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Abstract—A novel technique for the online frequency esti-
mation of three-phase power systems using the widely linear
(augmented) complex least mean square (ACLMS) algorithm has
recently been proposed, and was shown to achieve significantly
better estimates than conventional complex least mean square
(CLMS) algorithm based frequency estimation under unbalanced
system conditions. In this paper, we consider the frequency
estimation problem from the state space point of view, and
show that the augmented complex Kalman filter (ACKF) offers
significantly better performance than ACLMS.

Index Terms—Complex Kalman filter; widely linear model;
complex circularity; frequency estimation; smart grid

I. INTRODUCTION

Accurate frequency estimation is essential for the protection

of power systems as well as for providing desired power qual-

ity. Variation of the system frequency from its normal value

can indicate the occurrence of unexpected system conditions

which might require corrective action to be taken, and as

such, frequency tracking and estimation has received much

attention. A number of frequency estimation algorithms have

been proposed; some of the most established ones include least

square adaptive filters [1], state space estimation using Kalman

filters [2] and Fourier transform based approaches. However,

these techniques are either only suitable for balanced systems,

that is, systems with line voltages of equal amplitudes, or have

been designed for single-phase systems, and hence cannot fully

characterise three-phase power systems, where the line-to-line

voltages need to be taken into account.

The linear mapping, known as Clarke’s αβ transformation

is instrumental in providing a unified framework for dealing

with all three-phase voltages simultaneously, and has lead to

the development of a number of complex valued frequency

estimation techniques. However, these techniques have proven

suboptimal for unbalanced voltage conditions, for example,

when the three line voltages have different amplitudes, re-

sulting in an oscillatory estimation error at twice the system

frequency. This problem can be attributed to the use of the

standard, strictly linear, complex estimation model that does

not fully capture the second order statistics of complex signals.

Recent advances in the so called ‘augmented complex statis-

tics’ [3] have highlighted that for a general (improper) complex

vector x, second order statistics based on the covariance

Rx = E{xxH} is inadequate and that the pseudocovariance

Px = E{xxT } is also required to fully capture the second

order statistics. To introduce an optimal second order estimator

for the generality of complex signals, consider first the mean

square estimator (MSE) of a real valued random vector y in

terms of an observed real vector x, that is, ŷ = E{y|x}. For
zero-mean, jointly normal y and x, the optimal estimator is

linear, that is

ŷ = Hx (1)

where H is a coefficient matrix. Standard, ‘strictly linear’

estimation in C assumes the same model but with complex

valued y,x, and H. However, observe that both the real yr

and imaginary yi parts of the vector y are real valued, and

ŷr = E{yr|xr,xi} ŷi = E{yi|xr,xi} (2)

Substituting xr = (x+ x∗)/2 and xi = (x− x∗)/2 yields

ŷr = E{yr|x,x∗} ŷi = E{yi|x,x∗} (3)

and using (1) we obtain the widely linear complex estimator

y = Hx+Gx∗ = Wxa (4)

where the matrix W comprises the coefficient matrices H

and G, and xa = [xT ,xH ]T is the ’augmented’ input vector.

The full second order information is thus contained in the

augmented covariance matrix

Ra
x
= E{xaxaH} =

[
Rx Px

P∗
x

R∗
x

]
(5)

It has recently been shown in [4] that under unbalanced

power system conditions, the system becomes noncircular,

and the widely linear model is required for accurate system

representation; for this purpose, the work in [4] [5] devel-

oped widely linear (augmented) complex least mean square

(ACLMS) algorithm for frequency estimation [6].

We here introduce the widely linear complex Kalman filter

(ACKF) [7] with the aim of fully utilising the complete second

order statistics of complex signals [6] [8]. To that end, we

revisit the widely linear frequency estimation approach from

a state space point of view, and show that ACKF offers more

accurate estimates and faster convergence than stochastic gra-

dient based algorithms. Illustrative simulations on unbalanced

synthetic and real world data support the analysis.
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II. THE WIDELY LINEAR (AUGMENTED) COMPLEX

KALMAN FILTER (ACKF)

The Kalman filter is a sequential state estimator for linear

dynamical systems. In its basic form, it employs the linear

state space model given by

xk = Fk−1xk−1 + uk−1 (6)

yk = Hkxk + nk (7)

where xk is the state to be estimated at time instant k, yk

is the noisy observation, the vectors uk and nk are the zero-

mean state and measurement noises, with covariance matrices

Ru,k and Rn,k and pseudocovariances Pu,k and Pn,k, while

Fk and Hk are the state transition matrix and observation

matrix. Based on (4), the corresponding widely linear state

space model is defined as

xk = Fk−1xk−1 +Ak−1x
∗
k−1 + uk−1

yk = Hkxk +Bkx
∗
k + nk

and can be expressed in more compact form using so called

“augmented” vectors, such that [6]

xa
k = Fa

k−1x
a
k−1 + ua

k−1 (8)

ya
k = Ha

kx
a
k + na

k (9)

where xa
k = [xT

k ,x
H
k ]T , ya

k = [yT
k ,y

H
k ]T ,

Fa
k =

[
Fk Ak

A∗
k F∗

k

]
and Ha

k =

[
Hk Bk

B∗
k H∗

k

]
.

The coefficient matrices, A and B, determine whether

the state and observation equations are strictly linear or

widely linear. For A = 0 and B = 0, the state space

is strictly linear, however, the augmented state space

representation should still be preferred over the linear state

space, if the state and observation noises are second order

noncircular. Consider next the augmented covariance matrices

of ua
k = [uT

k ,u
H
k ]T and na

k = [nT
k ,n

H
k ]T , that is

Ra
u,k = E{ua

ku
aH
k } =

[
Ru,k Pu,k

P∗
u,k R∗

u,k

]
(10)

Ra
n,k = E{na

kn
aH
k } =

[
Rn,k Pn,k

P∗
n,k R∗

n,k

]
(11)

where the pseudocovariances are naturally catered for. The

widely linear estimate x̂a
k|k of xa

k based on the observa-

tions {ya
1 ,y

a
2 , ...,y

a
k} can be computed sequentially using the

ACKF, which is summarised in Algorithm 1.

The mean square error (MSE) difference between conven-

tional complex Kalman filter (CCKF) and widely linear (aug-

mented) complex Kalman filter (ACKF), after some tedious

algebraic manipulations, can be written as [3]

∆Mk = (Pxz,k,k −Rxz,k,kR
−1
z,kPz,k)

×(R∗
z,k −P∗

z,kR
−1
z,kPz,k)

−1

×(Pxz,k,k −Rxz,k,kR
−1
z,kPz,k)

H (17)

Algorithm 1. The augmented complex Kalman filter (ACKF)

Initialise with:

x̂a
0|0 = E{xa

0}
Ma

0|0 = E{(xa
0 − E{xa

0})(xa
0 − E{xa

0})H}

State Prediction:

x̂a
k|k−1 = Fa

k−1x̂
a
k−1|k−1 (12)

Prediction Covariance Matrix:

Ma
k|k−1 = Fa

k−1M
a
k−1|k−1F

aH
k−1 +Ra

u,k−1 (13)

Kalman Gain:

Ga
k = Ma

k|k−1H
aH
k [Ha

kM
a
k|k−1H

aH
k +Ra

n,k]
−1 (14)

State Update:

x̂a
k|k = x̂a

k|k−1 +Ga
k(y

a
k −Ha

kx̂
a
k|k−1) (15)

Covariance Matrix:

Ma
k|k = (I−Ga

kH
a
k)M

a
k|k−1 (16)

where zk =
[
yT
1 ,y

T
2 , ...,y

T
k

]T
is the observation sequence

with covariance and pseudocovariance Rz,k and Pz,k respec-

tively, while, Rxz,k,k = E
{
(xk − E{xk})(zk − E{zk})H

}

and Pxz,k,k = E
{
(xk − E{xk})(zk − E{zk})T

}
are the

cross-correlation and pseudocorrelation between the state and

observation sequence.

Remark 1: The expression (17) is always positive semidef-

inite since the matrix (R∗
z,k − P∗

z,kR
−1
z,kPz,k) is positive

definite, and consequently ∆Mk = 0 only when (Pxz,k,k −
R−1

xz,k,kRz,kPz,k) = 0. Therefore, the ACKF always has the

same or better MSE performance than CCKF.

Remark 2: The CCKF and ACKF are equivalent, that is

∆Mk = 0, if and only if the state and observation noises are

both circular and the state and observation equations are both

strictly linear.

III. WIDELY LINEAR FREQUENCY ESTIMATION

The noise free three-phase voltages can be defined as

va,k = Va,k cos(ωkT + φ)

vb,k = Vb,k cos(ωkT + φ− 2π/3)

vc,k = Vc,k cos(ωkT + φ+ 2π/3) (18)

where Va,k, Vb,k and Vc,k are the amplitudes of the of the

three-phase voltages at time instant k, ω = 2πf is the

angular frequency with f being the system frequency, T is

the sampling interval and φ is the phase of the fundamental

component. Clarke’s transformation, given by



v0,k

vα,k

vβ,k


 =

√
2

3




√
2
2

√
2
2

√
2
2

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2






va,k

vb,k

vc,k


 , (19)
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is normally used to map the three-phase voltages onto a new

domain where they can be conveniently represented by a scalar

complex signal. In (19), the zero-sequence v0,k vanishes for

balanced systems, that is, when Va,k = Vb,k = Vc,k, while

vα,k = Ak cos(ωkT + φ) and vβ,k = Ak cos(ωkT + φ + π
2 )

are orthogonal signals. In practice, the zero-sequence v0,k is

ignored, and only vα and vβ are used to form the complex

output which models the system, that is

vk = vα,k + jvβ,k = Ake
j(ωkT+φ) = vk−1e

jωT (20)

where the usual assumption Ak ≈ Ak−1 is utilised. From

Algorithm 2. State Space 1 - Linear (SS1-L)

state equation: xk = xk−1 + uk−1 (21)

observation equation: vk = vk−1xk + nk (22)

a state space point of view, the system can be modeled

as in Algorithm 2. The state xk is used to estimate ejωT

which contains the instantaneous frequency f and vk is the

observation, while uk and nk are the state and observations

noises. The three-phase system frequency is derived from the

state x as

f̂k =
1

2πT
arcsin

(
ℑ(xk)

)
(23)

where ℑ(·) is the imaginary part of a complex quantity.

Based on (20), it is clear that vk follows a circular trajectory,
since the amplitude is invariant with time, and has an angular

frequency proportional to the system frequency. However,

this circular model does not hold when the power system is

operating under abnormal conditions, such as when a voltage

sag occurs, in which case the voltage amplitudes Va,k, Vb,k and

Vc,k are no longer equal, and the system trajectory becomes

noncircular. It was shown in [4] that, in this case, the true

system model becomes widely linear, that is

vk = vα,k + jvβ,k

= Ake
j(ωkT+φ) +Bke

−j(ωkT+φ) (24)

with

Ak =

√
6(Va,k + Vb,k + Vc,k)

6

Bk =

√
6(2Va,k − Vb,k − Vc,k)

12
−

√
2(Vb,k − Vc,k)

4
j (25)

When the system is balanced and operating under nominal

conditions, that is Va,k = Vb,k = Vc,k, the coefficient Bk

vanishes and system is accurately characterised by (20), oth-

erwise, the expression in (20) is an inaccurate representation

of the system, since the system is noncircular for Bk 6= 0 (see
Figure 1). Observe that, the expression in (24) characterises

the system under both balanced and unbalanced conditions,

and can be written recursively as

vk = vk−1hk−1 + v∗k−1gk−1 (26)

The corresponding widely linear (augmented) state space
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Fig. 1. Geometric view of circularity via a real-imaginary scatter plot of the
output voltage vk . For a balanced system, characterised by Va,k = Vb,k =

Vc,k , the trajectory of vk is circular (dotted circle), while, for unbalanced
systems, such as the 100% single-phase voltage sag in phase va,k illustrated
by the ellipse in the figure (+), the trajectory becomes noncircular.

model can be defined as in Algorithm 3, where the state is the

vector consisting of the strictly linear weight hk and conjugate

weight gk, and the observation vk is widely linear in terms of

the previous observation, while, uh,k and ug,k are the state

noises corresponding to hk and gk. The system frequency is

computed as

f̂k =
1

2πT
arcsin

(
ℑ(hk + akgk)

)
(29)

with

ak =
−jℑ(hk) + j

√
ℑ2(hk)− |gk|2

gk

IV. SIMULATIONS

The proposed sequential state space algorithms and the

stochastic gradient based CLMS and ACLMS were assessed

using a 5kHz sampling rate, and were all initialised to 50.5Hz.
The linear state space models SS1 was implemented using

CCKF, while, model SS2 was implemented using the ACKF.

Figure 2 shows the performances of the considered algo-

rithms for an initially balanced system which became unbal-

anced after undergoing a Type C voltage sag starting at 0.1s,
characterised by a 20% voltage drop and 10o phase offset

on both vb and vc, followed by a Type D sag starting at

0.25s, characterised by a 20% voltage drop at line va and

Algorithm 3. State Space 2 - Widely Linear (SS2-WL)

state equation: 


hk

gk

h∗
k

g∗k


 =




hk−1

gk−1

h∗
k−1

g∗k−1


+




uh,k−1

ug,k−1

u∗
h,k−1

u∗
g,k−1


 (27)

observation equation:

vk =

[
vk−1 v∗k−1 0 0

0 0 v∗k−1 vk−1

]



hk

gk

h∗
k

g∗k


+

[
nk

n∗
k

]
(28)
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Fig. 2. Frequency estimation for a system which is balanced up to 0.1s,
after which the system becomes unbalanced due to the occurrence of voltage
sags of differing natures.
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Fig. 3. Frequency estimation for a balanced system that experiences a 10Hz/s
frequency rise starting at time 0.1s, all in the presence of white Gaussian
noises at 25dB SNR.

a 10% voltage drop on both vb and vc with a 5o phase angle

offset. Observe that for unbalanced systems, the widely linear

algorithms, ACLMS and SS2, were able to accurately estimate

the system frequency, conforming with the analysis, while the

strictly linear algorithms, CLMS and SS1, yielded oscillating

frequency estimates due to undermodeling of the system.

However, both sets of algorithms had similar performances

under balanced system conditions (time interval 0− 0.1s).
Figure 3 illustrates frequency estimation in the presence of

observation noise for a system with rising frequency, typical

case of when generation is larger than consumption. The

CLMS and ACLMS estimates were inaccurate, while the

Kalman filters were able to accurately track system frequency.

The last set of simulations considers frequency estimation

for a real-world power system with nominal frequency of 50Hz
( sampled at a rate of 1kHz). Figure 4 shows the results for an
unbalanced system (a single-phase short with earth), where the

theoretical and practical superiority of the algorithms based on

the widely linear models, ACLMS and SS2, compared with

the strictly linear models, CLMS and SS1, is highlighted.

Conforming with the analysis, the strictly linear algorithms,

CLMS and SS1, yielded inaccurate and oscillating frequency

estimates, while the widely linear algorithms, ACLMS and

SS2, yielded accurate estimates. In both simulations, the state

space based widely linear Kalman filter based algorithm, SS2,

had a faster convergence rate and lower steady state error than

the stochastic gradient based widely linear ACLMS algorithm.

V. CONCLUSIONS

We have shown that by utilising widely linear modeling,

the system frequency in three phase power systems can be
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Fig. 4. Frequency estimation for real-world unbalanced three-phase voltages,
where an initially balanced system experienced a single-line short with earth.

accurately estimated, particularly for unbalanced systems since

the system becomes noncircular when unbalanced. Frequency

estimation has been addressed from a state space perspective,

and the superiority of the widely linear (augmented) complex

Kalman filter over the stochastic gradient based widely linear

(augmented) complex LMS algorithm has been illustrated on

real world examples.
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