

UDRC Summer School, Edinburgh, 23-27 June, 2014

Audio-Visual and Sparsity based

Source Separation

Wenwu Wang

Senior Lecturer in Signal Processing

Centre for Vision, Speech and Signal Processing Department of Electronic Engineering University of Surrey, Guildford

w.wang@surrey.ac.uk http://personal.ee.surrey.ac.uk/Personal/W.Wang/

25/06/2014

Outline

Introduction

 Cocktail party problem, source separation, timefrequency masking

- Why audio-visual BSS (AV-BSS)
- > AV-ICA
- Dictionary learning (AVDL) based AV-BSS
 - Audio-visual dictionary learning
 - Time-frequency mask fusion
- Results and demonstrations
- Conclusions and future work

Introduction----Cocktail party problem 5 SURREY

BSS using TF masking

 $\longrightarrow \mathcal{M}$

Sparsity assumption ----- each TF point is dominated by one source signal.

Adverse effects

Acoustic noise

Reverberations

- W. Wang, D. Cosker, Y. Hicks, S. Sanei, and J. A. Chambers, "Video Assisted Speech Source Separation," *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing* (ICASSP 2005), vol. V, pp.425-428, Philadelphia, USA, March 18-23, 2005.
- Q. Liu, W. Wang, and P. Jackson, "Use of Bimodal Coherence to Resolve Permutation Problem in Convolutive BSS," Signal Processing, vol. 92, vol. 8, pp. 1916-1927, 2012.
- Q. Liu, W. Wang, P. Jackson, M. Barnard, J. Kittler, and J.A. Chambers, "Source separation of convolutive and noisy mixtures using audio-visual dictionary learning and probabilistic time-frequency masking", *IEEE Transactions on Signal Processing*, vol. 61, no. 22, pp. 5520-5535, 2013.
- B. Rivet, W. Wang, S.M. Naqvi, and J.A. Chambers, "Audio-Visual Speech Source Separation", *IEEE Signal Processing Magazine*, vol. 31, no. 3, pp. 125-134, 2014.
- Q. Liu, A. Aubery, and W. Wang, "Interference Reduction in Reverberant Speech Separation with Visual Voice Activity Detection", *IEEE Transactions on Multimedia*, 2014. (in press)

6

20

-20

-40

-60

-80

20

10

0

-10

-20 -30

-40

-50

-60

-70 -80

Why AV-BSS?----AV coherence

Why AV-BSS?

 The audio-domain BSS algorithms **Objective** degrade in adverse conditions. The visual stream contains complementary information to the coherent audio stream. **Potential applications** Hello world Surveillance AV speech recognition **AV-BSS** HCI Robot audition

How can the visual modality be used to assist audio-domain BSS algorithms in noisy and reverberant conditions?

Key Challenges

- Reliable AV coherence modelling
- **Bimodal differences** in size, dimensionality and sampling rates
- Fusion of AV coherence with audio-domain BSS methods

Visual Information to Resolve the Permutation Problem

Feature Extraction

- Visual feature extraction
 - Internal lip Width and Height
 - 2-Dimensional

 $\mathbf{v}_{\mathrm{T}}(m) = [\mathrm{LW}(m), \mathrm{LH}(m)]^{T}$

Audio feature extraction

- Mel-scale Frequency Cepstrum Coefficients (MFCCs)
- Block processing (synchronize with each video frame)
- L-dimensional

 $\mathbf{a}_{\mathrm{T}}(m) = [a_{\mathrm{T}I}(m), ..., a_{\mathrm{T}L}(m)]^{T}$

Audio-visual space-----Feature Selection

Robust AV Feature Selection

AV Coherence Modelling

Resolution of the permutation problem

Objective
$$\hat{\mathbf{P}}(\omega) = \underset{\mathbf{P}(\omega)}{\arg \max} \sum_{m} \sum_{k=1}^{K} p(\mathbf{u}_{k}(m))$$

Solution: An iterative sorting scheme

FD-BSS using ICA

Resolution of the permutation problem

UNIVERSITY OF

UNIVERSITY OF AVDL based BSS SURREY 0.08 0.12 0.16 0.04 0.20 0.24 0.28 0.32 0.36 Time (s) Off-line training stage "port" /po:t/ Training Source AVDL estimates AV sequences Separation stage Visual mask Visual stream generation AV Mask Audio domain Audio mixture BSS TF masking, Mandel et al. 2010. www.surrey.ac.uk

16

Dictionary learning

Figures taken from ICASSP 2013 Tutorial 11, by Dai, Maihe and Wang. Likewise for next four pages. Acknowledgement to Wei Dai for making these figures.

A two-stage procedure

W. Dai, T. Xu, and W. Wang, "Simultaneous Codeword Optimisation (SimCO) for Dictionary Update and Learning", *IEEE Transactions on Signal Processing*, vol. 60, no. 12, pp. 6340-6353, 2012.

Sparse coding (approximation)

min
$$\|\boldsymbol{X}\|_0$$
 s.t. $\|\boldsymbol{Y} - \boldsymbol{D}\boldsymbol{X}\|_F^2 \leq \epsilon$.

Greedy algorithms:

- OMP Y. Pati, et al. 1993; J. Tropp 2004
- Subspace pursuit (SP) W. Dai and O. Milenkovic 2009 CoSaMP D. Needell and J. Tropp 2009
- IHT T. Blumensath and M. Davies 2009

Dictionary update: the formulation

• Constraints:

Fixed sparsity pattern

$$\begin{aligned} \Omega &= \left\{ (i,j): \ \boldsymbol{X}_{i,j} \neq 0 \right\}, \\ \mathcal{X}_{\Omega} &= \left\{ \boldsymbol{X}: \ \boldsymbol{X}_{i,j} = 0, \ \forall \left(i,j \right) \in \Omega^c \right\}. \end{aligned}$$

Unit norm codewords

$$\mathcal{D} = \{ D : \| D_{:,j} \|_2 = 1, \forall j \in [d] \}.$$

• Dictionary Update:

$$\min_{\boldsymbol{D}\in\mathcal{D}, \boldsymbol{X}\in\mathcal{X}_{\Omega}} \|\boldsymbol{Y}-\boldsymbol{D}\boldsymbol{X}\|_{F}^{2}.$$

Dictionary update: K-SVD algorithm

Audio-visual dictionary learning: a generative model

$$\begin{pmatrix} \psi^a(m) \\ \psi^v(y,x,l) \end{pmatrix} \approx \begin{pmatrix} \hat{\psi}^a(m) \\ \hat{\psi}^v(y,x,l) \end{pmatrix} = \sum_{d=1}^D \begin{pmatrix} \sum_{\breve{m}=1}^{M_s} c_{d\breve{m}} \phi^a_d(m-\breve{m}) \\ \sum_{\breve{y}=1,\breve{x}=1,\breve{l}=1}^{Y_s,X_s,L_s} b_{d\breve{y}\breve{x}\breve{l}} \phi^v_d(y-\breve{y},x-\breve{x},l-\breve{l}) \end{pmatrix}$$

Q. Liu, W. Wang, P. Jackson, M. Barnard, J. Kittler, and J.A. Chambers, "Source separation of convolutive and noisy mixtures using audio-visual dictionary learning and probabilistic time-frequency masking", IEEE Transactions on Signal Processing, vol. 61, no. 22, pp. 5520-5535, 2013.

Sparse assumption of AVDL

Flow of the AVDL

Algorithm 1: Framework of the Proposed AVDL

Input: A training AV sequence $\boldsymbol{\psi} = (\boldsymbol{\psi}^a; \boldsymbol{\psi}^v)$, an initial \mathcal{D} with K atoms, and the number of non-zero coefficients N

Output: An AV dictionary $\mathcal{D} = \{\phi_k\}_{k=1}^K$

- 1 **Initialization:** iter = 1, MaxIter
- 2 while $iter \leq MaxIter$ do
- 3 %Coding stage
- 4 Given \mathcal{D} , decompose $\boldsymbol{\psi}$ using (1) to obtain Ω .
- 5 %Learning stage
- 6 Given Ω and the residual \boldsymbol{v} , update $\mathcal{D} = \{\phi_k\}$ for $k = 1, 2, \dots, K$ to fit model (1).
- $7 \quad iter = iter + 1$

The coding process

$$J^{av}(\bar{\boldsymbol{v}}_{\breve{y}\breve{x}\breve{l}\breve{m}}, \boldsymbol{\phi}_{k}) = J^{a}(\bar{\boldsymbol{v}}_{\breve{m}}^{a}, \boldsymbol{\phi}_{k}^{a})J^{v}(\bar{\boldsymbol{v}}_{\breve{y}\breve{x}\breve{l}}^{v}, \boldsymbol{\phi}_{k}^{v}),$$

$$J^{a}_{Mon} = |\langle \bar{\boldsymbol{v}}_{\breve{m}}^{a}, \boldsymbol{\phi}_{k}^{a} \rangle|$$

$$J^{v}(\bar{\boldsymbol{v}}_{\breve{y}\breve{x}\breve{l}}^{v}, \boldsymbol{\phi}_{k}^{v}) = \exp\left\{\frac{-1}{YXL} \left\| \bar{\boldsymbol{v}}_{\breve{y}\breve{x}\breve{l}}^{v} - \boldsymbol{\phi}_{k}^{v} \right\|_{1}\right\}.$$

$$[k_{n}, y_{n}, x_{n}, l_{n}, m_{n}] = \operatorname*{arg\,max}_{[k,\breve{y},\breve{x},\breve{l},\breve{m}]} J^{av}(\bar{\boldsymbol{v}}_{\breve{y}\breve{x}\breve{l}\breve{m}}, \boldsymbol{\phi}_{k}),$$

$$B(k_{n}, y_{n}, x_{n}, l_{n}) = 1$$

$$C(k_{n}, m_{n}) = J^{a}(\bar{\boldsymbol{v}}_{m_{n}}^{a}, \boldsymbol{\phi}_{k_{n}}^{a}).$$

$$\bar{\boldsymbol{v}}_{l_{n}}^{a} \leftarrow \bar{\boldsymbol{v}}_{l_{n}}^{a} - C(k_{n}, l_{n})\boldsymbol{\phi}_{k_{n}}^{a}.$$

The coding process (algorithm)

Algorithm 2: The Coding State of the Proposed AVDL

Input: An AV sequence $\boldsymbol{\psi}$, the dictionary $\mathcal{D} = \{\boldsymbol{\phi}_k\}_{k=1}^K$, the threshold δ , the number of non-zero coefficients N **Output**: The coding parameter set $\Omega = \{\mathbf{B}, \mathbf{C}\}\$ and residual \boldsymbol{v} 1 Initialization: Set Ω with zero tensors, $\boldsymbol{v} = \boldsymbol{\psi}, n = 1, J_{opt} = J_{max} = 0$ 2 Calculate S^{av} using (10) to (13). 3 while $n \leq N$ and $J_{opt} \geq \delta J_{max}$ do 4 % Projection 5 $\mathcal{L} = \begin{cases} \{1:L_s\}, & n=1\\ l_{n-1} + \{1-L:L-1\}, & \text{otherwise} \end{cases}$ 6 for $k \leftarrow 1$ to \overline{K} do foreach $\tilde{l} \in \mathcal{L}$ do 7 Calculate $J^a(\bar{\boldsymbol{v}}^a_{\check{m}}, \boldsymbol{\phi}^a_k)$, where \check{m} is tied with \check{l} via 8 set (2). foreach $(\breve{y}, \breve{x}), \breve{y} \in \{1 : Y_s\}, \breve{x} \in \{1 : X_s\}$ do 9 if $\mathcal{S}^{av}(\breve{y},\breve{x},\breve{l}) = 1$ then 10Obtain $J^{v}(\bar{\boldsymbol{v}}_{\breve{\boldsymbol{v}}\breve{\boldsymbol{x}}\breve{\boldsymbol{l}}}^{v}, \boldsymbol{\phi}_{k}^{v})$ via (6) 11 and $J^{av}(\bar{\boldsymbol{v}}_{\breve{\mu}\breve{\tau}\breve{l}\breve{m}}, \boldsymbol{\phi}_k)$ via (5). % Selection 12 Obtain $[y_n, x_n, l_n, k_n, m_n]$ via (7). 13 14 Update Ω via (8). 15 Residual calculation via (9). 16 $J_{opt} = J^{av}(\bar{\boldsymbol{v}}_{y_n x_n l_n m_n}, \boldsymbol{\phi}_{k_n})$ 17 **if** n = 1 **then** 18 $J_{\max} = J^{av}(\bar{\boldsymbol{v}}_{y_1x_1l_1m_1}, \boldsymbol{\phi}_{k_1})$ 19 n = n + 1

The learning stage

Algorithm 3: The Learning Stage of the Proposed AVDL.

Input: The parameter set $\Omega = \{\mathbf{B}, \mathbf{C}\}$, the residual \boldsymbol{v} , the old dictionary $\mathcal{D} = \{\boldsymbol{\phi}_k\}_{k=1}^K$ Output: A new dictionary \mathcal{D} 1 Initialization:k = 12 while $k \leq K$ do 3 Update $\boldsymbol{\phi}_k^a$, \mathbf{C} and \boldsymbol{v} via K-SVD using (14) to (17). 4 Update $\boldsymbol{\phi}_k^v$ via the K-means algorithm 5 $\boldsymbol{\phi}_k^v = \text{Mean} (b_{k\breve{y}\breve{x}\breve{l}}\bar{\boldsymbol{v}}_{k\breve{y}\breve{x}\breve{l}}^v)$, subject to $b_{k\breve{y}\breve{x}\breve{l}} \neq$ 0, $\forall (\breve{y}, \breve{x}, \breve{l})$ 6 k = k + 1

$$\begin{split} \bar{\boldsymbol{v}}_{\breve{m}}^{a} \leftarrow \bar{\boldsymbol{v}}_{\breve{m}}^{a} + c_{k\breve{m}}\boldsymbol{\phi}_{k}^{a}, \ \forall \breve{m}. \qquad \boldsymbol{\phi}_{k}^{a} \leftarrow \mathbf{ivec}(\mathbf{u}_{k}|\boldsymbol{\phi}_{k}^{a}). \\ \Upsilon_{k} \approx \lambda_{k}\mathbf{u}_{k}\mathbf{v}_{k}^{T}, \qquad \bar{\boldsymbol{v}}_{\breve{m}}^{a} \leftarrow \bar{\boldsymbol{v}}_{\breve{m}}^{a} - c_{k\breve{m}}\boldsymbol{\phi}_{k}^{a}, \ \forall \breve{m}. \end{split}$$

Synthetic data

(f) The generated AV synthetic sequence (only one second data is shown)

Additive noise added

UNIVERSITY OF

Convolutive noise added

The approximation error metrics comparison of AVDL and Monaci's method over 50 independent tests over the synthetic data

The proposed AVDL outperforms the baseline approach, giving an average of 33% improvement for the audio modality, together with a 26% improvement for the visual modality.

(b)

AV mask fusion for AVDL-BSS

$$\mathcal{M}^{av}(m,\omega) = \mathcal{M}^{a}(m,\omega)^{(\mathcal{M}^{v}(m,\omega))}$$

Audio mask

Statistically generated by evaluating the IPD and ILD of each TF point.

Visual mask Mapping the observation to the learned AV dictionary via the coding stage in AVDL.

Visual mask generation

$$\mathcal{M}^{v}(m,\omega) = \begin{cases} 1, & \text{if } \hat{\psi}^{a}(m,\omega) > \psi^{a}(m,\omega) \\ \hat{\psi}^{a}(m,\omega)/\psi^{a}(m,\omega), & \\ & \text{otherwise.} \end{cases}$$

Q. Liu, W. Wang, P. Jackson, M. Barnard, J. Kittler, and J.A. Chambers, "Source separation of convolutive and noisy mixtures using audio-visual dictionary learning and probabilistic time-frequency masking", IEEE Transactions on Signal Processing, vol. 61, no. 22, pp. 5520-5535, 2013.

Long Speech

Sheerman-Chase et al. LILiR Twotalk database 2011

Lip tracking, Ong et al. 2008

The first AV atom represents the utterance "marine" /m^ori:n/ while the second one denotes the utterance "port" /p^o:t/.

Demonstration of TF mask fusion in AVDL-BSS

Why do we choose the power law combination, instead of, e.g., a linear combination?

AVDL-BSS evaluations----SDR

AVDL-BSS evaluations----OPS-PEASS

Some examples

	Mixture	Ideal	Mandel	AV-LIU	AVDL-BSS	Rivet	AVMP-BSS
А	e		A			W	W
В			W		W	e	e
С			W		e	e	A
D					W	W	

Summary

- AV provides alternative solutions to address permutation ambiguities in BSS
- AVDL offers an alternative and effective method for modelling the AV coherence within the audio-visual data.
- The mask derived from AVDL can be used to improve the BSS performance for separating reverberant and noisy speech mixtures

Future work

To achieve dictionary adaptation and source separation simultaneously

Acknowledgement

- Collaborators: Dr Qingju Liu, Dr Philip Jackson, Dr Mark Barnard, Prof Josef Kittler, Prof Jonathon Chambers (Loughborough University), Dr Syed Mohsen Naqvi (Loughborough University), and Dr Wei Dai (Imperial College London)
- Financial support: EPSRC & DSTL, UDRC in Signal Processing

Thank you

Q & A

w.wang@surrey.ac.uk

