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Hamiltonian-Based 
Clustering
Algorithms for stAtic And dynAmic clustering  
in dAtA mining And imAge processing

T
he large amount of data 
available for analysis 
and management raises 
the need for de�ning, 
determining, and ex-

tracting meaningful information 
from the data. Hence in scienti�c, 
engineering, and economics stud-
ies, the practice of clustering data 
arises naturally when sets of data 
have to be divided into subgroups 
with the aim of possibly deducting 
common features for data belong-
ing to the same subgroup. For in-
stance, the innovation scoreboard [1] 
(see Figure 1) allows for the classi�cation 
of the countries into four main clusters correspond -
ing to the level of innovation de�ning the “leaders,” the 
“followers,” the “trailing,” and the “catching up” countries. 
Many other disciplines may require or take advantage of a 
clustering of data, from market research [2] to gene expres-
sion analysis [3], from biology to image processing [4]–[7]. 
Therefore, several clustering techniques have been devel-
oped (for details see “Review of Clustering Algorithms”).

The easiest way to represent the data to be clustered is 
by associating each datum with a point in a given space; 
therefore, clustering can be performed on the basis of the 
displacement of these points. In fact, clustering algorithms 
are explicitly or implicitly connected to some definition of 
proximity measure. Although the Euclidean norm is often 
used, in particular circumstances an alternative norm may 
yield better solutions [8]. 

Herein a distance-based clustering method is described. 
While performing the clustering, the algorithm identifies 
the regions of interest surrounding the points belonging 
to the same cluster. This idea is developed by making use 
of the concepts of level function, level set, and level lines; 
each cluster is obtained by grouping together points 
belonging to the same connected region of the level set. 
Moreover, the level function is interpreted as the Hamilto -
nian function of a Hamiltonian dynamical system. The 
interesting fact associated with the definition of a level 
line as the trajectory of a Hamiltonian system is that with 
the integration of the Hamiltonian system, some particu -
lar geometrical features associated with the connected 
region internal to the level line can be determined. These 
features, called moments, contain information that is used 
to develop a clustering procedure for data sets changing 
on time. 
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of R2 . The notion of level function may be exploited for 
clustering purposes. The result is achieved constructing a 
level function such that the images of data points that 
share common features lie around the same local maxima. 
In this case it is possible to find a suitable reference level 
such that each maximal connected component corre-
sponds to a cluster. 

Suppose that P  has N elements. A way to construct the 
function H is to associate a function :H R Ri

2 "  with each 
datum point ,Pi !p  , ,i N1 f= . This function represents 
the information associated with the position of ip . The 
functions Hi , , ,i n1 f=  are then combined to define the 
overall level function H. The final aim of a clustering 
method is to merge the information associated with the 
single data into the information associated with the cluster. 
As a consequence, the functions H i  need to have their 
maximum value in ip , where the information is maximal, 
and a decreasing value when increasing the distance from 

ip . Some examples are the cone function, the hat function, 
and the Gaussian function; see a one-dimensional version 
in Figure 3. 

Since the overall function ( )H p  is expected to maintain 
the entire information provided by each value ( )Hi p , then 
a possible choice is to define H as the p-norm of the vector 
of all the His, i.e., 
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Specifically, in the following H is defined as the sum, 
namely the 1-norm, of the His, while the single Hamilto -
nian function is defined as a Gaussian function, that is, 
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The Gaussian function is chosen because it is positive and 
smooth and can be interpreted as a probability density 
having its maximum in ,ip  which is an effective way of 
representing the information associated with the data 
points. 

The level function can be interpreted as a clustering 
function by choosing a reference value Hr  and considering 
a cluster as the set of data points lying within the same 
MCCs of the level set corresponding to Hr . In Figure 4, for 
instance, the level function and the value Hr  are such 
that� the level set corresponding to Hr  is made of three 
MCCs, namely, ,R1  R2, and R3 , each of which identifies a 
 cluster,� namely, { }C1 1p= , { }, , , , ,C 4 5 7 92 2p p p p p=  and 

{ }, , ,C 3 6 83 10p p p p= . 
To explicitly find the level line S j  associated to R j , the 

clustering function H is regarded as a Hamiltonian func-
tion and the corresponding Hamiltonian system is defined. 
The simplest form of a planar Hamiltonian system is 
described by the equations 
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where ( )x y, <  is the state. The time derivative of H is 
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which means that ( ( ) ( ))H x t y t,  is constant for all t 0$ . 
Therefore the trajectory ( ( ) ( ))x t y t,  lies on a level line of H. 
The property H 0=o  holds also for the system 
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H f x y x x0, , ,
2
2

= =o r  (4) 
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2
2
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where ( )f x y,  is any continuous positive function. Hence, 
denote with x and y the coordinates of ,p  that is, ( )x y, ,p=  
and assume that the initial condition ( )x y,r r  is such that 
( )x y, S j!r r , namely, ( )H x y H, r=r r . Then the trajectory of 
system (4)–(5) lies on S j  for all t. As a matter of fact, the 

� i� i� i

(a) (b) (c)

figure 3 Definition of level functions. The figure shows some 
examples of possible choices for the function Hi, which is the basis 
for the construction of the overall Hamiltonian function H: (a) a 
cone function, (b) a hat function, and (c) a Gaussian function.
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figure 4 Example of the data set. A possible configuration for 
{ }, , .P 1 10fp p=  The level reference Hr  is such that the level set 

is made of three MCCs, namely, ,R R1 2 , and R3 . The MCCs 
 identify the clusters { }C1 1p= , { }, , , ,C2 2 4 5 7 9p p p p p= , and 

{ }, , ,C 3 6 8 103 p p p p= .
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knowledge of an initial condition pr  such that ( )H Hrp =r  is 
not necessary. In fact, a modified version of system (4)–(5) 
may be considered. To state the main result associated with 
the modified system, a preliminary definition and a lemma 
are needed.

Definition 2 
The diameter of a set C is ( ) { ( ) :supC d x y x Cdiam , ,_ !  

}y C ,!  where ( )d x y,  is the Euclidean distance between x 
and y. 

Lemma 1 
Let : [ ]T0, R2

"c  be a continuous curve with continuous 
first-order derivatives, let ( )L c  be its length and let 
( ( ) ( ))x t y t,  denote the parametric description of ,c  namely, 
the image in R2  of [0 ]t T,! . Moreover, suppose that c  is 
contained in a compact set A , whose diameter is 

( ) Mdiam A = , the equation ( )x t 0=o  has at most zx  solu-
tions in [ )T0,  and the equation ( ) 0y t =o  has at most zy  solu-
tions in [ )T0, . Then ( ) ( )L M z z 2x y#c + +  (for the proof see 
“Proof of Lemma 1”). 

As mentioned previously, the property of the Hamilto -
nian systems, namely, that ( )H t  is constant, can be exploited 
for a Hamiltonian clustering even though the initial condi -
tion pr  is such that ( )H Hr!pr , as stated by the following 
result. 

Theorem 1 
Let H be defined by (2). For each initial condition ( ( )x 0 , 

( ))y 0 , the dynamical system 
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with the positive-definite function ( )f x y,  defined as 
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provided the trajectory satisfies / /H x H y 02 2 !2 2 2 2+^ ^h h  
for all t, is such that the state of the system is driven to a 
level line S j  corresponding to the level set ( )H x y H, r=  in 
finite time and the level line S j  is spanned in finite time 
(for the proof of the theorem see “Proof of Theorem 1”). 

The time required for the state of the system to converge 
to S j  and the time needed to span the level line can be ren-
dered arbitrarily small by multiplying f by a positive con-
stant 1k .2

A naive methodology to compute all the level lines con-
sists of integrating the Hamiltonian system (6)–(7) N times, 
the ith time picking as initial condition a point close to the 
datum point Pi !p . Each ip , in fact, belongs to some con-
nected subset R j  of the level set and, therefore, is internal to 
the level line S j . However, this exhaustive approach is not 
very efficient as it requires to compute the same level line 
S j  as many times as there are data points in R j . A more 
efficient algorithm makes use of the concept of winding 
number [9] of a point ( )x y,i i ip =  with respect to the closed 
curve S j , defined as 
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2
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The above ideas lead to the following clustering algorithm, 
which terminates after a finite number of iterations. 

 » Step 1: Let i 1=  and j 1= . 
 » Step 2: Integrate system (6)–(7) with )(0 ip p= . For all 
k i N1, ,f= + , compute ( )w , Si jp . 

 » Step 3: For all k i N1, ,f= + , if ( )w , 1Si jp =  then 
{ } .p\P P i!

 » Step 4: If P 4! , then go to Step 2 with i i 1! +  and 
j j 1! + . Otherwise STOP. 

Note that Step 2 allows to compute the boundary S j  of 
the connected set to which ip  belongs. Note also that 

Each cluster is obtained by grouping together points belonging  

to the same connected region of the level set.

The length of the curve c  is given by

( ) ( ) ( )L x y t x t y t td d .
T T2 2

0 0
#c = + +o oo o ^ h# #

If A1c , then the length spanned in the x direction in a 

time interval in which xo  does not change sign is bounded 

by M. Thus, if xo  changes sign at most zx  times, then

( ) ( 1)x t t M zd .x
T

0
# +o#

An analogous result holds for y and the claim follows 

 immediately. Y

Proof of Lemma 1
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to compare how this information evolve in a continuous-
time scale. In Figure 14(a), a set of two points is considered. 
Initially the two points are classified in the same cluster. 
However, the two points are moving and after five time 
units, at time 5x = , they are too far apart and each of them 
is associated with a different cluster. The trajectory of the 
Hamiltonian system follows one of the “branch” of the sur -
face Hr ; after five more time units, at 10x = , the datum 
corresponding to this branch disappears and the storing 

function term is used. In this case the storing interval lasts 
three time units; after this three time units, at 13x = , the 
disappeared datum is forgot and the trajectory of the Ham -
iltonian system is driven to the remaining branch. 

The second scenario, depicted in Figure 14(b), is that of 
two groups of data points that are classified in the same 
cluster for the first four time units. Note the trajectory of 
the Hamiltonian system running around them both. Then, 
at 4x =  the two groups, which move in opposite direc -
tions, are too far apart and are associated with different 
clusters; the trajectory of the Hamiltonian system runs 
around one of the two branches. After eight time units 
from the initial instant, at 8x = , one of the two groups 
inverts its direction while the other stays still. After eight 
more time units, at 16,x =  the two groups are again asso-
ciated with the same cluster and all the data points are 
internal to the trajectory of the Hamiltonian system. 

These two examples show that the clustering method 
valid in the static scenario can be extended to the time-
varying case, thus defining a dynamic clustering. To this 

figure 13 Evolution of the hurricane. The estimated trajectory of 
the center of mass and the boundary of the cloud obtained with 
the clustering algorithm are plotted over the last image of the test 
sequence. The background image is taken from [20].
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figure 14 Time-varying Hamiltonian functions. (a) shows two 
points, initially belonging to the same cluster, that split apart; after 
a while one of the two points disappear. (b) shows two groups of 
data points that split apart and, after a while, merge again.

By applying iteratively the static algorithm to a sequence of images,  

the dynamics of the clusters can be identified.
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figure 12 Prediction of the motion of the hurricane. The trajectory 
of the center of mass estimated over a 12-step horizon (dashed 
bold line) together with the true trajectory (solid line).
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 discriminant analysis. The set of measurements is partly 
reported in Figure 20, where to avoid cluttering only three 
points per species are reported. 

According to the algorithm explained above, the sets 
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can be constructed. The algorithm groups all the points�in 
Q1 in a single cluster C { , , }1,1 1 2 fp p=  [see Figure 21(a)], 
while the set Q2  is partitioned into the two  clusters 
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[see Figure 21(b)]. Therefore, the possible choices for the 
indexes are 1i 1 =  and {1 2}i ,2 ! , yielding the clusters 
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Hence, the projection of the data points onto the two-
dimensional space corresponding to the sepal length and 
width does not provide any information on the species, 
since the result of the clustering process is the whole set 
of measurement points. On the other hand, when petal 
length and width are considered, the same algorithm 
classifies the points into two clusters. 

In conclusion, with respect to this particular prob -
lem, the level set method recognizes the members of the 
setosa quality, namely the cluster on the bottom-left of 
Figure 21(b), whereas it cannot distinguish between the 
virginica and the versicolor quality, implying, as claimed 
in [19], that “a certain diagnosis of these two� species 
could not be based solely on these four measurements.” 

Subcellular Protein Localization
One of the most challenging problems in bioinformatics is 
the localization of the position of a protein with respect to 
the cellular membrane and by exploiting information about 
the structure of the protein. It is known that cells are consti -
tuted by compartments and that each of the compartments 
performs specific functions. Since proteins in each compart-
ment are specialized to fulfill a particular function, it is pos -
sible to deduct the behavior of a specific protein knowing 
its position within the cell. Consider a cell of Escherichia Coli 
and the problem of distinguishing among proteins local -
ized within the cytoplasm, proteins localized in the inner 
membrane and proteins localized in the outer membrane. 
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figure 21 Classification of the iris flowers. A set of points belonging to R4  can be partitioned into (a) a single cluster or into (b) two 
clusters according to the coordinates considered.

The notion of level function can be used to cluster  

data points internal to a level line.
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More specifically, the problem is twofold; first, part of a 
data set is clustered, 80 points out of 145, according to the 
static algorithm. Then the obtained clusters are used to clas-
sify the remaining 65 elements of the data set. The nature of 
the data set is such that each protein pi  is described by a 
vector of seven components. In the application of the 
n-dimensional clustering algorithm, one of these compo -
nents is discarded since it is a binary digit having the same 
value for all the elements in the data set. Among the six 
remaining attributes, the first three represent the score of 
the protein to different recognition analysis, while the last 
three attributes are the score discriminant analysis of the 
amino-acid content and the score of two different versions 
of the ALOM  program. The six coordinates originate three 
two-  dimensional problems, associated with the sets 
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The application of the clustering algorithm to Q1 yields 
three clusters C1,1 , C1,2 , and C1,3  [Figure 22(a)]; its applica-
tion to Q2  yields one cluster, C2,1 , and two singletons, C2,2

and C2,3 , [Figure 22(b)]; its application to Q3  yields one 
cluster, C3,1, and one singleton, C3,2 [Figure 22(c)]. 

It can be noted that C C3,2 2,2!  and C C3,2 2,3! , hence the 
intersection between each singleton and the other (proper) 
clusters is either empty or coincides with the singleton 
itself. Hence six clusters are obtained 
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In conclusion, when neglecting the singletons, which can 
be considered as measurement errors, three clusters are 
obtained corresponding to the cytoplasm C1^ h, the inner 
membrane (C2 ), and the outer membrane (C3), respec-
tively. The three corresponding regions R1, R2, and R3 are 
then used to classify the remaining proteins in the data set 
in the more natural way, that is, by classifying a protein 

( )p p p, ,p 1 2 6f=) ) ) ) < as residing in the cytoplasm if 
( )p p, , C1 2 1!) ) , as residing in the inner membrane if 
( )p p, , C1 2 2!) )  and as residing in the outer membrane if 
( )p p, , C1 2 3!) ) . With this method, a classification rate of 88% 
is obtained. 

CONCLuSIONS
The notion of level function can be used to cluster data 
points internal to a level line. Level lines can be deter-
mined as trajectories of a Hamiltonian system. More pre-
cisely, the level function is interpreted as a Hamiltonian 
function, and the corresponding Hamiltonian system is 
integrated. 

The basic static algorithm can be exploited to define 
dynamical clustering, both in the discrete- and continuous-
time cases. Due to the different nature of the two time 
scales, different solutions to the problem of dynamic clus -
tering are defined. 

The extension of the method to the clustering of 
n-dimensional data points is straightforward. In fact it 
basically consists of an iterative application of the two-
dimensional version of the algorithm and to the intersec -
tion of the results of each iteration. The applications 
described in the final section of the article show the effec-
tiveness of the method. 

The basic static algorithm can be exploited to define  

dynamical clustering, both in the discrete- and continuous-time cases.

figure 22 Localization of the protein inside the cell. The results of the three two-dimensional clustering processes corresponding to the 
sub-cellular protein localization problem.
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