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T
he large amount of data 
available for analysis 
and management raises 
the need for defining, 
determining, and ex-

tracting meaningful information 
from the data. Hence in scientific, 
engineering, and economics stud-
ies, the practice of clustering data 
arises naturally when sets of data 
have to be divided into subgroups 
with the aim of possibly deducting 
common features for data belong-
ing to the same subgroup. For in-
stance, the innovation scoreboard [1] 
(see Figure 1) allows for the classification 
of the countries into four main clusters correspond-
ing to the level of innovation defining the “leaders,” the 
“followers,” the “trailing,” and the “catching up” countries. 
Many other disciplines may require or take advantage of a 
clustering of data, from market research [2] to gene expres-
sion analysis [3], from biology to image processing [4]–[7]. 
Therefore, several clustering techniques have been devel-
oped (for details see “Review of Clustering Algorithms”).

The easiest way to represent the data to be clustered is 
by associating each datum with a point in a given space; 
therefore, clustering can be performed on the basis of the 
displacement of these points. In fact, clustering algorithms 
are explicitly or implicitly connected to some definition of 
proximity measure. Although the Euclidean norm is often 
used, in particular circumstances an alternative norm may 
yield better solutions [8]. 

Herein a distance-based clustering method is described. 
While performing the clustering, the algorithm identifies 
the regions of interest surrounding the points belonging 
to the same cluster. This idea is developed by making use 
of the concepts of level function, level set, and level lines; 
each cluster is obtained by grouping together points 
belonging to the same connected region of the level set. 
Moreover, the level function is interpreted as the Hamilto-
nian function of a Hamiltonian dynamical system. The 
interesting fact associated with the definition of a level 
line as the trajectory of a Hamiltonian system is that with 
the integration of the Hamiltonian system, some particu-
lar geometrical features associated with the connected 
region internal to the level line can be determined. These 
features, called moments, contain information that is used 
to develop a clustering procedure for data sets changing 
on time. 
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The article is organized as follows. After describing the 
two-dimensional Hamiltonian-based clustering algorithm, 
the discrete-time dynamic clustering is developed, together 
with the case of the time-dependent Hamiltonian function. 
Subsequently, the n-dimensional version of the method is 
presented. Finally, examples and applications of the meth-
ods are given, and open problems and future developments 
are described. 

Hamiltonian-based algorithm
This section describes a clustering algorithm based on the 
notions of level function, level set, and level lines. 

Definition 1 
A level function is a continuous function :H K R" , with 
compact support K R21 . A (super) level set is a set KL 1

such that, for all ,L!p  ( )H p  is larger than a given value. 
More precisely, the level set corresponding to the level Hr , 
is the set { : ( ) }H HK r! $p p . In general, a level set may be 
the disjoint union of more than one connected set, hence 
the following definitions are useful. A connected set R L1

is a maximal connected component (MCC) of the level set L  if 
for each connected set R R0 !  such that R R01 , there 
exists R\R00 !p  such that L0 gp . The boundary of each 
maximal connected component of the level set is a level line. 

Consider Figure 2, and let the level set L  be denoted by 
the shaded areas. Then the set R , delimited by the dotted 

line, is not an MCC. In fact the set R0 , denoted by the 
dashed line, is such that R R0 !  and R R01  but all the 
points in R\R0  belong to L . On the other hand, the sets R1  
and  R2  are MCCs of L . In particular, L R R1 2,= . 

The graph of the function H is a surface in R3  that may 
exhibit local maxima or local minima. Given a value Hr , 
included between the highest and the lowest quotes of 
the graph, all the points of the graph can be connected 
having the same quote Hr . The set of these points results 
in a number of lines in R3 ; the projection of each of these 
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Figure 1  Innovation scoreboard of EU countries. EU countries are represented on a Cartesian plane according to their summary inno-
vation index (vertical axis) and their annual growth rate (horizontal axis). Four main clusters can be identified.
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Figure 2  Level sets and maximal connected components. A level 
set L  (shaded area) in general consists of more than one maximal 
connected component. In this figure it consists of two maximal 
connected components (MCCs) (R1  and R2 ). R , delimited by the 
dotted line, is not an MCC of L ; in fact R R R0 1S 1 .
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lines onto R2 is a level line corresponding to the level Hr . 
If a level line is closed and all the internal points belong 
to the level set, then the set of the internal points is a max-
imal connected component of the level set. Moreover, if 

the reference Hr  is suitably chosen, the maximal con-
nected components are disjoint and are the projections of 
pieces of the surface around a local maxima. Now, sup-
pose that the set P  of the data to be clustered is a subset 

Clustering algorithms are divided into the following principal 

categories.

	 Hierarchical algorithms (single and complete link algo-

rithms, CURE [S1], BIRCH [S2], partial least squares [S3], 

and CHAMELEON [S4]). A measure of similarity and dis-

similarity between objects must be defined together with 

a linkage criterion. Hierarchical clustering algorithms or-

ganize data into a hierarchical structure according to the 

proximity matrix, which contains all the pairwise dissimi-

larities or similarities between the points in the data set. 

The results are usually depicted by a binary tree or den-

drogram. Finally the clusters are obtained by considering 

the dendrogram at some fixed level.

—	 Agglomerative algorithms. Each data point belongs to 

a separate cluster, and a series of merge operations is 

executed until all objects belong to the same group.

—	 Divisive algorithms. The entire data set belongs to a 

cluster, and a procedure successively divides it until 

all clusters are singleton clusters.

	 Partitional algorithms (k-means, k-medoid clustering [S5]–

[S8], k-means with Fisher discriminant analysis  [S9], CLAR-

ANS [S10]). A single partition of the data is obtained. Parti-

tional methods are suitable for large data sets. The partitional 

techniques usually produce clusters by optimizing a criterion 

function. The number of clusters must be fixed a priori.

	 Artificial neural networks (Kohonen nets [S11], ellipsoid-

ART with Mahalanobis distance [S12], [S13]). Two ap-

proaches may be distinguished, supervised or unsu-

pervised neural networks. In the former a deterministic 

mechanism is designed to adjust (training phase) the con-

nection weights for the neurons. The latter consist of a 

single layer of neurons known as a Kohonen layer and are 

usually self-organizing networks.

	 Density-based algorithms (ADACLUS [S14], DBSCAN 

[S15], DENCLUE [S16]). Density-based algorithms iden-

tify clusters as dense regions of objects in the data space 

separated by regions of low density. The method allows to 

determine clusters or arbitrary shapes. A density thresh-

old parameter must be fixed a priori.

	 Graph theory-based algorithms (AMOEBA [S17]). Nodes 

of a weighted graph describe objects in the feature space 

while edges quantify the similarity between separate ob-

jects. The clustering is performed by determining maxi-

mally complete subgraphs (cliques).

	 Kernel-based algorithms (support vector machine [S18], 

[S19]). The data points are nonlinearly mapped into a 

higher dimensional feature space where the data points 

can be linearly separated.

References
[S1] S. Guha, R. Rajeev, and K. Shim, “CURE: An efficient clustering 
algorithm for large databases,” Inform. Syst., vol. 26, no. 1, pp. 35–58, 
2001.
[S2] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient 
data clustering method for very large databases,” in Proc. 1996 ACM 
SIGMOD Int. Conf. Management of Data, Montreal, 1996, pp. 103–
114.
[S3] J. L. Liu, Y. Bai, J. Kang, and N. An, “A new approach to hierarchi-
cal clustering using partial least squares,” in Proc. Int. Conf. Machine 
Learning and Cybernetics, 2006, pp. 1125–1131.
[S4] G. Karypis, E. H. Han, and V. Kumar, “CHAMELEON: A hierarchi-
cal clustering algorithm using dynamic modeling,” IEEE Comput., vol. 
32, no. 8, pp. 68–75, 1999.
[S5] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” 
ACM Comput. Surveys, vol. 31, no. 3, pp. 264–323, 1999.
[S6] J. McQueen, “Some methods for classification and analysis of 
multivariate observations,” in Proc. 5th Berkeley Symp. Mathematical 
Statistics and Probability, 1967, pp. 281–297.
[S7] Z. Huang, “Extension to the k-means algorithm for clustering data 
sets with categorical values,” Data Mining Knowl. Discov., vol. 2, no. 3, 
pp. 283–304, 1998.
[S8] K. Krishna and M. M. Narasimha Murty, “Genetic K-means algo-
rithm,” IEEE Trans. Syst., Man, Cybern. B, vol. 29, no. 3, pp. 433–439, 
1999.
[S9] D. A. Clausi, “K-means iterative Fisher (KIF) unsupervised cluster-
ing algorithm applied to image texture segmentation,” Pattern Recog-
nit., vol. 35, no. 9, pp. 1959–1972, 2002.
[S10] R. Ng and J. Han, “Efficient and effective clustering method for 
spatial data mining,” in Proc. 20th Very Large Data Base Conf., 1994, 
pp. 144–155.
[S11] N. R. Pal, J. C. Bezdek, and E. C. K. Tsao, “Generalized clustering 
networks and Kohonen’s self-organizing scheme,” IEEE Trans. Neural 
Netw., vol. 4, no. 4, pp. 549–557, 1993.
[S12] G. C. Anagnostopoulos and M. Georgiopoulos, “Ellipsoid ART 
and ARTMAP for incremental clustering and classification,” in Proc. Int. 
Joint Conf. Neural Networks, 2001, pp. 1221–1226.
[S13] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE 
Trans. Neural Netw., vol. 16, no. 3, pp. 645–678, 2005.
[S14] G. V. Nosovskiy, D. Liu, and O. Sourina, “Automatic clustering and 
boundary detection algorithm based on adaptive influence function,” 
Pattern Recognit., vol. 41, no. 9, pp. 2757–2776, 2008.
[S15] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based 
algorithm for discovering clusters in large spatial databases with noise,” 
in Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining, 1996, 
pp. 226–231.
[S16] A. Hinneburg and D. A. Keim, “An efficient approach to clustering 
in large multimedia databases with noise,” in Proc. 4th Int. Conf. Knowl-
edge Discovery and Data Mining, 1998, pp. 58–65.
[S17] V. Estivill-Castro and I. Lee, “AMOEBA: hierarchical clustering 
based on spatial proximity using Delaunay diagram,” in Proc. 9th Int. 
Symp. Spatial Data Handling, 2000, pp. 26–41.
[S18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine 
Learn., vol. 20, no. 3, pp. 273–297, 1994.
[S19] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support 
vector clustering,” J. Machine Learn. Res., vol. 2, pp. 125–137, 2001.

Review of Clustering Algorithms



AUGUST 2012 «  IEEE CONTROL SYSTEMS MAGAZINE  77

of R2 . The notion of level function may be exploited for 
clustering purposes. The result is achieved constructing a 
level function such that the images of data points that 
share common features lie around the same local maxima. 
In this case it is possible to find a suitable reference level 
such that each maximal connected component corre-
sponds to a cluster. 

Suppose that P  has N elements. A way to construct the 
function H is to associate a function :H R Ri

2
"  with each 

datum point ,Pi !p  , ,i N1 f= . This function represents 
the information associated with the position of ip . The 
functions Hi , , ,i n1 f=  are then combined to define the 
overall level function H. The final aim of a clustering 
method is to merge the information associated with the 
single data into the information associated with the cluster. 
As a consequence, the functions Hi  need to have their 
maximum value in ip , where the information is maximal, 
and a decreasing value when increasing the distance from 

ip . Some examples are the cone function, the hat function, 
and the Gaussian function; see a one-dimensional version 
in Figure 3. 

Since the overall function ( )H p  is expected to maintain 
the entire information provided by each value ( )Hi p , then 
a possible choice is to define H as the p-norm of the vector 
of all the His, i.e., 

	 ( ) ( ( ) ( ) ( )) ( )H H H H H, , , ,N p i
p

i

N
p

1 2
1

fp p p p p= =
=

/ � (1) 

with 1p , ,3f= , where, for instance, ( )H ei
i 2

2

p = p p- - . 
Specifically, in the following H is defined as the sum, 
namely the 1-norm, of the His, while the single Hamilto-
nian function is defined as a Gaussian function, that is, 

	 ( ) ( ) .H H ei
i

N

i

N

1 1

i 2
2

p p= = p p

=

- -

=

/ / � (2)

The Gaussian function is chosen because it is positive and 
smooth and can be interpreted as a probability density 
having its maximum in ,ip  which is an effective way of 
representing the information associated with the data 
points. 

The level function can be interpreted as a clustering 
function by choosing a reference value Hr  and considering 
a cluster as the set of data points lying within the same 
MCCs of the level set corresponding to Hr . In Figure 4, for 
instance, the level function and the value Hr  are such 
that  the level set corresponding to Hr  is made of three 
MCCs, namely, ,R1  R2 , and R3 , each of which identifies a 
cluster,  namely, { }C1 1p= , { }, , , , ,C 4 5 7 92 2p p p p p=  and 

{ }, , ,C 3 6 83 10p p p p= . 
To explicitly find the level line S j  associated to R j , the 

clustering function H is regarded as a Hamiltonian func-
tion and the corresponding Hamiltonian system is defined. 
The simplest form of a planar Hamiltonian system is 
described by the equations 

	 ( )x
y
H x x, 0 ,0
2
2

= =o  

	 ( )y
x
H y y, 0 ,0
2
2

=- =o  

where ( )x y, <  is the state. The time derivative of H is 

	 0H
x
H x

y
H y ,

2
2

2
2

= + =o o o � (3) 

which means that ( ( ) ( ))H x t y t,  is constant for all t 0$ . 
Therefore the trajectory ( ( ) ( ))x t y t,  lies on a level line of H. 
The property H 0=o  holds also for the system 

	 ( ) ( )x
y
H f x y x x0, , ,
2
2

= =o r � (4) 

	 ( ) (0)y
x
H f x y y y, , ,
2
2

=- =o r � (5)

where ( )f x y,  is any continuous positive function. Hence, 
denote with x and y the coordinates of ,p  that is, ( )x y, ,p=  
and assume that the initial condition ( )x y,r r  is such that 
( )x y, S j!r r , namely, ( )H x y H, r=r r . Then the trajectory of 
system (4)–(5) lies on S j  for all t. As a matter of fact, the 

ξiξiξi

(a) (b) (c)

Figure 3  Definition of level functions. The figure shows some 
examples of possible choices for the function Hi, which is the basis 
for the construction of the overall Hamiltonian function H: (a) a 
cone function, (b) a hat function, and (c) a Gaussian function.
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Figure 4  Example of the data set. A possible configuration for 
{ }, , .P 1 10fp p=  The level reference Hr  is such that the level set 

is made of three MCCs, namely, ,R R1 2 , and R3 . The MCCs 
identify the clusters { }C1 1p= , { }, , , ,C2 2 4 5 7 9p p p p p= , and 

{ }, , ,C 3 6 8 103 p p p p= .
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knowledge of an initial condition pr  such that ( )H Hrp =r  is 
not necessary. In fact, a modified version of system (4)–(5) 
may be considered. To state the main result associated with 
the modified system, a preliminary definition and a lemma 
are needed.

Definition 2 
The diameter of a set C is ( ) { ( ) :supC d x y x Cdiam , ,_ !  

}y C ,!  where ( )d x y,  is the Euclidean distance between x 
and y. 

Lemma 1 
Let : [ ]T0, R2

"c  be a continuous curve with continuous 
first-order derivatives, let ( )L c  be its length and let 
( ( ) ( ))x t y t,  denote the parametric description of ,c  namely, 
the image in R2  of [0 ]t T,! . Moreover, suppose that c  is 
contained in a compact set A , whose diameter is 

( ) Mdiam A = , the equation ( )x t 0=o  has at most zx  solu-
tions in [ )T0,  and the equation ( ) 0y t =o  has at most zy  solu-
tions in [ )T0, . Then ( ) ( )L M z z 2x y#c + +  (for the proof see 
“Proof of Lemma 1”). 

As mentioned previously, the property of the Hamilto-
nian systems, namely, that ( )H t  is constant, can be exploited 
for a Hamiltonian clustering even though the initial condi-
tion pr  is such that ( )H Hr!pr , as stated by the following 
result. 

Theorem 1 
Let H be defined by (2). For each initial condition ( ( )x 0 ,  
( ))y 0 ,  the dynamical system 

	 ( ) ( )x f x y
y
H

x
H H H, ,r

1/3

2
2

2
2

= - -o c m � (6)

	 ( ) ( )y f x y
x
H

y
H H H, ,r

1/3

2
22
2

=- + -o c m � (7)

with the positive-definite function ( )f x y,  defined as 

	 ( )

( )

( )
f x y

x
H

y
H H x y H

x
H

y
H H x y H

,
, if , ,

, if ,
/

r

r

2 2 1

2 2 1 2
2
2

2
2

2
2

2
2

!

=

+

+ =

-

-

c cc

c cc

m m m

m m m

Z

[

\

]
]

]
]

 

provided the trajectory satisfies / /H x H y 02 2 !2 2 2 2+^ ^h h  
for all t, is such that the state of the system is driven to a 
level line S j  corresponding to the level set ( )H x y H, r=  in 
finite time and the level line S j  is spanned in finite time 
(for the proof of the theorem see “Proof of Theorem 1”). 

The time required for the state of the system to converge 
to S j  and the time needed to span the level line can be ren-
dered arbitrarily small by multiplying f by a positive con-
stant 1k .2

A naive methodology to compute all the level lines con-
sists of integrating the Hamiltonian system (6)–(7) N times, 
the ith time picking as initial condition a point close to the 
datum point Pi !p . Each ip , in fact, belongs to some con-
nected subset R j  of the level set and, therefore, is internal to 
the level line S j . However, this exhaustive approach is not 
very efficient as it requires to compute the same level line 
S j  as many times as there are data points in R j . A more 
efficient algorithm makes use of the concept of winding 
number [9] of a point ( )x y,i i ip =  with respect to the closed 
curve S j , defined as 

	 ( )
( ) ( )

( ) ( )
w

x x y y
y y dx x x dy

2
1, .Si j

i i

i i

2 2S j
_p
r - + -

- - + -#

The above ideas lead to the following clustering algorithm, 
which terminates after a finite number of iterations. 

»» Step 1: Let i 1=  and j 1= . 
»» Step 2: Integrate system (6)–(7) with )(0 ip p= . For all 
k i N1, ,f= + , compute ( )w ,Si jp . 

»» Step 3: For all k i N1, ,f= + , if ( )w , 1Si jp =  then 
{ } .p\P P i!

»» Step 4: If P 4! , then go to Step 2 with i i 1! +  and 
j j 1! + . Otherwise STOP. 

Note that Step 2 allows to compute the boundary S j  of 
the connected set to which ip  belongs. Note also that 

Each cluster is obtained by grouping together points belonging  

to the same connected region of the level set.

The length of the curve c  is given by

( ) ( ) ( )L x y t x t y t td d .
T T2 2

0 0
#c = + +o oo o ^ h# #

If A1c , then the length spanned in the x direction in a 

time interval in which xo  does not change sign is bounded 

by M. Thus, if xo  changes sign at most zx  times, then

( ) ( 1)x t t M zd .x
T

0
# +o#

An analogous result holds for y and the claim follows 

immediately.� Y

Proof of Lemma 1
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Step 3 makes use of the notion of the winding number to 
delete, form the set of data, the points that have already 
been classified as internal to a level line. 

Discrete-time model of  
the cluster dynamics
The algorithm described in the previous section can be 
exploited to model the dynamics of the clusters in two 
different ways, according to the time scale considered. 
The discrete-time approach, explained in this section, 
and the continuous-time approach, to which the next sec-
tion is dedicated, lead to paradigms that are different not 
only in the time scale but also in the way the static algo-
rithm is used. 

In this section the discrete-time motion of a cluster is 
reconstructed by iterative applications of the static algo-
rithm. In particular, various time instants may be associ-
ated with data sets that differ for the number and the 
position of the data points. More precisely, consider a 
sequence of time instants { }T k k Nx= ! , and let ( )P k1x  and 

)1+(P k1x  denote the sets of data points at the time instants 
k1x  and 1+k1x , respectively. Since the position of the data 

points at time 1+k1x  is, in general, different from their 
position at time k1x , the number of MCCs of the level 
set may also be different. Let ( ) ( ), ,R Rk N k1 ( )kfx xx  denote 
the MCCs of the level set at time kx . Suppose that G !
{ ( ) ( )}, ,R Rk N k1 ( )kfx xx  is an MCCs and consider the 
problem of associating G  with an MCC {F R1!

) )}1 1- -( (, ,Rk N k( )k 1fx xx -  in such a way that G  is the time-
evolution of F . 

Obviously, to begin with the concept of time evolution 
needs to be specified. A possible solution exploits the 
notion of geometric moments of a two-dimensional region 
(see “Geometric Moments”).

Computation of the Moments
The moments of any order of FR j  can be computed by inte-
grating (6)–(7). In fact, by using Green’s theorem a double 
integral over a region is equal to a line integral over its 
boundary. 

Theorem 2 (Green’s)
Let S  be a positively oriented, piecewise smooth, simple 
closed curve in R2 , and let R  be the region bounded by S . 
If L and M are functions of x and y defined on an open 
region containing R , and with continuous partial deriva-
tives in R , then 

	
x
M

y
L x y L x M yd d d d .

R S2
2

2
2

- = +c ^m h## # 	  

By applying Theorem 2 and selecting, for instance, 
( / )M x x yp q2 2 =  and 0L =  one obtains 

	 y yd ,1+x y x y
p

x
1

1d dp q p q

R Sj j
=

+
## # � (8)

where the term on the right-hand side is an integral along a 
(closed) trajectory S j  corresponding to one of the level 
lines of the clustering function H. From (8) the time 

The first claim holds thanks to the fact that the term 

( )H H /
r

1 3- -  has a sign that steers the trajectory towards a 

line corresponding to Hr . Moreover, the steering term vanishes 

when H H .r=  In particular, the time derivative of the Hamilto-

nian function yields the dynamical system

( )H
x
H x

y
H y

x
H

y
H f x y,/

r

2
1 3

2

2
2

2
2

2
2

2
2= + =- + H H-o o o c cc ^m m m h

	 ,/r
1 3=- H H-^ h � (S1)

the solution of which is

( )
( ( ) ) ( )

H t
H H H H H t

H

0sign 0 ,

,
3
2

r r r

r

2/3
3

=
+ - - -c m*

	
( )

( )

t H H

t H H

0

0

2
3

2
3

for 0 ,

for ,

/

/

r

r

2 3

2 32

# # -

-

hence ( )H t Hr=  for / ( )t H H3 2 0 r
2/3$ -  and the system 

(6)–(7) reduces to (4)–(5). The computation of the linear 

velocity of the point ( )tp  along the trajectory of system (4)–

(5) yields

( ) ( , )s x y f x y f x y
x
H

y
H, 1,2 2

2
2

2
2

2
2

2
2= + = + =o o o c cm m

hence the level line is spanned with constant unitary velocity. 

If H is as in (2), if the data points belong to some compact set K  

and if K  is a subset of the set : ( , 0)d RR2! #p p" , , for some 

R R 0,R 2! , then S j  is a subset of : ( , 0)d RR2! #p p l" ,  
with ( / )lnR R N Hr= +l . In fact, consider a point g  such, 

that ( )d R, 0 2g l ; since ( )d R, 0i #p , for all i N1, ,f= , then 

( ) ( / )ln N Hi r2gt . Hence ( ) /H e H N( /
i

N H
r

(ln ))r1g =-  and 

( ) ( ) ( / )H H N H N H .ii

N
r r1

1g g= =
-
/  Therefore S jgg . Thus 

the first hypothesis in Lemma 1 holds. Moreover, due to the 

choice of the Hamiltonian function, the second hypothesis 

in Lemma 1 also holds and it can be concluded that the 

length of S j  is finite. Hence, since S j  is spanned with a 

constant velocity, the level line is spanned in finite time.� Y

Proof of Theorem 1
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variation of the value of the moments on the time scale of 
the Hamiltonian system (4)–(5) can be obtained. In particu-
lar, the differential equations 

	 m xy ,00 =o o � (9)

	 m x y m xyy
2
1 , ,10

2
01= =o o o o � (10) 

	 m x y m x yy m xy y
3
1

2
1 , ,,20

3
11

2
02

2= = =o o o o o o � (11)

with (0) 0mpq = , are such that ( ) ( )m t m Fpq pq R j=t , where tt  is 
the period of the orbit of system (4)–(5) along S j . 

It is worth noting that the differential equations (9)–(11) 
do not describe the dynamics of the moments on the time 
scale of the motion of the points p , but only the variation of 
their values on the time-scale of the Hamiltonian system 
(4)–(5), the trajectory of which is the level line S j . 

The Sequence of Clusters
Within the theoretical framework described above, it is now 
possible to solve the problem posed at the beginning of the 
section. In fact, moments and central moments provide a 
quantitative description of the dimension, the position, the 
orientation, and the shape of the regions containing the clus-
ters. More precisely, the computation of the moments of 
order zero and order one and the computation of the central 
moments of order two originates a map M  from the set of all 
possible shapes in R2  to a point ( ) (m m m, , ,M R 00 10 01=  

), , R20 11 02
6!n n n . This map may be used to construct a 

sequence of clusters each of which is the evolution of the pre-
vious. Suppose x-1-k k1 1x is small with respect to the time 
variation of the data points. Then a cluster C j  and the region 
R j  surrounding it experience small changes between 1-k1x  
and k1x . As a consequence, the images of the two regions, 
through M , are not too far one from the other. Now, con-
sider a region { ( ) ( )}, ,F R Rk N k1 ( )kf! x xx  and an ellipsoid in 
R6  having the center of mass in ( )M F  and the semiaxis of 
which are the coordinates of a vector ( )d d, ,d R1 6

6f != , 
namely, the set 

	 ( ( , , ) :
( )

,E z z
d

z m 1RF
,

i

i i

i
1 6

6
2

2

1

6

d
F

f ! G=
-

=

) ) 3/  

where m ,iF  denotes the ith component of ( )M F . The defi-
nition of the ellipsoid Ed  allows to formalize the notion of 
time-evolution of a cluster. 

Definition 3 
A maximal connected component { ( ), ,G R k1 1 f! x +

( )}RN k 1( )k 1 xx ++  is the one-step Ed  evolution of { ( ), ,F R k1 f! x
( )}RN k( )k xx , which is denoted by ,G FEd+  if ( ) ( )E .M G Fd!  

With the help of Definition 3 the generic K-step evolu-
tion from { ( ) ( )}, ,G R RN0 1 0 0( )0f! x xx  can be defined as the 
sequence { }Gk k K1{ , , }f!  such that, for 1i K, ,f= , 

{ ( ) ( )}, ,G R Ri i N i1 if! x xx  and G Gi E i 1d+ - . 

Definition 4

For a function ( , ) :F x y R R2
"  the moment of order ,p q+  

with p  and q  integers and such that 0p q ,$+  is de-

fined as

	 ( ) ( )m F x y F x y x y, d d .pq
p q=

3

3

3

3

- -
# # � (S1)

Considering the MCC R j  associated with the cluster C j , the 

index function of R j  is

	 ( , )
( , )

F x y
x y1

0
,

otherwise.
R j

R j _
!' � (S2)

From(S1) and (S2), it is possible to relate the moments of order 

zero and one of FR j  to the position and the size of F .R j  In fact 

the moment of order 0 of FR j  is the area of R j :

	 ( )m F x yd d ,00 R
R

j
j

= ##

whereas the position of the center of mass of R j  can be ob-

tained from the moments of order 0 and 1. Denoting by xR j  and 

yR j  its coordinates, it follows that

	
( )
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( )

( )
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, .
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R

R

R
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R

R
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j
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j
= =

A further step is the quantitative description of the shape of 

the cluster, which can be done with the help of the moments of 

higher order of R j  computed with respect to its center of mass, 

which are called the central moments.

Definition 5

For a function ( , ) :F x y ,R R2
"  the central moment of order 

p q,+  with p q 2,2+  is defined as

	 ( ) ( , )F x y F x y x yd d ,pq T
p

T
q

T Tn =
3

3

3

3

- -
# #

where x x xT R j= -  and y y y .T R j= -

The central moments of order two are associated with geo-

metric quantities such as the principal axes of the image el-

lipse of R j  (for further details, see [S20]).

Reference
[S20] R. J. Prokop and A. P. Reeves, “A survey of moment-based tech-
niques for unocculted object representation and recognition,” Graph. 
Models Image Process., vol. 54, no. 5, pp. 438–460, 1992.

Geometric Moments
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Continuous-time model  
of the cluster dynamics
The results presented in the previous section refer to a dis-
crete-time scenario where the sequence of MCCs and of 
clusters contained in them may be built by repeated appli-
cation of the static algorithm described above. In this sec-
tion a continuous-time scenario is considered leading to a 
different description of the dynamics of the clusters and to 
an extension of the static algorithm. 

Suppose that the data points move in time, which hap-
pens, for instance, when the points represent the position 
on the ground of moving objects. In this situation, not only 
the clusters change in time and assume different shapes 
but they may also merge or split, hence their number also 
varies. Moreover, data points may appear or disappear, 
meaning that the data set may have different cardinality in 
different time instants. Thus N is indeed a discrete-valued 
function ( )N x  of the time variable x . However, to simplify 
the reasoning, a constant value of N is initially assumed. 

Due to the motion of points, each Hamiltonian function 
Hi  associated to ip  depends on time and so does the Ham-
iltonian function H 

	 ( ) ( )H H, , .i
i

N

1
p px x=

=

/ � (12)

From (12) it is evident that while in the static version of the 
algorithm the level function H is defined on R2  and the 
manifolds corresponding to a constant value of H are curves 
in R2 , in the dynamic version developed herein the time x  
is added as a variable for the Hamiltonian function. As a 
result the manifolds corresponding to a constant value of H, 
described by the equation ( )H H, rp x = , are surfaces in R3 . 

To illustrate the surfaces, consider two points that are 
close to each other at the initial time-instant and are moving 
in opposite directions. Up to some instant the intersection 
between the level surface and a plane corresponding to a 
constant value of x  is a closed curve surrounding the two 
points [Figure 5(a)]. When the distance between the two 
points increases, the intersection becomes the union of two 
distinct closed lines, each of which encloses one of the 
points. The resulting three-dimensional surface is a cobor-
dism [10] between the initial closed curve surrounding the 
two points and the final pair of closed lines [Figure 5(b)]. 

The introduction of time as a new variable generates a 
port-Hamiltonian system without inputs, namely, 
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It can be seen that, due to the skew-symmetry of J , 0H =o

for all 0t $ , that is, the trajectory of system (13) lies on a 
surface corresponding to a constant value of H. In the 

remainder of the section Hr  denotes the surface corre-
sponding to the value Hr , that is, {( ) :x y, , RHr

3_ !x
( ) }H x y H, , rx = . As in the static version, since 0H =o , if 
(0)x , (0)y , and (0)x  are such that ( (0) (0) (0))H x y, , ,Hr!x  

then ( ( ) ( ) ( ))H x t y t t H, , rx =  for all 0t .2  
The time scale of (13), identified by the variable t, is 

different from the time scale of the motion of data 
points. The time-variable x  corresponding to the latter 
is interpreted as a third variable of the Hamiltonian 
function, thus originating a vector field in R3 . On the 
other hand, the time-variable t is the time scale of the 
trajectory of the state of the system which lies on Hr . 
The two time scales coincide if and only if J13  and J23  are 
such that 1x =o . 

The parameters Jij  can be arbitrarily chosen and deter-
mine the directions, on Hr , of the trajectories of the system. 
Therefore, various cases can be considered. 

Real-Time Trajectory
If J13  and J23  are such that 1x =o , then the two time scales t 
and x  coincide, which implies that the state of system (13) 
runs along Hr  in real time, namely, with no delay with 
respect to the dynamics of the measurements. This situa-
tion can be achieved, for instance, by setting 

x

y

(a)

τ

x

y

(b)

τ

y

Figure 5  Cobordism representing two moving objects. The sur-
face ( , , )H x y Hrx =  corresponds to a pair of points moving in 
opposite directions. In (a), the projection on the ( )x y,  plane of the 
level surface for different values of ;x  in (b), the surface in the 
space ( , , )x y x .
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provided that the trajectory is such that /H x 22 2 +^ h
/H y 022 2 !^ h  for all 0t $ . In this case, the remaining param-

eter J12  can be used to determine how rapidly the trajectory 
wraps around Hr . Figure 6 refers to the same setting con-
sidered in Figure 5(a). The surface Hr  “grows” in time 
along the vertical axis, while the trajectory of (13) wraps 
around Hr . 

Obviously, when the level surface splits into two 
branches, the trajectory of the port-Hamiltonian system 
can follow only one of them. Therefore, to have a complete 
approximation of Hr  another port-Hamiltonian system 
that follows the other branch needs to be considered. 

The Static Case
If J13  and J23  are such that 0x =o , then ( ) (0)tx x=  for all 
0t $  and the trajectory of system (13) lies on a plane cor-

responding to a constant value of time, as in the static case. 
Set, for instance, 

	 J
y
H J

x
H, .13 23

2
2

2
2

= =-  

As in the previous case, the remaining parameter J12  can be 
used to determine how rapidly the trajectory “wraps 
around” the surface corresponding to Hr . 

Time-Dependent Cardinality of the Data Set
Suppose now that the number of points in the data set is a 
function of time, ( )N x . This may happen, for instance, 
when the data points represent objects moving in the two-
dimensional plane and not all objects are detected at all 
time instants. Specifically, an object may appear at a par-
ticular time-instant ax , while it is not detected for .a1x x  
On the other hand, a point may disappear at the time-
instant dx , while it is detected for .d1x x  This assumption 

has two main consequences on the structure of the Hamil-
tonian function. To begin with the total number of objects 
is indeed a function of time ( )N x . This occurrence has to 
be taken into careful account since, due to the definition of 
H given by (12), it results in a discontinuity of its time deriv-
ative. In addition, in the case of a disappearing point, a 
method to propagate in the future the information pro-
vided up to the time ax must be designed. 

Suppose that a moving object, identified by the point 
( )ip x) , is tracked up to the time-instant ,d ix )  and suddenly 

disappears. If the velocity of the object is known to be 
bounded from above by a value Vu , then at time ,d i2x x )  
the actual position of the object can be any point in a ball 
centered in ( )i kp x)  and of radius ( )V ,u d ix x- ) . To take this 
occurrence into account, consider the Heaviside function 
: { }0, 1R "h , defined by ( )t 0h =  if t 01  and ( )t 1h =  if 

t 0$ , and add to the summation (12) the function 
( ) ( ) ( )L H e, ,i i

V
d i

( )
,

u d i,p px x h x x= -x x-
) ) )

) , that behaves as a 
storing function. Note that ( ) ( )L H, ,i d i i d i, ,p px x=) ) ) ) , hence 
the continuity of the total clustering function H is guaran-
teed at the disappearing time instants. 

Furthermore, it is reasonable to assume that the infor-
mation corresponding to a disappeared point does not 
need to be carried on forever. The natural way to deal with 
this requirement is to forget the point ip )  after a finite time 
interval TR . To this purpose, the storing function can be 
modified as ( ) ( ) ( )L H e, ,i i

V
i

( )u d i,p px x n x= x x-
) ) )

) , where 
( ) ( ) ( )T, ,i d i d i Rn x h x x h x x= - - - -) ) ) . 
To cope with the fact that the number of points changes 

in time, and so does the maximum value of the level func-
tion, a normalizing factor has to be defined. This factor can 
be the inverse of the number of points considered. Denoting 
by ( )M x  the number of points that disappear but are stored, 
then the final expression of the clustering function is 

	 ( )
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e o/ /  

From the previous considerations it can be deduced that 
the total Hamiltonian function is discontinuous in the time 
instants that coincide with the appearance and with the 
discarding of a data point. In fact, if a new point is detected 
at time ax , then ( ) ( ) 1N Na ax x= ++ - . Analogously, if a point 
is discarded after being stored for TR  time units, at time 

Td Rx + , then ( ) ( ) 1M T M Td R d Rx x+ = + -+ - . Nevertheless 
the discontinuity generated by the appearance of the ith 
point can be overcome. Consider the function 
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where ( )fs x  is continuous and with continuous first-order 
derivatives for all R!x . Therefore, denoting by ,a ix  the time 
instant in which the ith point appears, the function 

τ

x

y

Figure 6  Real-time evolution. The trajectory (white line) of a time-
varying port-Hamiltonian system twists around the level surface 
H r  in real time.
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( ) ( )H e f, ,i s a i
( )ip x x x= -pt-  is a continuous function with 

continuous first-order derivatives in all its variables. The 
introduction of the factor fs  has the effect of transforming the 
appearance of the ith point into a fading appearance. More-
over, the time to completely appear, which in (14) is one time-
unit, can be rendered arbitrarily small by a proper scaling. 

As a consequence of the introduction of the function (14) 
the level line defined by ( )H H,i rp x =  coincides with ip  at 
the initial time-instant and for the following time-instants is 
a circle the radius of which grows continuously. This grow-
ing process is coherent with the fact that each measurement 
can be interpreted as exact at the appearing time-instant 
while its position in the following instants may be affected 
by some tracking error, thus originating a growing region of 
interest surrounding the point. However, function (14) 
cannot be used to discard the measurement in a faded way. 
In fact, a reasoning identical to the appearance situation 
implies that at the very last time instant the level line degen-
erates into a point, which is not coherent with a loss of infor-
mation about the position of the point. 

Initial Conditions Not on the Level Set
Analogously to the static case described above, when the 
initial condition does not belong to the level surface Hr , 
modified dynamics need to be considered to steer the state 
of the Hamiltonian system to Hr . In particular, the solution 
of the system described by 

	 ( ( ) )x J H x y H
x
H, , ,r0

1/3

2
2x=- -o � (15)

	 ( ( ) )y J H x y H
y
H, , ,r0

1/3

2
2x=- -o � (16)

	 ( ( ) )J H x y H H, , ,r0
1/3

2
2x x
x

=- -o � (17)

with / / /J H x H y H0
2 2 2 1x2 2 2 2 2 2= + +

-^ ^ ^^ h h h h converges in 
finite time to the value H ,r  provided that the trajectory 
does not go through singular points of H. 

On the basis of these considerations, the following two-
step dynamics can be designed to reconstruct the surface 

{( ) : ( ) }x y H x y H, , , ,Hr rx x= = . 
1)	 If ( )H x y H, , r!x  (that is, the state is not on the level 

surface, for instance in time instants corresponding 
to appearing and disappearing points), the trajectory 
of the port-Hamiltonian system is determined by 
(15)–(17). 

2)	 If ( )H x y H, , rx = , the trajectory is determined by 
(13).

Higher dimensional clustering
The extension of the two-dimensional algorithm to the 
clustering of data belonging to Rn  can be designed in sev-
eral ways. A possible approach is to consider the coordi-
nates of the data points pair by pair and to apply to each 
pair the static two-dimensional algorithm. More pre-
cisely, suppose that RP n1  and suppose, without loss of 
generality, that n is even. In fact, if n is odd, a new coordi-
nate may be added without affecting the reasoning. If two 
points P1 !p  and P2 !p  belong to different clusters, 
then they must differ at least in one of the n coordinates, 
say the jth. As a consequence, the application of the planar 
algorithm to the projection of the data points onto the 
plane ( ),j lp p , for l j! , classifies P1 !p  and P2 !p  in dif-
ferent clusters. Note that, since the original Hamiltonian 
surface defined in Rn  is projected in the plane ( ),j lp p , 
namely, in R2 , the reference value with respect to which 
the level set are computed also changes, becoming 
smaller. Summarizing these considerations, an algorithm 
for the n-dimensional clustering method can be described 
as follows. 

»» Step 1: Construct data sets 
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(18)

where i j,p  denotes the jth coordinate of the ith data 
point. These sets consist of the projections of the 
n-dimensional data points, and, in particular, they 
are made of two-dimensional data points. 

»» Step 2: Apply the static two-dimensional algorithm 
iteratively. The application to Q1  yields the clus-
ters  , , , ,C C C K21,1 1, 1, 1f  the application to Q2  yields 
the  clusters , , , ,C C C K2 2 2 2 2,1 , ,f  and so on, up to the 
application to Qn/2 , which yields the clusters 

., , ,C C Cn n n K2/2,1 /2, /2, /n 2f  In this way each data point 
jp  belongs to the cluster C j1, 1  as far as the first pair 

of coordinates is concerned, with {1 }j K, ,1 1f! , to 
the cluster C j2, 2 as far as the second pair of coordi-
nates is concerned, with {1 }j K, ,2 2f! , and so on. 

»» Step 3: Let N K K K /K n1 2 2g= . For each { }k N0, , Kf!

consider the set of indexes { }j j, ,I /k n1 2f= , such 
that {1 }j K,1 1f! , { } { } .j K j K1 1, , ,/ /n n2 2 2 2f f f! !  
This set of indexes is associated with the cluster 

.CC
/

k i j
i

n

1

2

, i=
=

(

The level function is interpreted as the Hamiltonian function  

of a Hamiltonian dynamical system. 
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In general, different choices of the set of indexes may 
originate the same cluster, that is, Ik1  and Ik2 , with 
k k2 1!  may be such that .C Ck k1 2=  However, the total 
number of n-dimensional clusters yielded by this pro-
cess is at  most K = k1 . . . kn/2. 

Applications
In this section several applications are presented to show 
the effectiveness of the clustering methods described in 
this article. 

Detecting Groups of Objects from Images
Consider the static two-dimensional algorithm and sup-
pose that the set of data points to be clustered represent 
the black pixels in a black-and-white picture. This set-
ting is the case, for instance, of an image representing 
moving objects that have to be grouped to deduct some 
common behavior of the members within the same 

group. Consider, for instance, two flocks of birds, as in 
Figure 7, obtained from an original colored image, where 
each bird is mapped into a set of black pixels, possibly a 
singleton. The image has 700 961#  pixels, 27,016 of 
which are black and each of which potentially corre-
sponds to a bird. 

To simplify the computation, the image can be sampled 
before applying the algorithm. For instance, with a decima-
tion rate of ten, a new image is obtained that has 70 # 97 
pixels, 272 of which are black. Figure 8 shows the result of 
the clustering algorithm on the sampled image. Four clus-
ters are identified. Two of them correspond to the original 
flocks while two contain only one point, namely, one bird. 
The two singletons may correspond to birds that are moving 
out from the flock or, on the contrary, joining the flock, or 
may be due to the fact that the sampling cut out some pixels 
between them and the nearest flock. In particular, in each 
cluster the piece of trajectory from the initial point ip  to the 
level line corresponding to Hr  can be identified. 

Finally, in Figure 9 the level line provided by the algo-
rithm is compared with the original picture. 

Tuning the Value Hr Corresponding to the Level Set
As the example considered in the previous section points 
out, a level line can be associated either with a group of 
objects, as in the case of the clusters associated to the main 
flocks, or with a single one, as in the case of the two birds 
clustered as singletons in Figure 8. While in that example 
this effect is due mainly to a sampling process, it can be 
obtained by properly selecting the reference value Hr . In 
Figure 10, for instance, different level lines obtained for 
the same set of data points, namely black pixels corre-
sponding to geese, but with different values of Hr  are 
reported. 

On the left, the result obtained with a low value of the 
reference level yields the identification of a “V” shape, typ-
ical of migratory birds. On the right, a high value allows to 

Figure 8  Identification of flocks of birds with sampled data. By sam-
pling the black and white image of Figure 7, a set of points in R2  is 
obtained. The lines represent the result of the clustering algorithm.

Figure 9  Validation of the resulting clustering with the original 
image. The result of the algorithm overlapped with the original 
image of Figure 7.

Figure 7  Flock of birds. A black and white picture of two flocks of 
birds can be used to test a clustering algorithm. In fact, a reason-
able clustering method should be able to distinguish the two flocks.
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select each single bird, an operation that can be used to 
automatically count the number of birds in the image. 

Modeling the Motion of a Hurricane
As explained above, by applying iteratively the static algo-
rithm to a sequence of images, the dynamics of the clusters 
can be identified. Consider, for instance, the sequence of 
infrared images taken from a geostationary satellite over a 
region of the Earth. Each image is a black-and-white image 
the white pixels of which are the data points corresponding 
to the presence of water. The position of the center of mass 
CR  of a region RR 21  can be obtained by computing the 
moment of order zero of R  together with its two moments 
of order one. Now, suppose that the motion of CR  in a dis-
crete-time scale is described by an autoregressive linear 
difference equation of order n with time-invariant coeffi-
cients, namely, by ( ) ( ) ( )t b t b t n1 0n1 go o o+ - + + - = . 
Standard techniques from system identification [11] can be 
used to estimate both the order of the difference equation n 
and the vector of parameters ( )b b, ,b n1 f= <  giving the 
best fit for the sequence { ( )}k k No ! . To test the performance 

of the method, a real scenario is considered. The sequence 
of time instants is { }k k Nx ! , namely, kTkx = , being the 
sampling time T half an hour, in comparison with which 
the computational time is negligible. Each image is a gray-
scale image and has 720 480#  pixels. To ease the computa-
tional load, a spatial sampling of each image is performed, 
reducing the size to 72 # 48 pixels. Finally, the level of 
white associated to each pixel is compared with a threshold 
and the measurements set t  is composed of all the pixels 
having a white level larger than the threshold. Figure 11 
shows the first image of a stream where the level lines cor-
responding to each cluster are detected. 

The clustering technique is applied to a sequence of 288 
images, corresponding to six days, using the first 48, 
namely one day, to estimate the model. The obtained values 
are used to predict the motion of the cloud in the subse-
quent 240 images, corresponding to five days, with four 
different values of the prediction horizon and precisely 
one step, six steps, 12 steps, and 24 steps, corresponding to 
half an hour, three hours, six hours, and 12 hours, respec-
tively. Since results show that in all four cases the best 
approximation is a difference equation of order two, such a 
model is used to estimate both the dynamics of xR  and 
those of yR , thus estimating the trajectory of the center of 
mass. Results corresponding to a prediction horizon of 
length 12 are reported in Figure 12 where the true trajec-
tory is also plotted. 

On Figure 13 the same trajectory is plotted over the 
image corresponding to the last position of the trajectory. 

Continuous-Time-Varying Data Sets
In many applications the data points change in time. In the 
following examples, data represent information on a subject 
collected in a particular instant, and it might be interesting 

(a)

(b)

Figure 10  Effects of the choice of the reference value on the clus-
tering. A low value of (a) the reference level Hr  allows to deduct 
common behavior of a flock of geese flying in formation while a (b) 
high value allows to select the single birds.

Figure 11  Infrared image of a hurricane. An infrared image taken 
from the satellite and representing the presence of water (white 
clouds). The closed lines represent the regions, namely, the result 
of the clustering method on the sampled measurements. The 
cloud to be tracked is the first region on the right, indicated by an 
arrow. The background image is taken from [20].
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to compare how this information evolve in a continuous-
time scale. In Figure 14(a), a set of two points is considered. 
Initially the two points are classified in the same cluster. 
However, the two points are moving and after five time 
units, at time 5x = , they are too far apart and each of them 
is associated with a different cluster. The trajectory of the 
Hamiltonian system follows one of the “branch” of the sur-
face Hr ; after five more time units, at 10x = , the datum 
corresponding to this branch disappears and the storing 

function term is used. In this case the storing interval lasts 
three time units; after this three time units, at 13x = , the 
disappeared datum is forgot and the trajectory of the Ham-
iltonian system is driven to the remaining branch. 

The second scenario, depicted in Figure 14(b), is that of 
two groups of data points that are classified in the same 
cluster for the first four time units. Note the trajectory of 
the Hamiltonian system running around them both. Then, 
at 4x =  the two groups, which move in opposite direc-
tions, are too far apart and are associated with different 
clusters; the trajectory of the Hamiltonian system runs 
around one of the two branches. After eight time units 
from the initial instant, at 8x = , one of the two groups 
inverts its direction while the other stays still. After eight 
more time units, at 16,x =  the two groups are again asso-
ciated with the same cluster and all the data points are 
internal to the trajectory of the Hamiltonian system. 

These two examples show that the clustering method 
valid in the static scenario can be extended to the time-
varying case, thus defining a dynamic clustering. To this 

Figure 13  Evolution of the hurricane. The estimated trajectory of 
the center of mass and the boundary of the cloud obtained with 
the clustering algorithm are plotted over the last image of the test 
sequence. The background image is taken from [20].

τ

τ

x

(a)

(b)

x

y

y

Figure 14  Time-varying Hamiltonian functions. (a) shows two 
points, initially belonging to the same cluster, that split apart; after 
a while one of the two points disappear. (b) shows two groups of 
data points that split apart and, after a while, merge again.

By applying iteratively the static algorithm to a sequence of images,  

the dynamics of the clusters can be identified.
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Figure 12  Prediction of the motion of the hurricane. The trajectory 
of the center of mass estimated over a 12-step horizon (dashed 
bold line) together with the true trajectory (solid line).
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aim, time needs to be regarded as an additional variable of 
the Hamiltonian function. The level surfaces obtained are 
to be reconstructed in a sort of “wrap around” description 
by the trajectory of a Hamiltonian system. 

Static Optical Character Recognition
The notion of moments can be exploited to solve several clas-
sification problems. One of the most challenging is the clas-
sification of the letters of the alphabet, which is known as 
optical character recognition (OCR) [12]–[15]. For this prob-
lem, it is reasonable to assume that the size and the position 
of a letter on the plane need not be relevant to its classifica-
tion, hence a classification process is expected to be insensi-
tive to these quantities. As a consequence, the moments of 
order one, providing information on the position of the letter 
are not needed. On the other hand, the moments of order 
zero, providing information on the size, can be used to nor-
malize the moments of higher order. Consider, in fact, a mag-
nified version of a letter, being K 12  the magnification 
factor. Integral (8) on the magnified region KR j  is equal to 
the integral on R j  by scaling x and y of a factor 1/K ; in fact 
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In the following, pqo  denotes a central moment of order 
p q+  normalized as in (19), being the normalization factor 
K the square root of the area of the letter 
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that is, all normalized letters have area one. In some applica-
tions, an additional invariance property is required, namely, 
the invariance with respect to rotations, and the moments 
are redefined according to this requirement. On the con-
trary, in the particular case of OCR this kind of invariance 
can be misleading when attempting to recognize characters 
that are similar but differently oriented, such as “N” and 
“Z,” “6” and “9,” or “M” and “W.” Therefore herein orienta-
tion is considered as an important feature. 

In the moments-based OCR, first considered by Hu [16], 
the features to be extracted are associated to the moments 
and the minimal distance method is followed. The consid-
ered similarity measure is the Euclidean distance between 
collections of moments. For each symbol v , a training set Tv
is defined, which is a set of different representations of v . 
Specifically each representation corresponds to a different 

font. In Figure 15, for instance, a training set constituted by 
three different representations for the symbol “C” is shown. 
Each representation, namely, each shape, is mapped into a 
point in the space of the normalized central moments. If, for 
the sake of a simpler computation, only moments of order 
two and three are considered, then a map M from Tv to R7  
can be constructed ( ) ( ( ) ( ) ( )M , , ,i i i i20 11 02_v o v o v o v
( ) ( ) ( ) ( )), , ,i i i i30 21 12 03o v o v o v o v <  where the subscript i 

denotes the representation corresponding to the ith font. 
Finally, a reasonable way to merge the information provided 
by all the elements of the training set is that of finding the 
center of mass of their images (in R7 ). More precisely, if 

{ }F N1, , ff=  is the set of fonts of the training set and kv  
is the shape corresponding to the representation of the 
symbol v  in the kth font, not necessarily belonging to the 
training set, then ( )M kv  is likely to be close to the center of 
mass of the images of the representations of v  in the fonts 
of the training set; hence 
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Consider the set of the symbols corresponding to the let-
ters of the English alphabet and the Arabic ciphers, namely, 
the set { }S A B Z 0 1 9, , , , , ,f f_  and let , ,i i i

1 2 36fv v v  
denote their representation in the ith font. Within this frame-
work, the classification problem is to find t  given the repre-
sentation kt  of a symbol S!t  associated to the kth font. 

As mentioned above, k may, or may not, belong to F. 
According to the minimum-distance method, the 
answer to the classification problem is the symbol 

jv  providing the ( )B jv  nearest to ( )M kt , that is, 
( ) ( )argmin M B .j k

jt t v= -  
To have an idea of how the method works, consider the 

three sets of symbols represented in Figure 16, each of 
which corresponds to one of the fonts represented in 
Figure 15. The 36 centers of mass of all the images 
( ) ( )B B, ,1 36fv v  can be used for classification. The result of 

a preliminary test on the training sets of Figure 16 is that all 
the characters are correctly recognized. 

(a) (b) (c)

Figure 15  A possible training set for the letter “C.” The considered 
fonts are (a) Tahoma, (b) Times New Roman, and (c) Arial.

The notion of moments can be exploited to solve several  

classification problems. 
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To further test the performance of the method, a fourth 
font, not used to find the centers of mass of each symbol, 
may be considered, as in Figure 17. In this case all the char-
acters but one are correctly recognized, the only error being 
that “1” is recognized as “2,” yielding a correct recognition 
rate of 97.22%, comparable with the rate of other moment-
based recognition methods [17]. 

A third step of the test may consist of the recognition of 
some modified letters. In particular, four typical situations 
that could affect the performance in a practical case are 
considered and precisely letters that are partially erased, 
rotated, blurred or stretched (see Figure 18). In all the cases 
the method performs a correct recognition. 

Finally, the method is tested on a handwritten word, the 
word in Figure 19. In this case only the second “A” is erro-
neously recognized as an “S”; note that only three sets of 
fonts are used for the training and that the handwritten 
font, obviously, does not belong to the training set. 

Flower Classification
Consider the Anderson iris flower data set [18], that is, a set 
of points of R4  representing the sepal lengths and widths 

and the petal lengths and widths of 150 samples of three 
different species of iris, the virginica, the setosa, and the ver-
sicolor species. Each species is represented by 50 samples. 
This data set is used in [19] as a benchmark set for 

(a) (b) (c)

(d) (e) (f)

Figure 18  Examples of modified letter “C” used to test the perfor-
mance of the classifying method. In (a) the letter is partially 
erased, in (b) and (f) it is rotated, in (c) it is blurred, and in (e) and 
(d) it is stretched. Different fonts are used.

Figure 19  A handwritten word. The classification method can be 
used also to recognize a handwritten word, as in this case where 
the hand written representation of the word Hamiltonian is used.

Iris Setosa Iris Versicolor Iris Virginica

(5.1;3.5;1.4;0.2) (7.0;3.2;4.7;1.4) (6.3;3.3;6.0;2.5)

(4.9;3.0;1.4;0.2) (6.4;3.2;4.5;1.5) (5.8;2.7;5.1;1.9)

(4.7;3.2;1.3;0.2) (6.9;3.1;4.9;1.5) (7.1;3.0;5.9;2.1)

·
·
·

·
·
·

·
·
·

Figure 20  The Anderson’s Iris flower data set. This set is used as 
a benchmark set to test classification and clustering algorithms.

Figure 17  The Calibri font used to test the classification method. 
The moments of each letter and each numeral are computed; the 
classification is performed by comparing them with the average 
moments of the letters and numerals of Figure 16.

One of the most challenging problems in bioinformatics is the  

localization of the position of a protein with respect to the cellular membrane 

and by exploiting information about the structure of the protein.

(a)

(b)

(c)

Figure 16  The training sets for the letters and the numerals. Three 
sets of letters and numerals, corresponding to the font (a) Tahoma, 
(b) Times New Roman, and (c) Arial, are used to train the classifica-
tion method by computing the moments of each character.
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discriminant analysis. The set of measurements is partly 
reported in Figure 20, where to avoid cluttering only three 
points per species are reported. 

According to the algorithm explained above, the sets 
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can be constructed. The algorithm groups all the points in 
Q1  in a single cluster C { , , }1,1 1 2 fp p=  [see Figure 21(a)], 
while the set Q2  is partitioned into the two clusters 
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[see Figure 21(b)]. Therefore, the possible choices for the 
indexes are 1i1 =  and {1 2}i ,2 ! , yielding the clusters 
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Hence, the projection of the data points onto the two-
dimensional space corresponding to the sepal length and 
width does not provide any information on the species, 
since the result of the clustering process is the whole set 
of measurement points. On the other hand, when petal 
length and width are considered, the same algorithm 
classifies the points into two clusters. 

In conclusion, with respect to this particular prob-
lem, the level set method recognizes the members of the 
setosa quality, namely the cluster on the bottom-left of 
Figure 21(b), whereas it cannot distinguish between the 
virginica and the versicolor quality, implying, as claimed 
in [19], that “a certain diagnosis of these two  species 
could not be based solely on these four measurements.” 

Subcellular Protein Localization
One of the most challenging problems in bioinformatics is 
the localization of the position of a protein with respect to 
the cellular membrane and by exploiting information about 
the structure of the protein. It is known that cells are consti-
tuted by compartments and that each of the compartments 
performs specific functions. Since proteins in each compart-
ment are specialized to fulfill a particular function, it is pos-
sible to deduct the behavior of a specific protein knowing 
its position within the cell. Consider a cell of Escherichia Coli 
and the problem of distinguishing among proteins local-
ized within the cytoplasm, proteins localized in the inner 
membrane and proteins localized in the outer membrane. 
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Figure 21  Classification of the iris flowers. A set of points belonging to R4  can be partitioned into (a) a single cluster or into (b) two 
clusters according to the coordinates considered.

The notion of level function can be used to cluster  

data points internal to a level line.
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More specifically, the problem is twofold; first, part of a 
data set is clustered, 80 points out of 145, according to the 
static algorithm. Then the obtained clusters are used to clas-
sify the remaining 65 elements of the data set. The nature of 
the data set is such that each protein pi  is described by a 
vector of seven components. In the application of the 
n-dimensional clustering algorithm, one of these compo-
nents is discarded since it is a binary digit having the same 
value for all the elements in the data set. Among the six 
remaining attributes, the first three represent the score of 
the protein to different recognition analysis, while the last 
three attributes are the score discriminant analysis of the 
amino-acid content and the score of two different versions 
of the ALOM program. The six coordinates originate three 
two-dimensional problems, associated with the sets 
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The application of the clustering algorithm to Q1  yields 
three clusters C1,1 , C1,2 , and C1,3  [Figure 22(a)]; its applica-
tion to Q2  yields one cluster, C2,1 , and two singletons, C2,2

and C2,3 , [Figure 22(b)]; its application to Q3  yields one 
cluster, C3,1 , and one singleton, C3,2  [Figure 22(c)]. 

It can be noted that C C3,2 2,2!  and C C3,2 2,3! , hence the 
intersection between each singleton and the other (proper) 
clusters is either empty or coincides with the singleton 
itself. Hence six clusters are obtained 
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In conclusion, when neglecting the singletons, which can 
be considered as measurement errors, three clusters are 
obtained corresponding to the cytoplasm C1^ h, the inner 
membrane (C2 ), and the outer membrane (C3 ), respec-
tively. The three corresponding regions R1 , R2 , and R3  are 
then used to classify the remaining proteins in the data set 
in the more natural way, that is, by classifying a protein 

( )p p p, ,p 1 2 6f=) ) ) ) <as residing in the cytoplasm if 
( )p p, , C1 2 1!) ) , as residing in the inner membrane if 
( )p p, , C1 2 2!) )  and as residing in the outer membrane if 
( )p p, , C1 2 3!) ) . With this method, a classification rate of 88% 
is obtained. 

Conclusions
The notion of level function can be used to cluster data 
points internal to a level line. Level lines can be deter-
mined as trajectories of a Hamiltonian system. More pre-
cisely, the level function is interpreted as a Hamiltonian 
function, and the corresponding Hamiltonian system is 
integrated. 

The basic static algorithm can be exploited to define 
dynamical clustering, both in the discrete- and continuous-
time cases. Due to the different nature of the two time 
scales, different solutions to the problem of dynamic clus-
tering are defined. 

The extension of the method to the clustering of 
n-dimensional data points is straightforward. In fact it 
basically consists of an iterative application of the two-
dimensional version of the algorithm and to the intersec-
tion of the results of each iteration. The applications 
described in the final section of the article show the effec-
tiveness of the method. 

The basic static algorithm can be exploited to define  

dynamical clustering, both in the discrete- and continuous-time cases.

Figure 22  Localization of the protein inside the cell. The results of the three two-dimensional clustering processes corresponding to the 
sub-cellular protein localization problem.
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