty detection

41



Data quality
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oy LpERsYr Incongruence/unexpected
event

m Magritte’s La duree poignhard

m Model base pruning
s Computational efficiency

m Hierarchical representation

Scene Graph Model Graph
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sy Data quality/
decision confidence

/‘ m Data quality

m effect of noise on the notion of
normality

m need to measure data quality

= notion of data quality and its
,* dependence on context

m Confidence in classifier output

P(w;i|z) — e;

/ \\ AC<I) —

1 — 26)1
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SURREY Challenges

m Challenges of a more comprehensive

approach

s Meaning of data quality

e Quality is relative, not absolute
e Different levels of representation

m Data quality measures
e Multiple aspects of quality

e Measures of quality
e Overall quality/fusion

i

~
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Distribution drift
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m Transfer of learning
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avssver Anomaly detection
system architecture

—— AOwALY DETECTION
m Classical model deficient | \
= Qutlier detection not enough | wwon. o
m Other mechanisms required o '
s Data quality detection | y ;
= Incongruence detection v e ||
= Decision confidence i L e g
estimation I
» Drift detection = ’
= As well as outlier detection > oo >
s Reasoning (fusion) i : \ {/

—



SURREY Nuances

No anomaly -
Noisy measurement
Unknown object O
Corrupted

measurement o

Congruent labelling
Unknown structure

Spurious
measurement errors

of anomaly

Unexpected structural
component

Unexpected structural
component & structure

Measurement model
drift

49



g o Context of anomaly
detection

m Designhing an operational system with
anomaly detection capability

m Data collection

m System architecture
m Representation

m Machine learning

m Context modelling

m High level reasoning
m Validation

50
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m Detecting differences between observations and
expectations (anomaly, rare event,
incongruence)

m Basic principle — comparison of outputs of weak
and strong classifiers (Ketabdar et al 2007)

m Dirac Project (Burget et al 2008, Weinshall et all
[2009-2012])

m Exemplified by out-of-vocabulary word detection
s Phoneme recognizer (weak classifier)
m HMM speech recognizer (strong, contextual classifier)
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SURREY Classifier incongruence

m Testing for incongruence
m heed an incongruence measure

= understand its properties . Pl 2]
m sensitivity to noise P(w, |1) P(ws |x)
| P(w,|z) Pws|z)
(a) Observation from subsystem 1 (expert)
P(wj |CE) classifier 1 output 2
. 1., Pl b
P(w;|2) classifi Pk
7 |¥) classifier 2 output ~ Blus )
P (ws|z) I
l class index

(b) observation from subsystem 2 (assumption)
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m Kulback-Leibler divergence: measures mutual
information between the two distributions

P w |l)
ABS — E P |l 10h J
= J P(wj|l)

m Known as Bayesian surprise
m Chi-square measure

[P(wi|z) — ( |X)]
Z wZ|X +Pw1|X)

m Assumption: estimation errors Gaussian
m Variance proportional to the sum of probabilities
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SURREY  Properties of Chi-square

m Errors for non dominant classes are magnified (scaled
by small variance)

= Joint zero entries are ignored

s Even when the probabilities of the dominant
hypotheses agree, the sum over all the other
hypotheses could be high

m The test statistics based on the assumption that the
sampling distribution of errors is a product of Gaussian
with zero mean and different variance for each class
posterior
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SURREY  Bhattacharyya distance

m Bhattacharyya (geometric) distance

m

I'p = Zp(wi|x) x P(wi|x)

\5
m Properties:
m Distance different for different distributions, even if the
two classifier outputs are identical for all hypotheses
m Works as a matched filter

m Measure can be affected by disagreements in the
probabilities of minor hypotheses

m Using as a reference the classifier output with the
lowest entropy, the measure would yield much higher
value than the posterior distribution with the highest
entropy -
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m Properties (cont)

o If the class probabilities are uniformly distributed, max
value of the matching distribution is % For observed
zero-one distribution the surprise measure will have the
same output value as for an optimal match. On the
other hand for zero-one distribution as a reference, the
maximum possible value 1s 1. An observed uniform
distribution would yield surprise measure equal to %

e Effect of  errors can  be gauged  from

\/ S P (wi|x) 4+ 7w, [P(wi]x) + 7lw,]- It looks robust
but because of non negativity constraints, etc. there will
be some bias.
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PURREYKolmogorov-Smirnov test

Kolmogorov-Smirnov test is defined as follows. Let the
cumulative probability values ¢; and ¢; denote

c; = Z P(wg|x) (4)
k=1
and similarly |
C; = Z P(wi|x) (3)
k=1

Then Kolmogorov-Smirnov test of incongruence can be de-
fined as
Tks = max;|c; — ¢;| (6)
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m Resilience to estimation noise

USRI T LI B B B T T T T T 1171 T T T 1
1.0 - e
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SURREY  Cramer von Mises measure

m Defined as

1 m R )
Tem = 5 ) _[P(wilx) + P(wilx)](c; — &)

i=1
m Measures cumulative sum differences weighted
by sum of probabilities (variance)
m All terms contribute, not only the max term

m This may impact on error robustness
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m Properties

" It goes to infinity for any hypothesis w for which
P(w|z) — 0 while P(w|z) # 0. This can occur even
for insignificant hypotheses and result in producing false
alarms of incongruence.

B Not symmetric
m Divergence difficult to calibrate
m Classifier decision agnostic
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m Defined as

~

Aavg Zi{lp(ul" P(ulz)| + o(n, #)IP(;IE)—P( |2)]
+P(alz) — P(plz)| + 6(p, )| P(plx) — P(alz)|}

where (s, 2) function is defined as

v )0 if p=p
o, 1) = { 1 if p#pn
= Dominant hypotheses taken into account, non
dominant ignored
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Disagreement

m Distribution of noise 0.8"
free Agvg values
q%
0.4-
0.2
% 02 04 06 o088 1
Agreement Disagreement All Cases
8 8 3

Bavg Bavg Bavg
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SURREY Estimation errors

m Class probabilities corrupted by
noise

A

P(w|x) = P(w[x) + 1., (x)

m satisfying m

Z Nw(x) =0

)

0 <n,(x)+ Plwx) <1
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SURREY Error sensitivity

m Probabilities estimates affected by errors
P(w|x) + nw(x)

P(wlx) + Nw(X)

m Constraints

an(x) =0 0 < nw(x) + Plwlx) <1

()
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= Gaussian q(n) = N(0,0)

P< 0.5
with folded tails () :{ 0 n<—P
/ p(n) +p(—n—2P) n>-P

P> 0.5

p(n) = 0 n>1-—P
PUD= p) +p(2—2P—n) n<1-P

P=0.1, N(0,0.15) P=0.9, N(0,0.15)

5 5r ' ' — '

4 4

3 3

2 2

1 1

0 . ' 65
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= Pdf curves of A,,, for classifier output
similarity with estimation error noise N(0,0.1)

20
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m Label agreement

3 Class Problem

6 Class Problem
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m Label disageement

3 Class Problem

6 Class Problem
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m Results of simulation studies to determine
decision threshold

Agreement - 3 Class Problem - 6=0.05 Disagreement - 3 Class Problem - 6=0.05

1 ' I ‘ I I S Val=01 1
0.9+ :::z ,::n o N Surp. Val=0.2
0.8" Surp :'Ia\:o 3 0.9 Surp :"a'iﬂ 5
: —— 08 aup. Va8
<07 _ 0.7 Surp. Vai-03 |
¢ 0.6 - R 06 '
gg-i‘ g 0.5 «
= 0.4- - 204+ ]
“ o3l <03l ~
0.2 0.2
0.1f 0.1+
0 . . ! ‘ ' - - - - 1 1 L y L M . \
0 01 02 03 04 05 06 07 08 09 % 01 02 03 04 05 06 07 08 09 1

Surprise Threshold Surprise Threshold



anvesiry oF Error sensitivity of
Incongruence measures

pdf(Bayesian Surprise)

SURREY

pdf(Delta-avg Surprise) 86

Scenario

50»—-

4 40

q(n)

=N(0,0)

» Identical class probabilities
« Estimation error st.dev 0.05
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SURREY Thresholding

m One of the classifier incongruence measures can
be used as a test statistics to detect
Incongruence

m An error sensitivity analysis would need to be
carried for the chosen measure to estimate the
test statistics distribution

m An appropriate decision threshold could then be
determined to achieve a specified level of
significance
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